
research project 2

Scaling of containerized network
functions

July 5, 2021

Students:
Mohanad Elamin
melamin@os3.nl

Pim Paardekooper
ppaardekooper@os3.nl

Course:
Research Project 2

Course code:
53842REP6Y

Abstract

This research extends on the EPI project [1]. That project tries to create a data shar-
ing path between health care providers securely and dynamically. If two providers do
not have a data sharing path or they violate data-sharing policies because of missing
functionalities such as no way to encrypt traffic. A proxy is set up between the two
providers where traffic gets redirected through. This proxy can then add the func-
tionality as encryption by deploying network functions called bridging function and
redirecting the traffic through those functions. In our research a proof of concept is
created that is based on Kubernetes and allows us to deploy the EPI framework, pass
traffic through the framework and scale the bridging function. Scaling of the bridging
function can make it that resources are better utilized or that fluctuations in traffic can
be better accommodated. By scaling horizontally we can add more bridging functions
to help with traffic demands. Our research focused on how application traffic’s latency
changed when scaling the bridging functions horizontally. The scaling of the bridging
functions is researched in this report by looking at the impact of varying Kubernetes
autoscaling thresholds for bridging functions on end-user application traffic. So we can
see if autoscaling can improve the performance of the bridging functions. While imple-
menting everything, we decided on experimenting on the horizontal autoscaler as this
is more adjustable than the vertical autoscaler, and would certainly have some impact
on the application traffic. Therefore in our experiments, we implemented the Horizon-
tal Pod Autoscalers from Kubernetes. Experiments were conducted on it by adjusting
the threshold of when to scale pods and adding load to the system by increasing the
number of requests made that passed through the bridging functions. The experiments
of this project unfold that long-lived traffic sessions don’t benefit from horizontal scal-
ing of the bridging function due to the load balancing logic of Kubernetes services.
Moreover, the processing logic of the bridging function used in the Proof of concept is
CPU-centric; thus, the steady memory usage didn’t cause any scale-out events. And
finally, testing results also consistently shows an impact on end-user experience due
to a slight increase in response time due to the scale-out load distribution overhead.
This research can be complemented by examining different types of application traffic
and bridging functions as well as using machine learning to find the optimal scaling
threshold.

page 1 of 24

research project 2

1 Introduction

The EPI (Enabling Personalised Intervention) project addresses the problem of sharing data
between healthcare providers while adhering to data-sharing policies [2]. It does this by as-
sessing if two providers have a feasible data sharing path in terms of reachability and security.
Is this not the case because they miss certain functionalities, such as being able to encrypt
data or protecting outgoing traffic via a firewall, then a bridging function is deployed to pro-
vide such functionalities. Bridging functions are provided in the form of network functions.
The bridging functions can provide different services like encryption and firewall protection.
Bridging functions are provided using Virtual Network Functions (VNFs). Throughout this
paper, the Bridging functions are referred to as Containerized Bridging Functions or CBFs.
Each VNF implements a bridging function. A series of connected bridging functions is called
a bridging function chain (BFC). VNF nodes are identified with a unique IP address to be
able to forward and redirect incoming packets to them. This forwarding is done by proxy
nodes.

Two proxy node types were provided by our supervisor. One is based on the combination
of IP multiplexing and a reverse proxy. The second one is partially based on the SOCKS
protocol. The proxy nodes are responsible for:

• Identifying the CBFs required to bridge a channel and place them in a service chain.

• Establish a connection with the CBFs

• Enable Area-Area routing by enforcing packet redirections along the BFCs.

In our project, we will extend the SOCKS proxy. This is the preferred proxy by the EPI
project, as it redirects traffic without interpreting it, which allows for more application
protocols to be forwarded and allows for more functionalities. The proxy will redirect traffic
to the bridging functions that will be scaled based on Kubernetes autoscalers. Kubernetes is
an orchestration tool for containers, with already defined autoscaling implementation that
allows us to scale the bridging functions. The goal is to show the impact scaling has on the
user experience by focusing on how it impacts the application traffic. First, we show what
has been done in the field of VNF scaling (section 4). Then we will talk about our setup
and the design choices made (section 5). After that, we show the experiments we will do to
answer the research question. Lastly, we will discuss our results (section 9).

2 Research Questions

The main research question of this project is:

• What is the impact of varying Kubernetes autoscaling thresholds for bridg-
ing functions on end-user’s application traffic latency?

To be able to answer the main research question, the following sub-questions are specified:

• What metrics should trigger the horizontal scaling of the bridging function considering
its processing logic?

• What is the impact of the bridging functions horizontal scaling on application traffic’s
latency?

• What is the impact of reconfiguration on in-transit traffic?

Mohanad Elamin, Pim Paardekooper page 2 of 24

research project 2

3 Background

In this section, we give a short overview of what scaling entails and what the SOCKs proxy
is that we are going to use.

3.1 Scaling

Scaling is the process of providing more resources to respond to application demand increase.
There are mainly two options for scaling [3]:

• Horizontal scaling: Also known as scaling-out or scaling-in, is the process of adding or
removing machines or instances from a pool of resources.

• Vertical scaling: Also known as scaling-up or scaling-down, is the process of reducing
computing resources on the same machine or instance. The resources increase or
decrease can include the CPU, Memory, Disk, or Network resources.

Figure 1: Horizontal scaling is the process of adding or removing machines or instances
from a pool of resources. In contrast, vertical scaling is the process of reducing computing
resources on the same machine or instance.

The main difference between the two options is that horizontal scaling requires an external
load balancing mechanism to distribute the load across all the nodes within the resources
pool. Different factors should be considered when deciding between the two options, for
example, the performance and the redundancy requirement of the bridging function. If per-
formance requirements of pods fluctuate a lot vertical scaling might be called often, in which
case it might be better to add one extra instance by horizontal scaling.

Triggering the scaling action is either a manual activity done by the system administra-
tor or an automatic process known as autoscaling. With autoscaling, a separate auto-scaler
system will monitor the usage of the target application, and trigger scaling action based on
the scalability requirement and desired scale option, which is either Horizontal or Vertical
scaling. The traffic through the bridging functions and the load it generates is where the
autoscalers scale on in our research. This traffic first flows through a SOCKS proxy.

3.2 SOCKs

SOCKS stands for Socket Secure, it routes traffic to a server on behalf of a client [4]. It
does this for any type of traffic generated by any protocol or program. A SOCKs proxy does
not interpret network traffic. It works on layer 5 and can therefore not tunnel protocols
operating below that layer. Examples of protocols above layer 5 it can handle are HTTP,
HTTPS, POP3, SMTP and FTP. This is a benefit over other proxies such as a TCP proxy
or an HTTP proxy, as it is not dependent on the usage of higher-layer protocols. Because
of this it also provides a way to redirect traffic like UDP.

