# Anomaly-based Network Intrusion Detection

Master Thesis Project #75

Philippe Partarrieu <ppartarrieu@os3.nl> Philipp Mieden <pmieden@os3.nl>

Supervisors Joao Novaismarques <joao.novaismarques@kpn.com> Jordi Scharloo <jordi.scharloo@kpn.com> Giovanni Sileno <g.sileno@uva.nl>



Universiteit van Amsterdam



#### The problems with signature-based solutions

- Signatures can be easily bypassed by updating key attack characteristics
- Boundless growth of signature DB over time
- Requires Up-to-date signature DB

Anomaly detection can help here

- System learns the baseline of normal network behavior
- Alerts can be generated once there are deviations
- Many different algorithms to choose from
- Known to work well for many similar data science problems

**Research Question:** Which algorithms are best suited for the task of intrusion detection in computer networks and why?

# Dataset: CIC IDS 2018

Large scale, modern dataset with traffic from over 400 different machines

- 450GB pcaps
- 80+ network flow based features provided as CSV
- 6 types of attacks (brute-force, DoS, DDoS, bot, injection, infiltration)

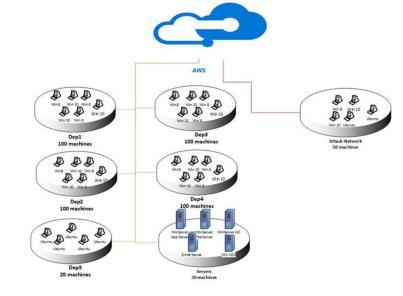
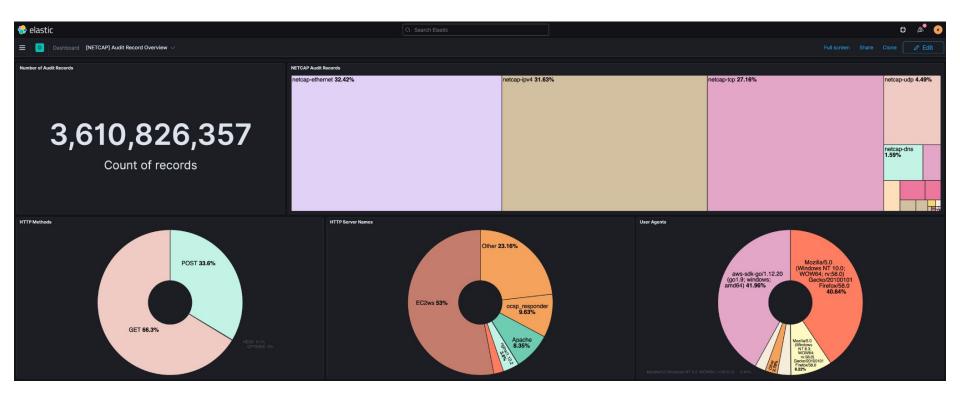


