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The problems with signature-based solutions

● Signatures can be easily bypassed by updating key attack characteristics
● Boundless growth of signature DB over time
● Requires Up-to-date signature DB

Anomaly detection can help here

● System learns the baseline of normal network behavior
● Alerts can be generated once there are deviations
● Many different algorithms to choose from
● Known to work well for many similar data science problems

Research Question: Which algorithms are best suited for the task of intrusion detection in computer 
networks and why?
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Dataset: CIC IDS 2018

Large scale, modern dataset with traffic from 
over 400 different machines

● 450GB pcaps
● 80+ network flow based features provided 

as CSV
● 6 types of attacks (brute-force, DoS, DDoS, 

bot, injection, infiltration)
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https://www.unb.ca/cic/datasets/ids-2018.html

https://www.unb.ca/cic/datasets/ids-2018.html


Dataset: Exploration

4



Dataset: Exploration
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HTTP request to IP 18.219.211.138:8080 
instead to domain name



Dataset: Exploration - Botnet activity
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Dataset: Issues

● Original network flow CSV was missing information
○ Flow ID, Src IP, Dst IP, Src Port

● Labeling tool not open source

● One provided pcap was missing attack traffic
○ one day (Thursday-15-02-2018) contains no attack traffic at all 
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Dataset: Imbalance

An issue for some network intrusion detection algorithms
● Some algorithms require an equal distribution of positive and negative classes
● Some algorithms require a high ratio of anomalies

Different strategies to deal with dataset imbalance exist:
● Class weights
● Oversampling
● Outlier exposure
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Metrics: Confusion Matrix
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Correct prediction

Incorrect prediction

True Positive False Positive

False Negative True Negative



Metrics: Accuracy
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True Positive
0

False Positive
0

False Negative
1

True Negative
99

Accuracy is never suitable as a metrics when dealing with imbalanced data

A simple example: assume a dataset with 99 benign and 1 malicious sample

An algorithm that always predicts that the sample is normal would score 99% 
accuracy. It has identifies 99 benign events but missed the anomaly

Accuracy =                                               =



Metrics: F1 score
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True Positive
0

False Positive
0

False Negative
1

True Negative
99For the same dataset, let’s calculate the F1 score

F1 score = 

Where precision =                                 and recall =

We obtain F1 = 2 * 0 = 0

The F1 score takes the relevance of the different error types into account!



Experiment Design
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Experiment Design: Model Choice
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Model Online Supervised Deep Learning

Deep Neural Network ✓ ✓ ✓

Auto Encoders ✓ X ✓

Gradient Boosting X ✓ X

Isolation Forest X X X



Feature Extraction

Ideally parallelized to take advantage 

of multi-core processors.

Concurrency causes problems though:

● Race conditions
● Shared state

Ideally something lightweight to calculate that is still expressive enough to capture network trends

● Solution: bi-directional network flow summaries (Connection Audit Records)
○ Requires keeping only minimal state, aggregate subflows
○ Processing rate: 300K pkts/second on a Ryzen 9, 16 core processor
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Connection Audit Records
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We chose a deliberately 
simple set of features for 
establishing a baseline.

Additional features can 
always be added later and 
their effect on prediction 
quality measured.

We preserved the DstPort 
even when dropping address 
information



Labelling: adding attack information
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We implemented unit tests 
to ensure labelling works as 
expected

Labelling can be applied to 
any audit record from 
NETCAP



Labelling: adding attack information
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Data Encoding

Categorical data (eg: strings) must be transformed into numeric values

Multiple approaches for encoding categorical data:

● Enumeration
● One Hot
● Learned Embedding
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We chose enumeration 
because it does not alter 
the feature dimension!



Data Normalization

Numeric values must be 
normalized to reside within a 
certain threshold

We used:

● Zscore: The Standard 
Normal Distribution 
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http://www.ltcconline.net/greenl/courses/201/probdist/zScore.htm

http://www.ltcconline.net/greenl/courses/201/probdist/zScore.htm


Tensorflow

20

Free and open source software library for 
machine learning from Google

Supports different backends for 
computations: CPU, GPU, FPGA etc

Can be run in a cluster mode to run 
processing jobs on multiple hardware devices https://www.tensorflow.org

https://www.tensorflow.org


Tensorboard
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Deep Neural Network: Baseline Model
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We chose a deliberately 
small network for the 
baseline experiments

Bigger does not always 
mean better, as later 
experiment results 
confirmed



Deep Neural Network: GPU acceleration
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GEFORCE RTX 3090

● coreClock: 1.74GHz 
● coreCount: 82 
● deviceMemorySize: 23.67GiB 
● deviceMemoryBandwidth: 871.81GiB/s

Processing 6m Connection audit records, during training and testing 
~2s per Epoch (= one run over the entire data).