Mohanad Elamin, Pim Paardekooper page 3 of 24

research project 2

4 Related Work

On the paper ”Cloudification and Autoscaling Orchestration for Container-based Mobile
Networks Toward 5G: Experimentation, Challenges, and Perspectives” [5], Duc-Hung et
al. explained the autoscaling mechanisms available in existing container orchestrators in
the IT domain. They also conducted multiple autoscaling experiments and provided a prac-
tical evaluation of scaling the mobile core elements, specifically the Serving Gateway (SGW).

Another paper proposes three key factors which should be considered for auto-scaling meth-
ods in Kubernetes [6]. These factors are a conservative constant, adaption interval Control
Loop Time Period (CLTP) and stopping at most one container each CLTP. Auto-scaling
functions need to find a balance between over-provisioning and the performance of the sys-
tem. Scaling of NFV can solely depend on VNF instances, multiple research has been
conducted into dynamic proactive algorithms [7] [8] [9] [10]. They create predictive algo-
rithms based on certain traffic metrics or CPU factors and scale VNF instances that way.

The difference between the scaling of NFV and containers is that NFV has VNF instances
that can be chained together. This chaining brings other factors with it that can be used
to scale the NFV for example scaling on the VNF chains (BFCs). One research points out
that predicting the performance of a VNF chain based on the performance of the discrete
network functions is not accurate [11]. Consequently scaling could be improved by looking
at the service chains. Another research produces a tool called ElasticSFC, which shows that
their auto-scaling techniques based on the VNF chain can reduce costs [12].

In our research, we will not look at virtual network functions but containerized functions.
The focus of all the other research is also focused on scaling on chaining and how well predic-
tive algorithms can predict fluctuations in traffic. What we will focus on is how the scaling
affects the application traffic and more about what important factors are of scaling CBFs,
like horizontal or vertical scaling.

5 Setup

To evaluate our discussed goals, we have setup a Kubernetes cluster that is built on top of a
Xen virtualization environment to test the different autoscaling mechanisms of the bridging
function [13]. Kubernetes is chosen as a container orchestrator to utilize the already available
Vertical and Horizontal autoscaler controllers. And while multiple container orchestration
platforms are available, Kubernetes is chosen for this project mainly due to its widespread
adoption [14]. The Kubernetes setup comprises three virtual machines: one master node and
two worker nodes. For incoming traffic into the Kubernetes cluster, the metal load balancer
(Metallb) is used, as it provides an open-source implementation of the scalable network load
balancer for bare metal clusters [15]. To deploy the Kubernetes setup, Terraform is used to
build the cluster virtual machines. Afterward, Ansible playbooks are used to download and
install the Kubernetes software, as well as the underlying flannel network and the Metallb
network load balancer [16]. The complete code used for the setup automation is available
at GitHub [17].

5.1 Kubernetes Setup Architecture

The Proof of concept setup (Figure 2) is architected to utilize Kubernetes services, an
abstraction to expose an application running on a set of pods [18]. The setup includes the
following components:

• Testing Machine: The testing machine is used to communicate with the Kubernetes
cluster using the Locust load generator API that is exposed as a web interface.

Mohanad Elamin, Pim Paardekooper page 4 of 24

research project 2

• Metallb LoadBalancer Service: The metallb network load balancer act as the
ingress point to the Kubernetes environment and is used to receive the traffic from the
external testing computer.

• Locust Load Generator: Locust is an open-source load testing tool that uses dis-
tributed architecture to test web services [19]. In the proof of concept setup, the locust
load generator simulates clients initiating traffic to the webserver. The Locust software
compromise of two building blocks:

– Master: The master is the web interface of the Locust system.

– Worker: The worker is the node that generates the user traffic. The Locust
system can scale out the number of workers. As part of the proof of concept of
this project, the worker node of Locust is modified to include a redirector agent
code that intercepts the traffic going to the end server and redirects that to the
SOCKS5 proxy. The redirector agent starts a local server on the worker node
and sends all received traffic to the SOCKS5 proxy via the proxy socket.

• Proxy Service: The proxy service is a Kubernetes service that receives the traffic
from the client, the Locust system. After receiving the traffic, the proxy service
forwards the traffic to the SOCKS5 proxy pod.

• SOCKS5 Proxy: The proxy forward the traffic to one of the bridging function for
further inspection. For the proof of concept setup, traffic redirection to the bridging
function is done using iptables rules explained in section 5.2 below.

• Bridging Function Service: The bridging function service is a Kubernetes service
that receives traffic from the SOCKS5 proxy and forwards it to one of the connected
bridging functions.

• Bridging Function: The bridging function is the network function that provides
further processing of the traffic. Multiple bridging functions can be used, including
basic iptables firewall, network monitoring function, and L7 HTTP flow inspector
function. Further details are available in the Network functions section 5.3.

• Server Service: The server service is a Kubernetes service that receives the traffic
from the bridging function and forwards it to one of the end servers.

• HTTPBIN Server: HTTPBIN server is an open-source simple HTTP Request &
Response Service.

Mohanad Elamin, Pim Paardekooper page 5 of 24

research project 2

Figure 2: The plot illustrates the POC Kubernetes Setup Architecture, which includes
deploying a Locust Load generator with a SOCKS redirector agent redirecting sessions to
the SOCKS5 proxy. The SOCKS proxy forwards the traffic to a Bridging function for further
processing. The bridging function sends the traffic to its final destination. The testing is
initiated from a test machine that sends the traffic to a Metallb load balancer which acts as
an ingress point for the PoC environment.

To deploy the proof of concept setup, two helm charts are used:

1. epi-bf-helm: A helm chart that is created for this project to deploy the bridging
function, proxy, web server and the corresponding Kubernetes services. [20]

2. Locust: A Helm chart to deploy the locust load generator. [21]

5.2 Proxy

The proxy image is a simple SOCK5 proxy that listens to the SOCKS connection on port
1080 from the redirector agent. The proxy’s primary purpose is to intercept the packets and
forward them to the bridging function for further processing.
The redirection of traffic to the bridging function is achieved using an iptables rule (see
listing 8); the rule processes the packet in the OUTPUT chain before leaving the proxy pod
and redirects the packet to the server by applying a destination NAT with the IP address
of the Kubernetes service in front of the Bridging functions.

iptables -t nat -A OUTPUT -p tcp --src <PROXY_IP > -j DNAT --to-destination

<BF_SVC_IP >:<BF_SVC_PORT >

Listing 1: Proxy redirection Iptables rule

To enable the SOCKs5 proxy to provide custom metrics, which we will talk more about in
section 6.4, we wrapped the proxy in a Flask web server. In a metricGatherer object certain
metrics can be stored which are exposed on the URL ”\metrics”.