Figure 1: Network Topology

https://www.unb.ca/cic/datasets/ids-2018.html

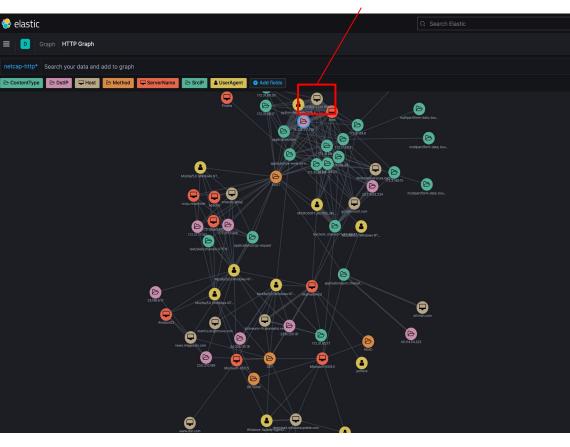
#### **Dataset: Exploration**



# HTTP request to IP 18.219.211.138:8080 instead to domain name

#### Dataset: Exploration





#### **Dataset: Exploration - Botnet activity**

| E Discover [NETCAP] H                                  | TTP Table | Ö                            |                     |              |            |                                                        |                        |                         | Options New Save                 | Open Share Inspect |
|--------------------------------------------------------|-----------|------------------------------|---------------------|--------------|------------|--------------------------------------------------------|------------------------|-------------------------|----------------------------------|--------------------|
| 📴 🗸 DstIP: 18.219.211.138                              |           |                              |                     |              |            |                                                        |                        | QL 🕒 🗸 Mar 2, 2018 @ 12 | 1:00:00.00 → Mar 3, 2018 @ 00:04 | 0:00.00 C Refresh  |
| 🐨 - + Add filter                                       |           |                              |                     |              |            |                                                        |                        |                         |                                  |                    |
| netcap-http* ~                                         |           | 137,697 hits G Reset sear    |                     |              |            | Mar 2, 2018 @ 12:00:00.000 - Mar 3, 2018 @ 00:00:00.00 |                        |                         | Ø Hide chart                     |                    |
| Q Search field names                                   |           | 12,000                       |                     |              |            |                                                        |                        |                         |                                  |                    |
| Filter by type                                         |           | 8,000<br>5 6,000             |                     |              |            |                                                        |                        |                         |                                  |                    |
| ✓ Selected fields                                      |           | 8 4,000<br>2,000             |                     |              |            |                                                        |                        |                         |                                  |                    |
| 🕐 Host                                                 |           |                              |                     |              |            |                                                        | 19:00 20:00            | 2100                    |                                  |                    |
| SrcIP StatusCode                                       |           |                              |                     |              |            | Timestamp per 10 minutes                               |                        |                         |                                  |                    |
| URL                                                    |           | Time 🕽                       | Host                | SrcIP        | StatusCode | URL                                                    | UserAgent              | ServerName              | ContentType                      | Method             |
| I UserAgent                                            |           | > Mar 2, 2018 @ 20:53:46.504 | 18.219.211.138:8080 | 172.31.69.26 | 200        | /api/Administrator_2769692493440/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| t ServerName                                           |           | > Mar 2, 2018 @ 20:53:45.988 | 18.219.211.138:8080 | 172.31.69.26 |            | /api/Administrator_2769692493440/hello                 | python-requests/2.18.4 |                         | application/json                 | POST               |
| Method                                                 |           | > Mar 2, 2018 @ 20:53:45.578 | 18.219.211.138:8080 | 172.31.69.23 | 200        | /api/Administrator_2882184018464/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| ✓ Available fields                                     | 23        | > Mar 2, 2018 @ 20:53:45.488 | 18.219.211.138:8080 | 172.31.69.26 | 200        | /api/Administrator_2769692493440/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| bL 🗊                                                   |           | > Mar 2, 2018 @ 20:53:45.078 | 18.219.211.138:8080 | 172.31.69.23 |            | /api/Administrator_2882184018464/hello                 | python-requests/2.18.4 |                         | application/json                 | POST               |
| t_index                                                |           | > Mar 2, 2018 @ 20:53:44.972 | 18.219.211.138:8080 | 172.31.69.26 | 280        | /api/Administrator_2769692493440/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| Ltype                                                  |           | > Mar 2, 2018 @ 20:53:44.917 | 18.219.211.138:8080 | 172.31.69.14 | 280        | /api/Administrator_3125667418692/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| ContentTypeDetected                                    |           | > Mar 2, 2018 @ 20:53:44.546 | 18.219.211.138:8080 | 172.31.69.23 | 289        | /api/Administrator_2882184018464/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| DstIP     Terameters.output                            |           | > Mar 2, 2018 @ 20:53:44.457 | 18.219.211.138:8080 | 172.31.69.26 | 288        | /api/Administrator_2769692493440/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| 1 Proto                                                |           | > Mar 2, 2018 @ 20:53:44.401 | 18.219.211.138:8080 | 172.31.69.14 | 280        | /api/Administrator_3125667418692/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| ReqContentLength                                       |           | > Mar 2, 2018 @ 20:53:44.046 | 18.219.211.138:8080 | 172.31.69.23 | 288        | /api/Administrator_2882184018464/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| t RequestHeader.Accept t RequestHeader.Accept-Encoding |           | > Mar 2, 2018 @ 20:53:43.941 | 18.219.211.138:8080 | 172.31.69.26 |            | /api/Administrator_2769692493440/hello                 | python-requests/2.18.4 |                         | application/json                 | POST               |
| RequestHeader.Connection                               |           | > Mar 2, 2018 @ 20:53:43.886 | 18.219.211.138:8080 | 172.31.69.14 | 288        | /api/Administrator_3125667418692/hello                 | python-requests/2.18.4 | Ares                    | application/json                 | POST               |
| RequestHeader.Content-Length                           | 14        | Mar 9 9618 8 90-69-49 744    | 18 910 911 198-6868 | 172 21 60 17 | 280        | /sni///deinietrator_2122282872226/hallo                | nuthon-reminete/2 18 4 | Arao                    | annliastion/icon                 | DNET               |

#### **Dataset: Issues**

- Original network flow CSV was missing information
   Flow ID, Src IP, Dst IP, Src Port
- Labeling tool not open source
- One provided pcap was missing attack traffic
  - one day (Thursday-15-02-2018) contains no attack traffic at all

#### **Dataset: Imbalance**

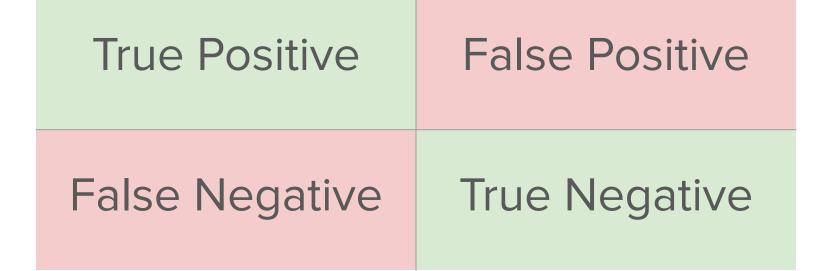
An issue for some network intrusion detection algorithms

