
Anomaly-based Network
Intrusion Detection

Master Thesis Project #75

Philippe Partarrieu <ppartarrieu@os3.nl>
Philipp Mieden <pmieden@os3.nl>

Supervisors
Joao Novaismarques <joao.novaismarques@kpn.com>

Jordi Scharloo <jordi.scharloo@kpn.com>
Giovanni Sileno <g.sileno@uva.nl>

The problems with signature-based solutions

● Signatures can be easily bypassed by updating key attack characteristics
● Boundless growth of signature DB over time
● Requires Up-to-date signature DB

Anomaly detection can help here

● System learns the baseline of normal network behavior
● Alerts can be generated once there are deviations
● Many different algorithms to choose from
● Known to work well for many similar data science problems

Research Question: Which algorithms are best suited for the task of intrusion detection in computer
networks and why?

2

Dataset: CIC IDS 2018

Large scale, modern dataset with traffic from
over 400 different machines

● 450GB pcaps
● 80+ network flow based features provided

as CSV
● 6 types of attacks (brute-force, DoS, DDoS,

bot, injection, infiltration)

3

https://www.unb.ca/cic/datasets/ids-2018.html

https://www.unb.ca/cic/datasets/ids-2018.html

Dataset: Exploration

4

Dataset: Exploration

5

HTTP request to IP 18.219.211.138:8080
instead to domain name

Dataset: Exploration - Botnet activity

6

Dataset: Issues

● Original network flow CSV was missing information
○ Flow ID, Src IP, Dst IP, Src Port

● Labeling tool not open source

● One provided pcap was missing attack traffic
○ one day (Thursday-15-02-2018) contains no attack traffic at all

7

Dataset: Imbalance

An issue for some network intrusion detection algorithms
● Some algorithms require an equal distribution of positive and negative classes
● Some algorithms require a high ratio of anomalies

Different strategies to deal with dataset imbalance exist:
● Class weights
● Oversampling
● Outlier exposure

8

Metrics: Confusion Matrix

9

Correct prediction

Incorrect prediction

True Positive False Positive

False Negative True Negative

Metrics: Accuracy

10

True Positive
0

False Positive
0

False Negative
1

True Negative
99

Accuracy is never suitable as a metrics when dealing with imbalanced data

A simple example: assume a dataset with 99 benign and 1 malicious sample

An algorithm that always predicts that the sample is normal would score 99%
accuracy. It has identifies 99 benign events but missed the anomaly

Accuracy = =

Metrics: F1 score

11

True Positive
0

False Positive
0

False Negative
1

True Negative
99For the same dataset, let’s calculate the F1 score

F1 score =

Where precision = and recall =

We obtain F1 = 2 * 0 = 0

The F1 score takes the relevance of the different error types into account!

Experiment Design

12

Experiment Design: Model Choice

13

Model Online Supervised Deep Learning

Deep Neural Network ✓ ✓ ✓

Auto Encoders ✓ X ✓

Gradient Boosting X ✓ X

Isolation Forest X X X

Feature Extraction

Ideally parallelized to take advantage

of multi-core processors.

Concurrency causes problems though:

● Race conditions
● Shared state

Ideally something lightweight to calculate that is still expressive enough to capture network trends

● Solution: bi-directional network flow summaries (Connection Audit Records)
○ Requires keeping only minimal state, aggregate subflows
○ Processing rate: 300K pkts/second on a Ryzen 9, 16 core processor

14

Connection Audit Records

15

We chose a deliberately
simple set of features for
establishing a baseline.

Additional features can
always be added later and
their effect on prediction
quality measured.

We preserved the DstPort
even when dropping address
information

Labelling: adding attack information

16

We implemented unit tests
to ensure labelling works as
expected

Labelling can be applied to
any audit record from
NETCAP

Labelling: adding attack information

17

Data Encoding

Categorical data (eg: strings) must be transformed into numeric values

Multiple approaches for encoding categorical data:

● Enumeration
● One Hot
● Learned Embedding

18

We chose enumeration
because it does not alter
the feature dimension!

Data Normalization

Numeric values must be
normalized to reside within a
certain threshold

We used:

● Zscore: The Standard
Normal Distribution

19

http://www.ltcconline.net/greenl/courses/201/probdist/zScore.htm

http://www.ltcconline.net/greenl/courses/201/probdist/zScore.htm

Tensorflow

20

Free and open source software library for
machine learning from Google

Supports different backends for
computations: CPU, GPU, FPGA etc

Can be run in a cluster mode to run
processing jobs on multiple hardware devices https://www.tensorflow.org

https://www.tensorflow.org

Tensorboard

21

Deep Neural Network: Baseline Model

22

We chose a deliberately
small network for the
baseline experiments

Bigger does not always
mean better, as later
experiment results
confirmed

Deep Neural Network: GPU acceleration

23

GEFORCE RTX 3090

● coreClock: 1.74GHz
● coreCount: 82
● deviceMemorySize: 23.67GiB
● deviceMemoryBandwidth: 871.81GiB/s

Processing 6m Connection audit records, during training and testing
~2s per Epoch (= one run over the entire data).