5.3 Network functions

Network functions are functions that can be performed on whole packets. To make sure this
can happen packets are redirected from the SOCKs5 proxy to the Bridging functions with
iptables. This can give problems when wanting to work on the application data. Research
by the University of Glasgow created a container-based Network Function Virtualization
Framework [22]. Instead of using iptables, they use Software-Defined Networks to route

Mohanad Elamin, Pim Paardekooper page 6 of 24

research project 2

traffic through network function. SDNs would be more dynamic. Still, for our research, the
use of iptables is dynamic enough, as we only need the traffic to go to one server. Also,
SDNs would add a complexity that is not needed to conduct our experiments. The network
function they used can work on the application data by using a python script that uses a
NetFilterQueue library [23] [24]. It provides access to packets matched by an iptables rule
(see listing 2). The research also provided network functions that could work with network
tools like tc or iptables. One other network function was provided by our supervisor, a
firewall application. The network functions that we will be using are the following:

• Firewall: a very small network function that uses iptables as firewall, it will match
SYN packets to make sure it always matches some packets and increase the counter
packet counter. This way the network function has some processing load.

• Network monitor: Monitors how much traffic goes through the system and prints that
in a python script.

• HTTP filter: Gets all packets with the NetfilterQueue library and drops packets when
a filter matches the packets application data.

Before any routing decisions are made about a packet it comes through the iptables PRE-
ROUTING table, in which we redirect the traffic to the server [25] (see listing 3). This
means the packet will go to the FORWARD table in which we add it to the NetFilterQueue.
Then to make sure it can go back to the proxy we use the MASQUERADE target which
will remember where a connection came from and change the destination to the proxy when
a packet comes from a certain host [26].

iptables -A FORWARD -j NFQUEUE --queue -num 1

Listing 2: Add packets in NetFilterQueue

iptables -t nat -A PREROUTING -p tcp -j DNAT --to-destination

<SERVER_SVC_IP >:<SERVER_SVC_PORT >

iptables -t nat -A POSTROUTING -j MASQUERADE

Listing 3: Bridging function redirection Iptables rules

All the bridging functions are containerized using Docker. The image that the network
functions are implemented on is the standard Ubuntu 20.04 image from DockerHub. This
allows us to call a bash function as the first command when it gets deployed. This way we can
call a bash script called ”entrypoint.sh”, which can, in turn, call other bash scripts. Either
a bash script calls the iptables commands mentioned above or the ”entrypoint.sh” does it
itself. Another calls a monitoring script called ”monitor.sh” which we will explain more
about in section 7.2. To see an example of a bridging function docker file, the ”monitor.sh”
and the ”entrypoint.sh” bash script look at Appendix B.

5.4 Locust

The locust load generator is used to generate traffic in our network. A locust load generator
does this by spawning users that have certain tasks. These tasks are executed at a certain
rate by specifying a wait time. In our setup, we use HTTP requests. The locust load
generator is exposed on a web URL. A POST request can be made to spawn several users
at a certain spawn rate, the spawn rate is given in users per second. The web URL also
exposes data that locust collect. The data that is collected is the request per second, the
number of users, and the average response time on each time interval.

Mohanad Elamin, Pim Paardekooper page 7 of 24

research project 2

6 Auto scalers Scaling

This section explains the two auto scalers that are implemented in Kubernetes and how they
work. These are the Horizontal Pod Autoscaler (HPA) and Vertical Pod Autoscaler (VPA).
The metrics that the scaling is applied on can be varied. Native Kubernetes only supports
CPU and memory that are stored in the metric server. There is a possibility to extend this
with custom metrics. This is something will also be looking at in this section.

6.1 Horizontal Pod Autoscaler

The Horizontal Pod Autoscaler, also known as HPA, is a feature of Kubernetes that scales
the number of workload pods in response to resource demand. [27]. HPA can automatically
scale the number of pods in different Kubernetes controllers, such as a replication controller,
deployment, replica set, or a stateful set. The scaling action taken by the HPA can be based
on the Pods CPU or memory usage. It is also possible to use custom metrics as the Hori-
zontal Pod Autoscaler resource. This is not supported in the first version of the HPA but is
supported in version 2 [28].

For autoscaling using CPU and Memory utilization, the Horizontal Pod Autoscaler col-
lects metrics from the pods using the metrics API, which requires the metrics server to be
deployed as part of the Kubernetes cluster. The collected metrics will then get compared
against the Pod resources request and limit defined as part of the pod’s specification. The
ratio between the desired metric value and the current metric value will then be used to
calculate the desired number of replicas using the following equation:

desiredReplicas = ceil[currentReplicas ∗ (currentMetricV alue/desiredMetricV alue)]

Where:

• desiredReplicas: This is the count of replica that will be deployed after the Hori-
zontal Autoscaling event.

• currentReplicas: This is the number of pods in the current deployment, replica set,
or a stateful set.

• currentMetricValue: This is the current pod metric value collected via the metric
server or any supported custom metrics APIs, such as Prometheus Adapter.

• desiredMetricValue: This is the target metric value needed by the application.

The same calculation above is used for other metrics as well. Natively Kubernetes does
not support other metrics, therefore third-party adaptors like the Prometheus Adapter are
needed [29].

6.1.1 HPA scaling behavior:

Starting from Kubernetes v1.18, HPA allows for a configurable scaling behavior by defining
scaling policies for scale-down and scale-up. The scaling policies control the number of
replicas to be scaled during a limited period specified using the periodSeconds variable. The
policy definitions target value can be defined as the number of pods or as a percentage
of pods. Then to avoid undesired scaling events due to metric fluctuation, a stabilization
window can be used to prevent scaling, either up or down, for a specific period of time
defined using the stabilizationWindowSeconds variable. In that window, the desired state
from the past period is used instead. The default values of the Horizontal Pod Autoscaler
scaling policy are defined below in listings 4, custom values will be merged with the default
values [27].

Mohanad Elamin, Pim Paardekooper page 8 of 24

research project 2

behavior:

scaleDown:

stabilizationWindowSeconds: 300

policies:

- type: Percent

value: 100

periodSeconds: 15

scaleUp:

stabilizationWindowSeconds: 0

policies:

- type: Percent

value: 100

periodSeconds: 15

- type: Pods

value: 4

periodSeconds: 15

selectPolicy: Max

Listing 4: Scaling Policy Default Behavior

6.2 Vertical Pod Autoscaler

Vertical Pod Autoscaler (VPA) tries to find the optimal resource allocation for one pod [30].
When just guessing you can run into the problem of having too few resources, which will
slow down the pod with CPU throttling or kill the pod if an Out-of-memory error occurs.
Also having too many resources will be more expensive and reduces the total amount of
resources all pods can use.

Kubernetes gives resources to a pod based on requests and limits [31]. Requests are the
minimum resources that are reserved for a specific pod, if there are fewer than the requested
resources available a pod is not scheduled. Limits are the maximum amount of resources
that a pod can use if there are more resources needed than requested a pod can get more
resources from the system only if there are any. When a pod goes over that limit it will be
killed.