Results: DNN* with address information
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Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack 
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/ Injection

Brute-
force
/ Injection

Infiltration Infiltration Bot

Attack 
Ratio 
(%)

0.48 Pcaps 
contain no 
attack 
traffic

0.59 4.61 2.74 0.000035 0.000048 1.06 2.1 1.6

F1 0.98 - 0.97 0.93 0.93 0 0 0.94 0.90 0.78

*one model trained per day



Results: DNN* without address information
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Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack 
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/ Injection

Brute-
force
/ Injection

Infiltration Infiltration Bot

Attack 
Ratio 
(%)

0.48 Pcaps 
contain no 
attack 
traffic

0.59 4.61 2.74 0.000035 0.000048 1.06 2.1 1.6

F1 0 - 0.99 0.82 0.94 0 0 0.28 0 0.77

*one model trained per day



Results: Isolation Forest
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Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack 
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/ Injection

Brute-
force
/ Injection

Infiltration Infiltration Bot

Attack 
Ratio 
(%)

5.38 0.8 12.99 7.29 12.9 0.01 0.79 11.24 28.11 3.48

F1 0.95 0.99 0.91 0.95 0.88 0.99 0.99 0.77 0.56 0.99

Run on enriched network flow data
With IP address information



Discussion: Isolation Forest
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Based on the idea that 
anomalies are more 
susceptible to isolation 
under random partitioning

Doesn’t perform well when 
anomaly clusters are large 
and dense

To get the best results, it 
requires a “contamination 
rate”

https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf

https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest


Results: Gradient Boosting
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Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack 
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/ Injection

Brute-
force
/ Injection

Infiltration Infiltration Bot

F1 0.95 1 0.99 0.99 1 0.99 0.99 0.68 0.73 0.99

Without IP address information
Run on the first 1 million lines of each file



Discussion: Gradient Boosting

29

Likely overfitting the dataset

We used the first 1 million lines of each network flow file instead of the full day because the scikit learn 
implementation is slow

Like DNN, loops over the dataset N times



Results: Ensemble of Auto Encoders (Kitsune)

30

Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack 
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force

Brute-
force

Infiltration Infiltration Bot

Attack 
Ratio 
(%)

0.0048 0.54 0.0059 0.046 0.027 0.000037 0.000049 0.011 0.21 0.016

F1 0.65 0.51 0.59 0.65 X 0.68 0.68 0.53 0.45 0.43

Run on connection audit records
With IP address information
On the first 1 million lines of each file



Discussion: Ensemble of Auto Encoders (Kitsune)
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https://arxiv.org/pdf/1802.09089.pdf

Results are poor because of 
under-exposure to anomalies

Takes > 24h to run on a single 
day with 6 million samples

https://arxiv.org/pdf/1802.09089.pdf


Results Recap
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Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03 Training 
Time

Attack 
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/ 
Injection

Brute-
force
/ 
Injection

Infiltratio
n

Infiltratio
n

Bot

DNN 0.98 - 0.97 0.93 0.93 0 0 0.94 0.90 0.78 2 min*

iForest 0.95 0.99 0.91 0.95 0.88 0.99 0.99 0.77 0.56 0.99 3 min ๋

GBoost 0.95 1 0.99 0.99 1 0.99 0.99 0.68 0.73 0.99 30 min ๋

Kitsune 0.65 0.51 0.59 0.65 X 0.68 0.68 0.53 0.45 0.43 4 hours ๋

* run on GPU: GEFORCE RTX 3090
 ๋ run on CPU: AMD Ryzen 5 3600 6-Core @ 3.6GHz



Conclusion
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High success ratio for the supervised strategies, even without address information

● Knowledge transfer between networks should be possible

GPU or parallelisation are essential for processing large amounts of data

Overfitting of certain models can be mitigated to make them generalisable



Future Work

Complete alert pipeline and test analysis in Maltego / Elastic

Further research and more experiments with unsupervised algorithms
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Recap and contributions

Analyzed a modern dataset for network intrusion detection using state of the art 

algorithms for anomaly detection

Found numerous errors in the dataset and reported them back to authors

Created our own feature extraction and labelling logic and open sourced it

Created a DNN using tensorflow and evaluated its performance

Created a generic analyzer with support for many other online and offline models, 

including isolation forests, gradient boosting, kitsune and more
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Recap and contributions

Bootstrapped a pipeline for feeding the generated alerts into a modern analytics 
platform, Elastic / Kibana or Maltego

Open sourced our entire experiment testbed and internal documentation for 
reproducibility

Evaluated the novel autoencoder ensemble Kitsune framework on the CIC IDS 
2018 dataset
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Questions?
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Links:

https://github.com/dreadl0ck/netcap
https://github.com/ppartarr/anomaly

https://github.com/dreadl0ck/netcap
https://github.com/ppartarr/anomaly
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DNN Train / Test Split
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DNN Train / Test Split
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UNIX socket processing
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