Results: DNN* with address information

24

Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/ Injection

Brute-
force
/ Injection

Infiltration Infiltration Bot

Attack
Ratio
(%)

0.48 Pcaps
contain no
attack
traffic

0.59 4.61 2.74 0.000035 0.000048 1.06 2.1 1.6

F1 0.98 - 0.97 0.93 0.93 0 0 0.94 0.90 0.78

*one model trained per day

Results: DNN* without address information

25

Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/ Injection

Brute-
force
/ Injection

Infiltration Infiltration Bot

Attack
Ratio
(%)

0.48 Pcaps
contain no
attack
traffic

0.59 4.61 2.74 0.000035 0.000048 1.06 2.1 1.6

F1 0 - 0.99 0.82 0.94 0 0 0.28 0 0.77

*one model trained per day

Results: Isolation Forest

26

Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/ Injection

Brute-
force
/ Injection

Infiltration Infiltration Bot

Attack
Ratio
(%)

5.38 0.8 12.99 7.29 12.9 0.01 0.79 11.24 28.11 3.48

F1 0.95 0.99 0.91 0.95 0.88 0.99 0.99 0.77 0.56 0.99

Run on enriched network flow data
With IP address information

Discussion: Isolation Forest

27

Based on the idea that
anomalies are more
susceptible to isolation
under random partitioning

Doesn’t perform well when
anomaly clusters are large
and dense

To get the best results, it
requires a “contamination
rate”

https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf

https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf?q=isolation-forest

Results: Gradient Boosting

28

Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/ Injection

Brute-
force
/ Injection

Infiltration Infiltration Bot

F1 0.95 1 0.99 0.99 1 0.99 0.99 0.68 0.73 0.99

Without IP address information
Run on the first 1 million lines of each file

Discussion: Gradient Boosting

29

Likely overfitting the dataset

We used the first 1 million lines of each network flow file instead of the full day because the scikit learn
implementation is slow

Like DNN, loops over the dataset N times

Results: Ensemble of Auto Encoders (Kitsune)

30

Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03

Attack
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force

Brute-
force

Infiltration Infiltration Bot

Attack
Ratio
(%)

0.0048 0.54 0.0059 0.046 0.027 0.000037 0.000049 0.011 0.21 0.016

F1 0.65 0.51 0.59 0.65 X 0.68 0.68 0.53 0.45 0.43

Run on connection audit records
With IP address information
On the first 1 million lines of each file

Discussion: Ensemble of Auto Encoders (Kitsune)

31

https://arxiv.org/pdf/1802.09089.pdf

Results are poor because of
under-exposure to anomalies

Takes > 24h to run on a single
day with 6 million samples

https://arxiv.org/pdf/1802.09089.pdf

Results Recap

32

Day 14/02 15/02 16/02 20/02 21/02 22/02 23/02 28/02 01/03 02/03 Training
Time

Attack
Labels

Brute-
force

DoS DoS DDoS DDoS Brute-
force
/
Injection

Brute-
force
/
Injection

Infiltratio
n

Infiltratio
n

Bot

DNN 0.98 - 0.97 0.93 0.93 0 0 0.94 0.90 0.78 2 min*

iForest 0.95 0.99 0.91 0.95 0.88 0.99 0.99 0.77 0.56 0.99 3 min ๋

GBoost 0.95 1 0.99 0.99 1 0.99 0.99 0.68 0.73 0.99 30 min ๋

Kitsune 0.65 0.51 0.59 0.65 X 0.68 0.68 0.53 0.45 0.43 4 hours ๋

* run on GPU: GEFORCE RTX 3090
 ๋ run on CPU: AMD Ryzen 5 3600 6-Core @ 3.6GHz

Conclusion

33

High success ratio for the supervised strategies, even without address information

● Knowledge transfer between networks should be possible

GPU or parallelisation are essential for processing large amounts of data

Overfitting of certain models can be mitigated to make them generalisable

Future Work

Complete alert pipeline and test analysis in Maltego / Elastic

Further research and more experiments with unsupervised algorithms

34

Recap and contributions

Analyzed a modern dataset for network intrusion detection using state of the art

algorithms for anomaly detection

Found numerous errors in the dataset and reported them back to authors

Created our own feature extraction and labelling logic and open sourced it

Created a DNN using tensorflow and evaluated its performance

Created a generic analyzer with support for many other online and offline models,

including isolation forests, gradient boosting, kitsune and more

35

Recap and contributions

Bootstrapped a pipeline for feeding the generated alerts into a modern analytics
platform, Elastic / Kibana or Maltego

Open sourced our entire experiment testbed and internal documentation for
reproducibility

Evaluated the novel autoencoder ensemble Kitsune framework on the CIC IDS
2018 dataset

36

Questions?

37

Links:

https://github.com/dreadl0ck/netcap
https://github.com/ppartarr/anomaly

https://github.com/dreadl0ck/netcap
https://github.com/ppartarr/anomaly

38

DNN Train / Test Split

39

DNN Train / Test Split

40

41

42

UNIX socket processing

43

44