- Some algorithms require an equal distribution of positive and negative classes
- Some algorithms require a high ratio of anomalies

Different strategies to deal with dataset imbalance exist:

- Class weights
- Oversampling
- Outlier exposure

#### **Metrics: Confusion Matrix**



Correct prediction

Incorrect prediction

#### **Metrics: Accuracy**

| True Positive  | False Positive |
|----------------|----------------|
| 0              | 0              |
| False Negative | True Negative  |
| 1              | 99             |

Accuracy is never suitable as a metrics when dealing with imbalanced data

A simple example: assume a dataset with 99 benign and 1 malicious sample

An algorithm that **always predicts** that the sample is **normal** would score **99% accuracy**. It has identifies 99 benign events but missed the anomaly

Accuracy = 
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{99}{100}$$

#### **Metrics: F1 score**

For the same dataset, let's calculate the F1 score

F1 score =  $2 * \frac{precision * recall}{precision + recall}$ 

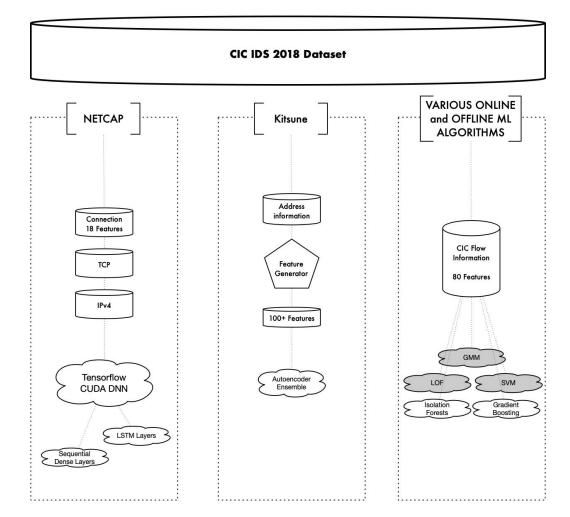
Where precision = 
$$\frac{TP}{TP + FP}$$
 and recall =  $\frac{TP}{TP + FN}$ 

We obtain F1 = 2 \* 0 = 0

The F1 score takes the relevance of the different error types into account!

| True Positive  | False Positive |
|----------------|----------------|
| 0              | 0              |
| False Negative | True Negative  |
| 1              | 99             |

#### **Experiment Design**



12

#### **Experiment Design: Model Choice**

| Model               | Online       | Supervised   | Deep Learning |
|---------------------|--------------|--------------|---------------|
| Deep Neural Network | $\checkmark$ | $\checkmark$ | $\checkmark$  |
| Auto Encoders       | $\checkmark$ | X            | $\checkmark$  |
| Gradient Boosting   | Х            | $\checkmark$ | Х             |
| Isolation Forest    | Х            | X            | X             |

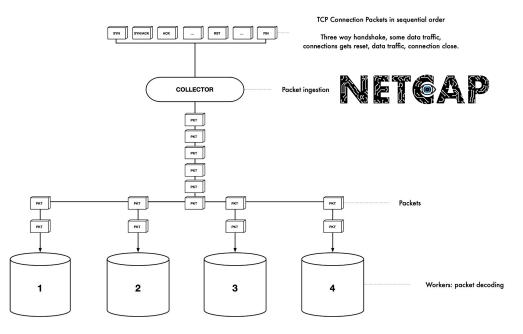
### **Feature Extraction**

Ideally parallelized to take advantage

of multi-core processors.

Concurrency causes problems though:

- Race conditions
- Shared state



Ideally something lightweight to calculate that is still expressive enough to capture network trends

- Solution: bi-directional network flow summaries (Connection Audit Records)
  - Requires keeping only minimal state, aggregate subflows
  - Processing rate: 300K pkts/second on a Ryzen 9, 16 core processor