Resources that can be used are CPU, Memory, Ephemeral storage, GPUs, Linux Kernel
Huge Pages and custom metrics. Most network functions will only need CPU and Memory
and for VPA those are the only two supported for scaling, so this is where we will be focusing
on. GPUs would be interesting to look at for a network function point as it would accelerate
certain functions, however, this is out of the scope of our research.

6.2.1 implementation

The implementation of VPA is still in beta and very new [32] and there are not many factors
that can be changed. Therefore the focus of our research will be on HPA. The VPA works
by the following three components:

• Recommender: This monitors the current and past resource consumptions and from
that calculates recommended values for the CPU and memory requests of the container.
These past resources can be checkpoints created during previous runs.

• Updater: This checks whether a running pod has the recommended resources set. Is
this not the case then it will recreate it with the recommended request values. Certain
arguments can be set such as: when to recreate a pod, how much resource increase it
can get per scaling event, how long the pod is running before scaling and how many
of a certain type of pod should be recreated at once.

• Admission plugin: This sets the new calculated recommended resource requests on
new pods.

Mohanad Elamin, Pim Paardekooper page 9 of 24

research project 2

The VPA can run in different modes that change how the new recommended request values
are updated in the pods:

• Auto: Updates it in place, without stopping the container. This is not yet imple-
mented.

• Recreate: Updates it by recreating pods.

• Initial: Only gives newly recreated pods the new request values.

• Off: Recommendations for the values are never applied but can be inspected.

As VPA is still in beta the implementation has certain limitations. The most important
once are that recommendation might exceed available resources in which case the pods go
pending. Furthermore, the algorithm in the recommender is the only one available, to change
it would mean implementing a new recommender itself. As such the only parameters that
are changeable is when to evict certain pods in the updater, creating and testing those on
different network functions requires lots of traffic as the recommender slowly works to the
optimal resource values based on historical data. Therefore this is out of the scope of our
research.

6.3 HPA vs VPA

Horizontal autoscaling and Vertical autoscaling solve two different problems. Horizontal
scaling solves the problem of how many replicas of a certain pod spawn. Vertical autoscaling
solves the problem of how many resources to allocate to one specific pod. Horizontal should
be preferred over vertical with fluctuating demands [33]. Vertical is better in stateful services
as they cannot use another pod without migrating state and still need a way to reduce
resource cost when overusing or add resources when pods are stagnating. Vertical can also
be used to fix initial resource demands. These demands can be too lean or too strict and
vertical can over time fix them to the right amount based on usage data. Using both vertical
and horizontal scaling can be done with multidimensional Pod autoscaling. This a Google
Kubernetes Engine (GKE) only solution that lets VPA work on the memory and HPA on
CPU utilization [34]. This is in line with what the VPA documentation says [32]. To use
VPA and HPA together they need not interfere with each other’s calculation by working
with other metrics. These other metrics can also be custom metrics.

6.4 Custom metrics

Instead of autoscaling on CPU and Memory, custom metrics can be used. For now, this is
only available for HPA not VPA. Kubernetes does not support custom metrics natively it
should be added externally. There are multiple of those available. Three of those implemen-
tations are not platform dependent these are

• Prometheus Adapter. An implementation of the custom metrics API that attempts
to support arbitrary metrics following a set label and naming scheme.

• Datadog Cluster Agent: Implementation of the external metrics provider, using Data-
dog as a backend for the metrics.

• Kube Metrics Adapter: A general-purpose metrics adapter for Kubernetes that can
collect and serve custom and external metrics for Horizontal Pod Autoscaling. Provides
the ability to scrape pods directly or from Prometheus through user-defined queries.
Also capable of serving external metrics from several sources including AWS’ SQS and
ZMON monitoring.

Mohanad Elamin, Pim Paardekooper page 10 of 24

research project 2

In our research, we opted for the Prometheus adapter. The Datadog Cluster agent is not
open source. The Kube Metrics Adapter was not chosen as implementing it was difficult
due to dependencies, but it is a good alternative to use. Therefore the Prometheus Adapter
is implemented.

The Prometheus Adapter is basically a way for Prometheus and Kubernetes to speak to
each other (see figure 3) [35] [36]. Prometheus itself is an open-source monitoring solution,
by a web interface data can be queried and plotted [37]. A Prometheus instance can get
metrics from a web application. In our case, the proxy is that web application that exposes
the metrics. This is done by wrapping the proxy in Flask webserver [38]. The metrics
are exposed on the URL ”\metrics” by default and uses a Prometheus Format [39]. The
ServiceMonitor is deployed and pointed to the web application to give the metrics to the
Prometheus instances. Then the Prometheus adapter gets the metrics for every scrape in-
terval by pointing the prometheus-url to the Prometheus instance. Then with Prometheus
rules the adapter specifies which metrics to scrape [40]. These rules can then also specify a
function to execute on the metric, for example, this can be to calculate the rate of a metric
by combining it with the scrape interval. Then an HPA can use the custom metric by tar-
geting the webserver that exposed the metric and specifying the metric you want to use with
the metricName. The scaling is then done on the image pointed at by the scaleTargetRef.
The scaling is triggered in the same way as HPA with CPU and memory as explained in
section 6.1.

Figure 3: A socks proxy exposes a web server that gives metrics on the ”/metrics” URL.
A Prometheus instance will get those metrics by a ServiceMonitor. A custom metrics API
will scrape the metrics of the Prometheus instance by a Prometheus-URL and Prometheus
rules defined in a config map. These rules can also modify the metrics with a function, for
example, it can transform an absolute value in a rate over time. The HPA can then have
access to a metric by specifying the metric name. The scaling is done on the image specified
by ScaleTargetRef.

Mohanad Elamin, Pim Paardekooper page 11 of 24

research project 2

7 Methodology

In this section, we will explain the way we setup our testing environment and how the
workflow of our experiments looks. We will also go into more detail about how we collected
the data we use in our data plotting.

7.1 Testing Workflow

Multiple testing scenarios are performed throughout this project based on different traffic
load combinations and Horizontal Pod Autoscaler thresholds. The list of all the parameters
used for testing is available in appendix A. To perform all the testing in a timely manner,
an automated testing workflow is developed.

Figure 4: The plot illustrates the testing Automation script, which reads the test scenarios
from a CSV file; afterward, it deploys all the required elements using Helm charts. At the
end of each testing experiment, a data collection script pulls all the metrics collected during
the test using metric gathering scripts running on all elements. The collected data are then
plotted for analysis.

The testing workflow shown in figure 4 follows the following steps:

1. The first step includes loading a CSV file that contains the parameters of the testing
scenarios by the automation script.

2. The automation script starts deploying the required elements.

3. The deployment is performed using two helm charts, one to deploy the Locust load
generator and the other to deploy the rest: the pods, services and autoscalers for the
bridging function, proxy and server.

4. After the setup deployment, the automation script instructs the locust load generator
to start spawning the user traffic.

5. During the setup, multiple data collection scripts collect the CPU and Memory metrics
from the running pods. At the same time, the testing machine pulls the HPA utilization
and number of pods deployed.