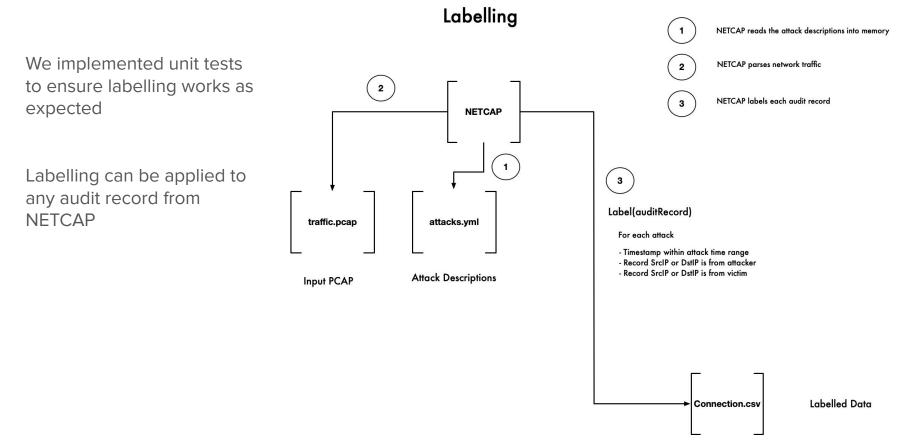
#### **Connection Audit Records**

We chose a deliberately simple set of features for establishing a baseline.

Additional features can always be added later and their effect on prediction quality measured.

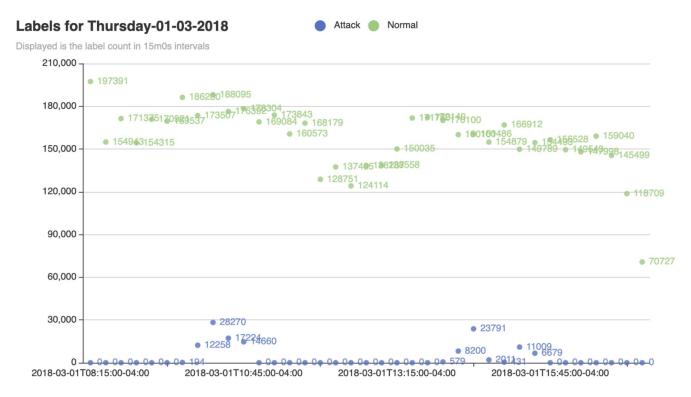
#### **Connection Features** We preserved the DstPort even when dropping address information **Time Information** Address Information **Data Transfer** SrcMAC DstPort / **TimestampFirst** DstMAC TotalSize TimestampLast SrcIP AppPayloadSize **NumPackets** SrcPort DstIP Duration **BytesClientToServer BytesServerToClient** 15

### Labelling: adding attack information



16

#### Labelling: adding attack information



### **Data Encoding**

Categorical data (eg: strings) must be transformed into numeric values

Multiple approaches for encoding categorical data:



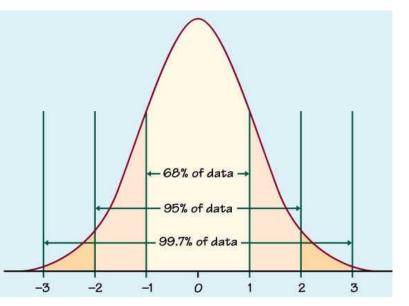
The only relation the numeric representation has to each other, is the time of first appearance.

# **Data Normalization**

Numeric values must be normalized to reside within a certain threshold

We used:

• Zscore: The Standard Normal Distribution



http://www.ltcconline.net/greenl/courses/201/probdist/zScore.htm

#### Tensorflow

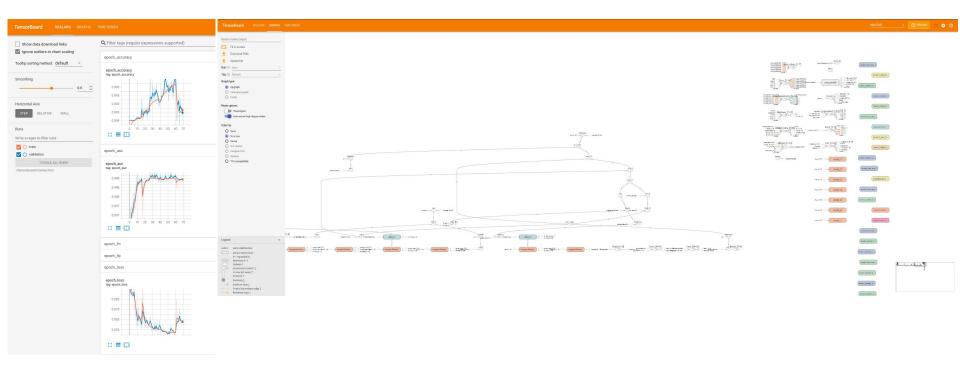
Free and open source software library for machine learning from Google

Supports different backends for computations: CPU, GPU, FPGA etc

Can be run in a cluster mode to run processing jobs on multiple hardware devices



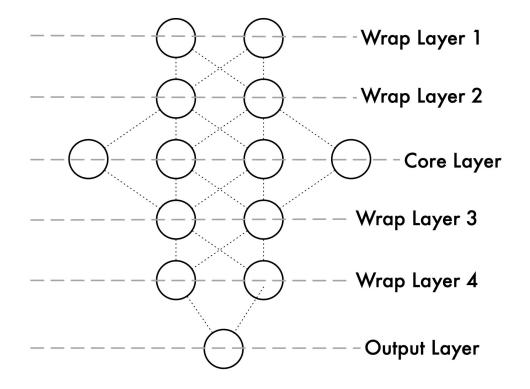
#### Tensorboard



#### **Deep Neural Network: Baseline Model**

We chose a deliberately small network for the baseline experiments

Bigger does not always mean better, as later experiment results confirmed



#### **Deep Neural Network: GPU acceleration**

#### **GEFORCE RTX 3090**

- coreClock: 1.74GHz
- coreCount: 82
- deviceMemorySize: 23.67GiB
- deviceMemoryBandwidth: 871.81GiB/s

Processing 6m Connection audit records, during training and testing ~2s per Epoch (= one run over the entire data).

| GPU           | Name                          |                         | Persisten               | ce-MI            | Bus-Id Disp.A                                                  | Volatile                   | Uncorr. ECC                       |
|---------------|-------------------------------|-------------------------|-------------------------|------------------|----------------------------------------------------------------|----------------------------|-----------------------------------|
|               |                               | Perf                    |                         |                  | Memory-Usage                                                   |                            |                                   |
| 0<br>30%      | GeFord<br>48C                 | e RTX<br>P2             |                         | ff<br>70W        | 00000000:2D:00.0 On<br>23118MiB / 24243MiB                     | 19%                        | N/A<br>Default<br>N/A             |
|               |                               |                         |                         |                  |                                                                |                            |                                   |
| Proce<br>GPU  | sses:<br>GI<br>ID             | CI<br>ID                | PID                     | Туре             | Process name                                                   | · ·                        | GPU Memory<br>Usage               |
|               | GI                            |                         | PID<br>1182             | Type             |                                                                | 3                          | GPU Memory<br>Usage<br>767MiB     |
| GPU           | GI<br>ID                      | ID                      |                         |                  | i /usr/lib/xorg/Xorg                                           | 3                          | Usage                             |
| GPU<br>Ø      | GI<br>ID<br>N/A               | ID<br>N/A               | 1182                    | G                | i /usr/lib/xorg/Xorg<br>i xfwm4                                |                            | Usage<br>767MiE<br>5MiE           |
| GPU<br>Ø<br>Ø | GI<br>ID<br>N/A<br>N/A        | ID<br>N/A<br>N/A        | 1182<br>1529            | G<br>G<br>G<br>G | /usr/lib/xorg/Xorg<br>xfwm4<br>AAAAAAAAA=st<br>b/firefox-esr/f | ,<br>nared-files           | Usage<br>767MiB                   |
| 0<br>0<br>0   | GI<br>ID<br>N/A<br>N/A<br>N/A | ID<br>N/A<br>N/A<br>N/A | 1182<br>1529<br>3513694 | G<br>G<br>G      | /usr/lib/xorg/Xorg<br>xfwm4<br>AAAAAAAAA=st<br>b/firefox-esr/f | nared-files<br>Firefox-esr | Usage<br>767MiB<br>5MiB<br>121MiB |



#### **Results: DNN\* with address information**

| Day                    | 14/02           | 15/02                                    | 16/02 | 20/02 | 21/02 | 22/02                          | 23/02                          | 28/02        | 01/03        | 02/03 |
|------------------------|-----------------|------------------------------------------|-------|-------|-------|--------------------------------|--------------------------------|--------------|--------------|-------|
| Attack<br>Labels       | Brute-<br>force | DoS                                      | DoS   | DDoS  | DDoS  | Brute-<br>force<br>/ Injection | Brute-<br>force<br>/ Injection | Infiltration | Infiltration | Bot   |
| Attack<br>Ratio<br>(%) | 0.48            | Pcaps<br>contain no<br>attack<br>traffic | 0.59  | 4.61  | 2.74  | 0.000035                       | 0.000048                       | 1.06         | 2.1          | 1.6   |
| F1                     | 0.98            | -                                        | 0.97  | 0.93  | 0.93  | 0                              | 0                              | 0.94         | 0.90         | 0.78  |

\*one model trained per day

#### **Results: DNN\* without address information**

| Day                    | 14/02           | 15/02                                    | 16/02 | 20/02 | 21/02 | 22/02                          | 23/02                          | 28/02        | 01/03        | 02/03 |
|------------------------|-----------------|------------------------------------------|-------|-------|-------|--------------------------------|--------------------------------|--------------|--------------|-------|
| Attack<br>Labels       | Brute-<br>force | DoS                                      | DoS   | DDoS  | DDoS  | Brute-<br>force<br>/ Injection | Brute-<br>force<br>/ Injection | Infiltration | Infiltration | Bot   |
| Attack<br>Ratio<br>(%) | 0.48            | Pcaps<br>contain no<br>attack<br>traffic | 0.59  | 4.61  | 2.74  | 0.000035                       | 0.000048                       | 1.06         | 2.1          | 1.6   |
| F1                     | 0               | -                                        | 0.99  | 0.82  | 0.94  | 0                              | 0                              | 0.28         | 0            | 0.77  |