6. At the end of the 100 seconds test duration, the data collection scripts pull all the
data to the test machine.

7. The collected data is then plotted for analysis.

Mohanad Elamin, Pim Paardekooper page 12 of 24

research project 2

The details of the data collection scripts are available in section Data generation and col-
lection section below.

7.2 Data generation and collection

The data that was collected came from three different locations, from the locust load gen-
erator, from the metric server and the bridging functions pods.
The locust load generator gathers metrics about the request and displays them in the web
UI. These values are stored in a javascript object which we requested by a post request and
turned into a JSON file to be interpreted in Python. These values are:

• Request per second

• Fails per second

• Average response times in percentiles per second

• Number of running users per second

The response times are only given of a randomly chosen number of requests in a certain
time window. To make it more accurate we wrote the response times for each request made
to a file and gathered them from the locust worker pod once the experiment was finished.
The metric server can be accessed by kubectl commands shown in listing 5.

kubectl get hpa <HPA name > -n <NAMESPACE > -o jsonpath =’{. status.

currentReplicas}’

kubectl get hpa <HPA name > -n <NAMESPACE > -o jsonpath =’{. status.

currentCPUUtilizationPercentage}’

Listing 5: Kubectl HPA data collection

The commands give back the current replicas that are running at a certain time and the
CPU utilization that the metric server has calculated. The CPU utilization is given in a
unit called milliCPU (m) which specified the share of one CPU, 1 milliCPU is 1/1000 of a
CPU [31]. All values are gathered every second when the experiment is running with the
use of a bash script.

The bridging functions are running in Kubernetes pods in Ubuntu docker images. These
pods therefore have two system files ”/sys/fs/cgroup/memory/memory.usage_in_bytes”
and /sys/fs/cgroup/cpu/cpuacct.usage" [41] [42]. The first one shows the usage of mem-
ory in bytes and the other one reports the CPU time consumed by all tasks in the cgroup
in nanoseconds. Both values are written to a file with a bash script. This bash script is
added in the Dockerfile and runs in the background when deploying the pod, by calling it in
the ”entrypoint.sh” bash script. The files are written to a directory that is mounted on the
Kubernetes node, therefore it is still available when the bridging function that generated
the file is terminated. At the end of the experiment, these files are Secure Copied (SCP)
from the host to the system running the experimentation script.

The CPU time for the kernel file is given in nanoseconds, while the CPU time in the metric
server is given in milliCPU. We already said that milliCPU is 1/1000 of a CPU core. One
CPU core has 1s of CPU time to divide among processes. Therefore:

1 milliCPU = 1s/1000 = 0.001s = 1 000 000 nanoseconds

So to convert milliCPU to nanosecond you need to do it times 1 000 000.

Mohanad Elamin, Pim Paardekooper page 13 of 24

research project 2

8 Experiments

Throughout the project, multiple testing experiments are performed to understand the im-
pact of bridging function scaling on transit traffic and end-user experience. The bridging
function that we use is the HTTP filter BF, we chose this one as it does the most processing
from all of the ones mentioned in section 5.3. Sixteen testing parameter combinations are
defined that we use in our experiments. Diverse users and a fixed spawn rate is used to
simulate real live traffic patterns. The test scenarios include 10, 100, 1000, and 10000 users,
and the spawn rate per second is defined to be 10% of the total number of users. This way
all users are spawned within 10s. For each of the four different user traffic combinations, a
mixed HPA scaling threshold is tested to cover a low (30%), high (90%), and moderate (50%
and 80%) scaling threshold. These thresholds will change the aggressiveness of the scaling.
All the tests were run for 100 seconds with fixed CPU and Memory limits of 1000 milliCPU
and 500Mi. The complete list of test parameters combinations is available in appendix A.

9 Results and Discussion

The results of the testing experiments are divided into three sub-areas: scaling because of
the bridging function CPU utilization demand with varying CPU thresholds, scaling because
of the bridging function Memory usage demand with varying user traffic, and the impact of
horizontal scaling on transit traffic in term of response time.

9.1 Short lived vs long-lived connections

The initial test was performed with ten users and Horizontal Pod Autoscaler CPU threshold
of 30%. As shown in figure 5, as soon as the traffic started, the bridging function CPU spiked
to 1000 milliCPU. As a reaction to the spike in CPU usage, the HPA controller detected
a current average CPU utilization of more than 400%. That indicates that the bridging
function actually requests almost 1200 milliCPU because the HPA average CPU utilization
is represented as a percentage of the requested CPU rather than the used CPU. Kubernetes
limits that to 1000 milliCPU, the max limit allowed in the bridging function deployment
manifest.

Figure 5: The graph shows the CPU utilization of the bridging functions and the CPU
utilization the HPA sees. In this plot, we send HTTP traffic with HTTP Keep-Alive enabled.
As can be seen after a scale out event (vertical lines) the CPU is not distributed over the
pods as the CPU utilization of new pods is stuck at almost 0.

The increase in the HPA CPU utilization threshold triggered the deployment of more bridg-
ing functions to meet the demand. However, as shown in figure 5, the newly deployed have

Mohanad Elamin, Pim Paardekooper page 14 of 24

research project 2

idle CPU and didn’t process any traffic. The unbalanced distribution of load is because
the Locust load generator, by default, uses the HttpSession class [43], which performs web
requests and holds session cookies between requests. Therefore the Kubernetes service con-
siders all the requests as a single session, and all the traffic is pinned to the initial bridging
function. To disable the HTTP persistence session behavior, also known as HTTP keep-
alive, the value ”close” is added to the Connection field of the HTTP header as described
in RFC2616 [44]. After adding ’Connection’: ’close’ to the header Locust, close the HTTP
connection after every request completion. After the scale-out event, the connection be-
havior change leads to a more balanced load distribution across all the deployed bridging
functions as shown in Figure 6. The experiments reveal that not all traffic patterns benefit
from horizontal scaling. In the results we see that long-lived sessions are not benefiting from
horizontal scaling, therefore application traffic needs to be taken into consideration to select
the most suitable scaling strategy.

Figure 6: The graph shows the CPU utilization of the bridging functions and the CPU
utilization the HPA sees. In this plot, we send HTTP traffic with HTTP Keep-Alive disabled.
As can be seen after a scale out event (vertical lines) the CPU is distributed over new pods.

Mohanad Elamin, Pim Paardekooper page 15 of 24

research project 2

9.2 Static Memory consumption

Another metric that is collected during the testing is the memory usage of the bridging
function to understand the impact on scaling based on the memory usage demand. However,
as can be seen in figure 7, the memory usage in the bridging function is steady regardless of
the number of users spawned. And due to the fractional change in memory usage compared
to the total allocated memory of 500 Mebibyte, the HPA utilization is not detecting any
change; therefore, no scaling event occurred because of memory demand. The main reason
for the memory steady consumption is due to the basic processing logic of the bridging
function used in the proof of concept setup. Not every metric can be used for scaling as the
metric needs to be a good indication of load. As our bridging function used is not memory
intensive, memory is not a good metric to scale on.