\*one model trained per day

#### **Results: Isolation Forest**

| Day                    | 14/02           | 15/02 | 16/02 | 20/02 | 21/02 | 22/02                          | 23/02                          | 28/02        | 01/03        | 02/03 |
|------------------------|-----------------|-------|-------|-------|-------|--------------------------------|--------------------------------|--------------|--------------|-------|
| Attack<br>Labels       | Brute-<br>force | DoS   | DoS   | DDoS  | DDoS  | Brute-<br>force<br>/ Injection | Brute-<br>force<br>/ Injection | Infiltration | Infiltration | Bot   |
| Attack<br>Ratio<br>(%) | 5.38            | 0.8   | 12.99 | 7.29  | 12.9  | 0.01                           | 0.79                           | 11.24        | 28.11        | 3.48  |
| F1                     | 0.95            | 0.99  | 0.91  | 0.95  | 0.88  | 0.99                           | 0.99                           | 0.77         | 0.56         | 0.99  |

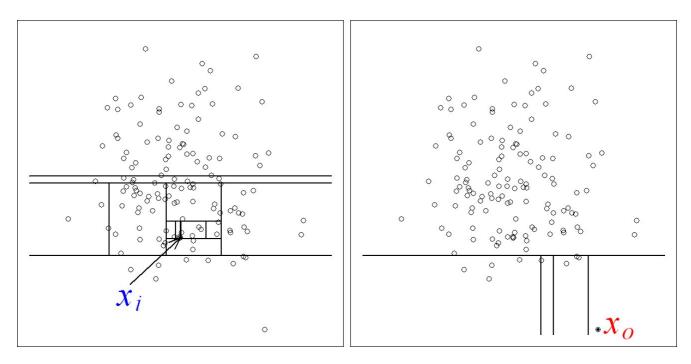
Run on enriched network flow data With IP address information

#### **Discussion: Isolation Forest**

Based on the idea that anomalies are more susceptible to isolation under random partitioning

Doesn't perform well when anomaly clusters are large and dense

To get the best results, it requires a "contamination rate"



https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf

#### **Results: Gradient Boosting**

| Day              | 14/02           | 15/02 | 16/02 | 20/02 | 21/02 | 22/02                          | 23/02                          | 28/02        | 01/03        | 02/03 |
|------------------|-----------------|-------|-------|-------|-------|--------------------------------|--------------------------------|--------------|--------------|-------|
| Attack<br>Labels | Brute-<br>force | DoS   | DoS   | DDoS  | DDoS  | Brute-<br>force<br>/ Injection | Brute-<br>force<br>/ Injection | Infiltration | Infiltration | Bot   |
| F1               | 0.95            | 1     | 0.99  | 0.99  | 1     | 0.99                           | 0.99                           | 0.68         | 0.73         | 0.99  |

Without IP address information Run on the first 1 million lines of each file

# **Discussion: Gradient Boosting**

Likely overfitting the dataset

We used the first 1 million lines of each network flow file instead of the full day because the scikit learn implementation is slow

Like DNN, loops over the dataset N times

#### **Results: Ensemble of Auto Encoders (Kitsune)**

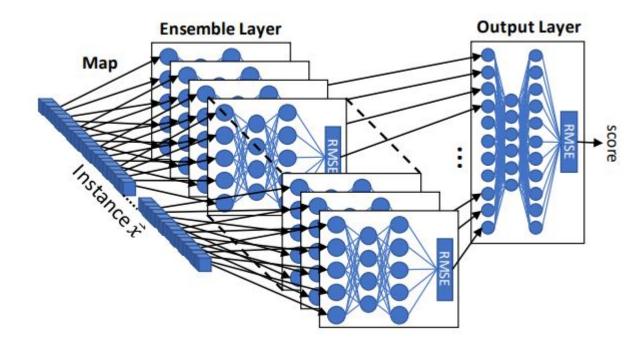
| Day                    | 14/02           | 15/02 | 16/02  | 20/02 | 21/02 | 22/02           | 23/02           | 28/02        | 01/03        | 02/03 |
|------------------------|-----------------|-------|--------|-------|-------|-----------------|-----------------|--------------|--------------|-------|
| Attack<br>Labels       | Brute-<br>force | DoS   | DoS    | DDoS  | DDoS  | Brute-<br>force | Brute-<br>force | Infiltration | Infiltration | Bot   |
| Attack<br>Ratio<br>(%) | 0.0048          | 0.54  | 0.0059 | 0.046 | 0.027 | 0.000037        | 0.000049        | 0.011        | 0.21         | 0.016 |
| F1                     | 0.65            | 0.51  | 0.59   | 0.65  | Х     | 0.68            | 0.68            | 0.53         | 0.45         | 0.43  |