(a) 10 Users (b) 100 Users

(c) 1000 Users (d) 10000 Users

Figure 7: The four graphs show the memory usage of the bridging function’s pod and
the memory utilization the HPA sees for a different number of users spawned by the load
generator. This illustrates that the Bridging function has a steady memory usage regardless
of the number of users spawned via the load generator.

Mohanad Elamin, Pim Paardekooper page 16 of 24

research project 2

9.3 Scaling effect on Application traffic

A critical statistic collected by the Locust load generator is the response time of the HTTP
requests in milliseconds. When plotting the response time for different traffic rates including
10, 100, 1000, and 10000 users, as shown in figure 8, two observations are identified.

The response time is very high, more than two seconds on average. The high response
time is the processing logic used for the service insertion redirection. The bottleneck is the
redirector agent added to the Locust load generator worker pod. With the increase of traf-
fic flowing through the redirector agent to the SOCKS5 proxy, the response time increases
dramatically compared to the direct connection when bypassing the service insertion logic.
Still, the addition of response time is even among all users and will therefore not interfere
with our results.

At the end of the scale-out event, a slight increase of response time is recorded, which
is believed to be due to the load balancing overhead added by the Kubernetes service when
distributed the traffic across all the deployed bridging functions. Scaling can also have a
negative effect on application traffic if scaling is not well optimized.

(a) 30% HPA Threshold (b) 50% HPA Threshold

(c) 80% HPA Threshold (d) 90% HPA Threshold

Figure 8: The four graphs show the response time of HTTP request with different HPA
thresholds set. This illustrates that a slight increase in response time after a Bridging
Function scale-out event occurs.

Mohanad Elamin, Pim Paardekooper page 17 of 24

research project 2

10 Conclusion

In our proof of concept, we extended the EPI project, by adding autoscaling logic for the
bridging function. The experiments we conducted are to test how application traffic’s la-
tency is affected when horizontal scaling. This shows if horizontal scaling can be a way for
the EPI project to improve the performance of the bridging function by looking at the im-
pact of the Kubernetes Horizontal Pod Autoscaler influence on application traffic’s latency.

The results of the experiments revealed that when the traffic is using long-lived sessions, for
example, when HTTP keep-alive is enabled, horizontal scaling doesn’t add any benefit, as
the Kubernetes service pinpoints the traffic to a single pod. We assume that Vertical Pod
Autoscaling could be a better fit, as it could update the resources of a bridging function
while it is running, which means it can update the single pod that is active in the traffic
path of long-lived sessions. However, more testing is required. We can, for example, test
this by having an HTTP keep-alive session increase the number of requests and scaling the
single pod vertical and see the impact of the application traffic’s latency.

Also when reviewing the testing results, it can be concluded that the metric to trigger
the scaling of the bridging function is highly dependent on the processing logic. In the proof
of concept scenario, the bridging function used is CPU-centric. Therefore, the horizontal
autoscaler can use CPU utilization as the primary metric to decide if more bridging func-
tions are required to meet the traffic demand. On the flip side, the memory usage was very
steady during testing regardless of the traffic rate pushed by the load generator.

The results also unfold that scaling the bridging function can directly impact the traffic
and user experience due to the increase in response time. The delay added to the HTTP
traffic response is because of the overhead added by the service insertion redirection agent
and the Kubernetes service load balancing. More optimization is needed on both elements
to reduce the impact on the response time.

11 Future Work

There is always room for some improvements. In our research, there was not a clear best
threshold to use. This is mainly because finding such a threshold is use case related. There-
fore this is a perfect problem that can be solved by machine learning, preferably online
learning algorithms. That can change the best threshold by looking at the current usage,
but also historical data.

Then another thing that can be improved is that we did not look at different applica-
tion traffic. For now, we only looked at HTTP requests. This can be extended to be other
applications such as FTP or even HTTP streams, which will be handy for the EPI project.
As healthcare data can be big data sets that need to be distributed or video streaming
between patient and doctor. Based on different application traffic other factors might be
found that could hinder or improve the scaling of the network functions.

Our bridging functions used in this research are very minimal and not well optimized. When
using production-grade network functions and containerize them the results may vary.
In our related work, we mentioned that VNF can be chained together and that it was found
out that scaling VNF while keeping in mind where the scaling takes place in the chain can
have performance benefits. Testing this on containerized network functions in our system
would be a step in improving the performance.

Then in this report, we mentioned also a VPA and a way to use custom metrics. For

Mohanad Elamin, Pim Paardekooper page 18 of 24

research project 2

both, it would be interesting to further research them. We did not have the time to work
on it. More research into how custom metrics can improve autoscaling is still needed. But
for the VPA it would be interesting to see how it can complement HPA, in our research
into the topic and also mentioned in the report, is that VPA can improve performance for
long-lived and stateful sessions. Trying to change the use cases to such application and see
if the system can itself see when HPA or VPA is needed. This makes the whole EPI system
more dynamic in its scaling department. Being dynamic is one of the goals that the EPI
project has.

12 Acknowledgments

We thank our supervisor Jamila Alsayed Kassem for her time and guidance throughout this
research project.

Mohanad Elamin, Pim Paardekooper page 19 of 24

research project 2

References

[1] Cees de Laat. url: https://enablingpersonalizedinterventions.nl/.

[2] Jamila Alsayed Kassem et al. “The EPI Framework: A Dynamic Data Sharing
Framework for Healthcare Use Cases”. In: IEEE Access 8 (2020), pp. 179909–179920.
doi: 10.1109/ACCESS.2020.3028051.

[3] Scaling Horizontally vs. Scaling Vertically.
url: https://www.section.io/blog/scaling-horizontally-vs-vertically/.
(accessed: 31.05.2021).

[4] Andanagouda Patil.
SOCKS Proxy Primer: What Is SOCKs5 and Why Should You Use It? Sept. 2019.
url: https://securityintelligence.com/posts/socks-proxy-primer-what-is-
socks5-and-why-should-you-use-it/.

[5] Duc-Hung Luong et al.
“Cloudification and Autoscaling Orchestration for Container-Based Mobile Networks
toward 5G: Experimentation, Challenges and Perspectives”.
In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring). 2018, pp. 1–7.
doi: 10.1109/VTCSpring.2018.8417602.

[6] Salman Taherizadeh and Marko Grobelnik.
“Key influencing factors of the Kubernetes auto-scaler for computing-intensive
microservice-native cloud-based applications”.
In: Advances in Engineering Software 140 (2020), p. 102734. issn: 0965-9978.
doi: https://doi.org/10.1016/j.advengsoft.2019.102734. url:
https://www.sciencedirect.com/science/article/pii/S0965997819304375.