Run on connection audit records With IP address information On the first 1 million lines of each file

#### **Discussion: Ensemble of Auto Encoders (Kitsune)**

Results are poor because of under-exposure to anomalies

Takes > 24h to run on a single day with 6 million samples



https://arxiv.org/pdf/1802.09089.pdf

#### **Results Recap**

| Day              | 14/02           | 15/02 | 16/02 | 20/02 | 21/02 | 22/02                             | 23/02                             | 28/02            | 01/03            | 02/03 | Training<br>Time   |
|------------------|-----------------|-------|-------|-------|-------|-----------------------------------|-----------------------------------|------------------|------------------|-------|--------------------|
| Attack<br>Labels | Brute-<br>force | DoS   | DoS   | DDoS  | DDoS  | Brute-<br>force<br>/<br>Injection | Brute-<br>force<br>/<br>Injection | Infiltratio<br>n | Infiltratio<br>n | Bot   |                    |
| DNN              | 0.98            | -     | 0.97  | 0.93  | 0.93  | 0                                 | 0                                 | 0.94             | 0.90             | 0.78  | 2 min*             |
| iForest          | 0.95            | 0.99  | 0.91  | 0.95  | 0.88  | 0.99                              | 0.99                              | 0.77             | 0.56             | 0.99  | 3 min <sup>*</sup> |
| GBoost           | 0.95            | 1     | 0.99  | 0.99  | 1     | 0.99                              | 0.99                              | 0.68             | 0.73             | 0.99  | 30 min             |
| Kitsune          | 0.65            | 0.51  | 0.59  | 0.65  | X     | 0.68                              | 0.68                              | 0.53             | 0.45             | 0.43  | 4 hours            |

<sup>\*</sup> run on GPU: GEFORCE RTX 3090

run on CPU: AMD Ryzen 5 3600 6-Core @ 3.6GHz

#### Conclusion

High success ratio for the supervised strategies, even without address information

• Knowledge transfer between networks should be possible

GPU or parallelisation are essential for processing large amounts of data

Overfitting of certain models can be mitigated to make them generalisable

#### **Future Work**

Complete alert pipeline and test analysis in Maltego / Elastic

Further research and more experiments with unsupervised algorithms

#### **Recap and contributions**

Analyzed a modern dataset for network intrusion detection using state of the art algorithms for anomaly detection

Found numerous errors in the dataset and reported them back to authors

Created our own feature extraction and labelling logic and open sourced it

Created a DNN using tensorflow and evaluated its performance

Created a generic analyzer with support for many other online and offline models, including isolation forests, gradient boosting, kitsune and more

#### **Recap and contributions**

Bootstrapped a pipeline for feeding the generated alerts into a modern analytics platform, Elastic / Kibana or Maltego

Open sourced our entire experiment testbed and internal documentation for reproducibility

Evaluated the novel autoencoder ensemble Kitsune framework on the CIC IDS 2018 dataset

#### **Questions?**



#### UNIVERSITEIT VAN AMSTERDAM

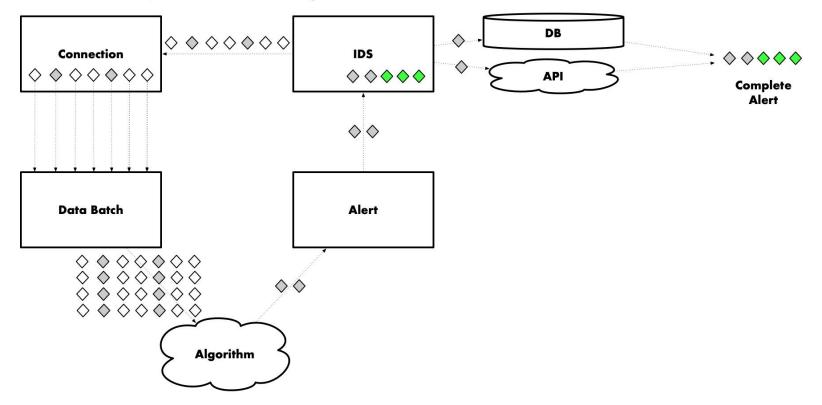
Links:

https://github.com/dreadlOck/netcap https://github.com/ppartarr/anomaly

SVE

#### **Data Flow**

- $\diamondsuit$  Feature relevant for analyst
- $\diamondsuit$  Feature relevant for algorithm
- Additional information through enrichment



#### **DNN Train / Test Split**

# DNN Train / Test Split

The DNN should never be evaluated on data it has seen already in the training phase. Therefore the data will be split into a training and evaluation portion initially.