[7] Omar Houidi et al. “An Efficient Algorithm for Virtual Network Function Scaling”.
In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference. 2017,
pp. 1–7. doi: 10.1109/GLOCOM.2017.8254727.

[8] Hong Tang, Danny Zhou, and Duan Chen.
“Dynamic Network Function Instance Scaling Based on Traffic Forecasting and VNF
Placement in Operator Data Centers”.
In: IEEE Transactions on Parallel and Distributed Systems PP (Aug. 2018), pp. 1–1.
doi: 10.1109/TPDS.2018.2867587.

[9] Duc-Hung LUONG et al.
“Predictive Autoscaling Orchestration for Cloud-native Telecom Microservices”.
In: 2018 IEEE 5G World Forum (5GWF). 2018, pp. 153–158.
doi: 10.1109/5GWF.2018.8516950.

[10] Asif Mehmood et al. “Energy-efficient auto-scaling of virtualized network function
instances based on resource execution pattern”.
In: Computers Electrical Engineering 88 (2020), p. 106814. issn: 0045-7906.
doi: https://doi.org/10.1016/j.compeleceng.2020.106814. url:
https://www.sciencedirect.com/science/article/pii/S0045790620306650.

[11] Steven Van Rossem et al.
“VNF Performance modelling: From stand-alone to chained topologies”.
In: Computer Networks 181 (2020), p. 107428. issn: 1389-1286.
doi: https://doi.org/10.1016/j.comnet.2020.107428. url:
https://www.sciencedirect.com/science/article/pii/S1389128620311178.

[12] Adel Nadjaran Toosi et al. “ElasticSFC: Auto-scaling techniques for elastic service
function chaining in network functions virtualization-based clouds”.
In: Journal of Systems and Software 152 (2019), pp. 108–119. issn: 0164-1212.
doi: https://doi.org/10.1016/j.jss.2019.02.052. url:
https://www.sciencedirect.com/science/article/pii/S0164121219300421.

Mohanad Elamin, Pim Paardekooper page 20 of 24

https://enablingpersonalizedinterventions.nl/
https://doi.org/10.1109/ACCESS.2020.3028051
https://www.section.io/blog/scaling-horizontally-vs-vertically/
https://securityintelligence.com/posts/socks-proxy-primer-what-is-socks5-and-why-should-you-use-it/
https://securityintelligence.com/posts/socks-proxy-primer-what-is-socks5-and-why-should-you-use-it/
https://doi.org/10.1109/VTCSpring.2018.8417602
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.102734
https://www.sciencedirect.com/science/article/pii/S0965997819304375
https://doi.org/10.1109/GLOCOM.2017.8254727
https://doi.org/10.1109/TPDS.2018.2867587
https://doi.org/10.1109/5GWF.2018.8516950
https://doi.org/https://doi.org/10.1016/j.compeleceng.2020.106814
https://www.sciencedirect.com/science/article/pii/S0045790620306650
https://doi.org/https://doi.org/10.1016/j.comnet.2020.107428
https://www.sciencedirect.com/science/article/pii/S1389128620311178
https://doi.org/https://doi.org/10.1016/j.jss.2019.02.052
https://www.sciencedirect.com/science/article/pii/S0164121219300421

research project 2

[13] Xen Project. url: https://xenproject.org/.

[14] Kubernetes and Container Security and Adoption Trends.
url: https://www.stackrox.com/kubernetes-adoption-security-and-market-
share-for-containers/.

[15] Metallb Load balancer. url: https://metallb.universe.tf/.

[16] flannel Project. url: https://github.com/flannel-io/flannel#flannel.

[17] K8S setup automation.
url: https://github.com/mohanadelamin/k8s-setup-automation.

[18] Kuberentes Services.
url: https://kubernetes.io/docs/concepts/services-networking/service/.

[19] Locust Load Generator. url: https://locust.io/.

[20] epi-bf-helm Chart. url: https://github.com/mohanadelamin/epi-bf-helm.

[21] Locust helm chart. url:
https://github.com/deliveryhero/helm-charts/tree/master/stable/locust.

[22] Glasgow Network Functions.
url: https://netlab.dcs.gla.ac.uk/projects/glasgow-network-functions.

[23] NetfilterQueue. Jan. 2017. url: https://pypi.org/project/NetfilterQueue/.

[24] Simon Jouet, Richard Cziva, and James Guthrie. UofG-netlab/gnf-dockerfiles.
Sept. 2015. url: https://github.com/UofG-netlab/gnf-dockerfiles.

[25] Rakhesh Sasidharan. Iptables packet flow (and various others bits and bobs).
Nov. 2020. url: https://rakhesh.com/linux-bsd/iptables-packet-flow-and-
various-others-bits-and-bobs/.

[26] Olaf Kirch and Terry Dawson. IP Masquerade and Network Address Translation.
June 2000. url: https://www.oreilly.com/openbook/linag2/book/ch11.html.

[27] Horizontal Pod Autoscaler. url: https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/. (accessed: 01.06.2021).

[28] Horizontal Pod Autoscaler V2. url: https:
//github.com/kubernetes/community/blob/master/contributors/design-

proposals/autoscaling/hpa-v2.md. (accessed: 14.06.2021).

[29] Kubernetes Metrics. url: https:
//github.com/kubernetes/metrics/blob/master/IMPLEMENTATIONS.md#custom-

metrics-api. (accessed: 14.06.2021).

[30] Povilas Versockas. Vertical Pod Autoscaling: The Definitive Guide. Jan. 2021. url:
https://povilasv.me/vertical-pod-autoscaling-the-definitive-guide/.

[31] Managing Resources for Containers. Feb. 2021.
url: https://kubernetes.io/docs/concepts/configuration/manage-
resources-containers/#meaning-of-cpu.

[32] Kubernetes. Vertical Pod Autoscaler. url: https:
//github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler.

[33] Michael Handa. How to Scale Using Kubernetes: From Startup to Superstar.
May 2020. url: https://bluesentryit.com/how-to-scale-using-kubernetes-
from-startup-to-superstar/.

[34] Configuring multidimensional Pod autoscaling.
url: https://cloud.google.com/kubernetes-engine/docs/how-
to/multidimensional-pod-autoscaling.

[35] Lucas Käldström and JuanJo Ciarlante. luxas/kubeadm-workshop.
url: https://github.com/luxas/kubeadm-workshop.