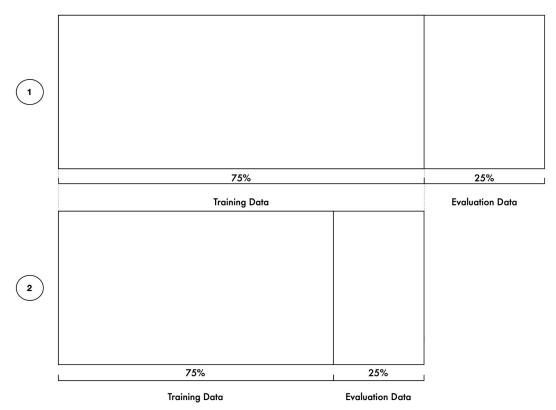
The ratio for this is configurable, the baseline experiments use 75% of the data for training and 25% for evaluation.

Training / Evaluation Split is created

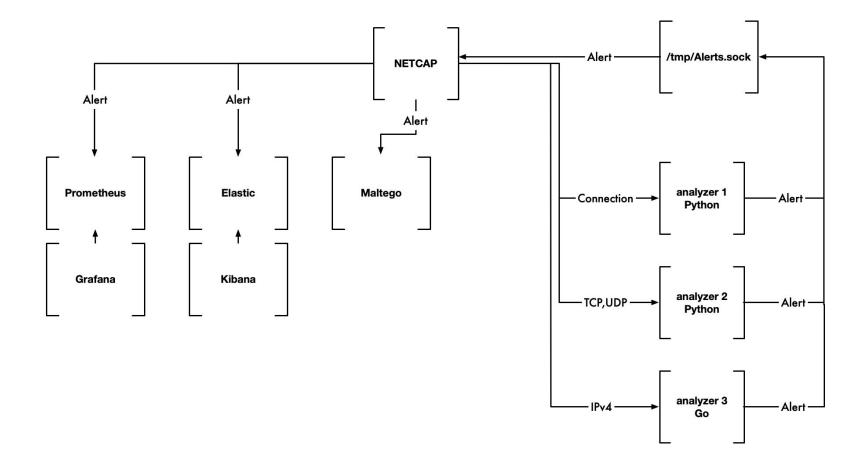


For the training phase, the data is split again for training and testing according to configuration

#### **DNN** Train / Test Split

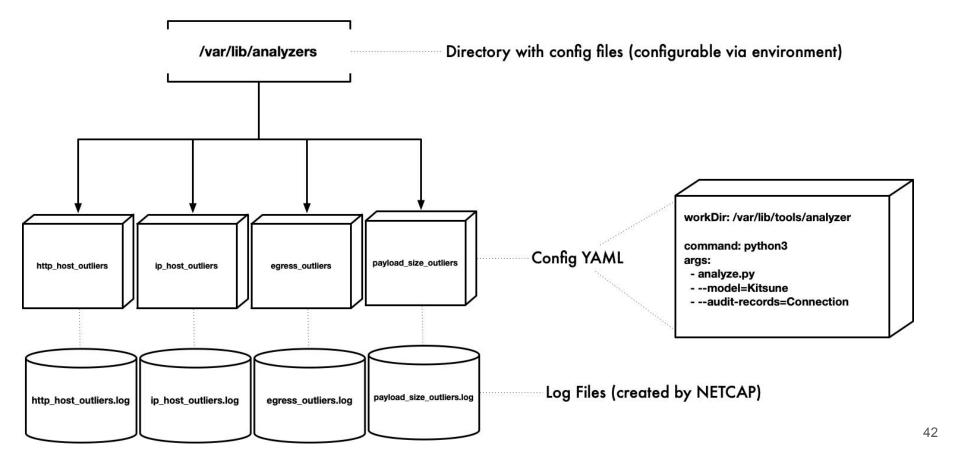


#### **Analyzer Plugins for NETCAP**

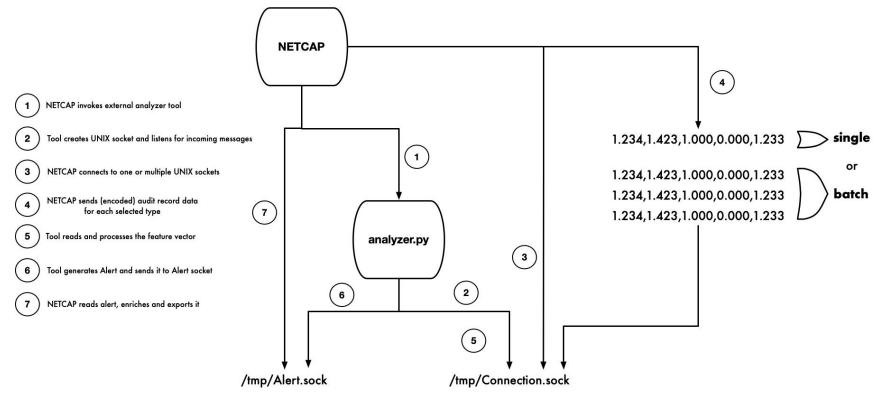


41

#### **Analyzer** Configuration



### **UNIX** socket processing



#### Expert Model