Mohanad Elamin, Pim Paardekooper page 21 of 24

https://xenproject.org/
https://www.stackrox.com/kubernetes-adoption-security-and-market-share-for-containers/
https://www.stackrox.com/kubernetes-adoption-security-and-market-share-for-containers/
https://metallb.universe.tf/
https://github.com/flannel-io/flannel#flannel
https://github.com/mohanadelamin/k8s-setup-automation
https://kubernetes.io/docs/concepts/services-networking/service/
https://locust.io/
https://github.com/mohanadelamin/epi-bf-helm
https://github.com/deliveryhero/helm-charts/tree/master/stable/locust
https://netlab.dcs.gla.ac.uk/projects/glasgow-network-functions
https://pypi.org/project/NetfilterQueue/
https://github.com/UofG-netlab/gnf-dockerfiles
https://rakhesh.com/linux-bsd/iptables-packet-flow-and-various-others-bits-and-bobs/
https://rakhesh.com/linux-bsd/iptables-packet-flow-and-various-others-bits-and-bobs/
https://www.oreilly.com/openbook/linag2/book/ch11.html
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-v2.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-v2.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/autoscaling/hpa-v2.md
https://github.com/kubernetes/metrics/blob/master/IMPLEMENTATIONS.md#custom-metrics-api
https://github.com/kubernetes/metrics/blob/master/IMPLEMENTATIONS.md#custom-metrics-api
https://github.com/kubernetes/metrics/blob/master/IMPLEMENTATIONS.md#custom-metrics-api
https://povilasv.me/vertical-pod-autoscaling-the-definitive-guide/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#meaning-of-cpu
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://bluesentryit.com/how-to-scale-using-kubernetes-from-startup-to-superstar/
https://bluesentryit.com/how-to-scale-using-kubernetes-from-startup-to-superstar/
https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling
https://cloud.google.com/kubernetes-engine/docs/how-to/multidimensional-pod-autoscaling
https://github.com/luxas/kubeadm-workshop

research project 2

[36] kubernetes-sigs/prometheus-adapter. 2021.
url: https://github.com/kubernetes-sigs/prometheus-adapter.

[37] Prometheus. Prometheus - Monitoring system time series database.
url: https://prometheus.io/.

[38] Welcome to Flask¶. url: https://flask.palletsprojects.com/en/2.0.x/.

[39] Prometheus. Exposition formats: Prometheus.
url: https://prometheus.io/docs/instrumenting/exposition_formats/.

[40] Prometheus. Recording rules: Prometheus.
url: https://prometheus.io/docs/practices/rules/.

[41] memory.
url: https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt.

[42] 3.3. cpuacct Red Hat Enterprise Linux 6.
url: https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-

cpuacct.

[43] Locust HttpSession class.
url: https://docs.locust.io/en/stable/api.html#httpsession-class.

[44] Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. RFC Editor.
url: https://www.rfc-editor.org/rfc/rfc2616.txt.

Mohanad Elamin, Pim Paardekooper page 22 of 24

https://github.com/kubernetes-sigs/prometheus-adapter
https://prometheus.io/
https://flask.palletsprojects.com/en/2.0.x/
https://prometheus.io/docs/instrumenting/exposition_formats/
https://prometheus.io/docs/practices/rules/
https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpuacct
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpuacct
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpuacct
https://docs.locust.io/en/stable/api.html#httpsession-class
https://www.rfc-editor.org/rfc/rfc2616.txt

research project 2

Appendices

A Testing Scenarios

The following table contains the list of the test scenarios performed along with the param-
eters used:

Test
No.

Number
of Users

Spawn
Rate

Run
time
(Sec)

HPA
Max
Replicas

HPA Uti-
lization %

BF
CPU
Limit

BF
Memory
Limit

1 10 1 100 5 30 1000m 500Mi
2 10 1 100 5 50 1000m 500Mi
3 10 1 100 5 80 1000m 500Mi
4 10 1 100 5 90 1000m 500Mi
5 100 10 100 5 30 1000m 500Mi
6 100 10 100 5 50 1000m 500Mi
7 100 10 100 5 80 1000m 500Mi
8 100 10 100 5 90 1000m 500Mi
9 1000 100 100 5 30 1000m 500Mi
10 1000 100 100 5 50 1000m 500Mi
11 1000 100 100 5 80 1000m 500Mi
12 1000 100 100 5 90 1000m 500Mi
13 10000 1000 100 5 30 1000m 500Mi
14 10000 1000 100 5 50 1000m 500Mi
15 10000 1000 100 5 80 1000m 500Mi
16 10000 1000 100 5 90 1000m 500Mi

Table 1: Testing Senarios

B Bridging functions

The following includes the docker file, redirection script, and monitoring script of the bridg-
ing function used in this project.

FROM ubuntu :20.04

ENV DEBIAN_FRONTEND=noninteractive

RUN apt -get update && apt -get install --no-install -recommends -y \

python3 \

python3 -pip \

iptables \

iproute2 \

vim \

net -tools \

tcpdump \

sudo \

dnsutils \

&& rm -rf /var/lib/apt/lists/*

ADD rules.sh rules.sh

ADD monitor.sh monitor.sh

ADD entrypoint.sh entrypoint.sh

ENTRYPOINT ["./ entrypoint.sh"]

Listing 6: Docker image of the http filter bridging function

Mohanad Elamin, Pim Paardekooper page 23 of 24

research project 2

#!/ usr/bin/env bash

EPI_SERVER_VAR=‘host $EPI_SERVER | awk ’/has address/ { print $4 ; exit }’‘

iptables -t nat -A PREROUTING -p tcp -j DNAT --to-destination $EPI_SERVER_VAR:
$EPI_SERVER_PORT

iptables -A FORWARD -j NFQUEUE --queue -num 1

iptables -t nat -A POSTROUTING -j MASQUERADE

nohup bash /monitor.sh &

./main.py

Listing 7: entrypoint.sh

#!/ usr/bin/env bash

HOSTNAME=$(hostname)
FILE=${1:-/mnt/$HOSTNAME.txt}

echo ’"Time","CPU","Memory"’ > $FILE

while true; do

sleep 1;

read -rst5 MEMORY </sys/fs/cgroup/memory/memory.usage_in_bytes

read -rst5 CPU </sys/fs/cgroup/cpu/cpuacct.usage

read -rst5 DATE < <(date +"%FT%T.%3N")

echo "$DATE ,$CPU ,$MEMORY ";
done >> $FILE;

Listing 8: monitor.sh

C Source code

The source code can be found on the following GitHub page: https://github.com/mohanadelamin/
rp2-epif

Mohanad Elamin, Pim Paardekooper page 24 of 24

https://github.com/mohanadelamin/rp2-epif
https://github.com/mohanadelamin/rp2-epif

	Introduction
	Research Questions
	Background
	Scaling
	SOCKs

	Related Work
	Setup
	Kubernetes Setup Architecture
	Proxy
	Network functions
	Locust

	Auto scalers Scaling
	Horizontal Pod Autoscaler
	HPA scaling behavior:

	Vertical Pod Autoscaler
	implementation

	HPA vs VPA
	Custom metrics

	Methodology
	Testing Workflow
	Data generation and collection

	Experiments
	Results and Discussion
	Short lived vs long-lived connections
	Static Memory consumption
	Scaling effect on Application traffic

	Conclusion
	Future Work
	Acknowledgments
	Appendices
	Testing Scenarios
	Bridging functions
	Source code

