
Antivirus evasion by user mode unhooking on Windows 10
Tom Broumels BSc

MSc Security and Network Engineering
University of Amsterdam
tom.broumels@os3.nl

Sander Ubink MSc
Graduation mentor
KPMG Netherlands

ubink.sander@kpmg.nl

ABSTRACT
Several antivirus products place inline user mode hooks in
an attempt to recognize malicious behaviour of processes.
Removing these hooks is called unhooking and can make
malicious activity invisible to the antivirus software.
We applied unhooking on a Windows 10 system that was
running antivirus software that placedusermodehooks.Ma-
licious payloads that call hooked functions were created as
target processes for five implementedunhooking techniques.
These five techniques consist of three existing ones: Section
Remapping, Prologue Restoring and Perun’s Fart, as well as
two novel techniques introduced in this study: Interprocess
Function Copying and Interprocess Section Copying.
We found that all unhooking techniqueswere able to remove
hooks and none of them were detected. In most cases a trig-
gered hooked function did not lead to an antivirus alert.
Although the quantity of antivirus products and testedhooked
functions do not allow us to make statements in general,
this study shows that user mode unhooking can be used for
antivirus evasion today. Alternatives to user mode hooking
should be found in security mechanisms that do not allow
tampering by using user permissions.

1 INTRODUCTION
Threat actors have been using malware to, among other things,
establish a foothold within targeted organizations for years [1, 2].
Developments in both malware detection and malware evasion
have led to an ongoing arms race [3].

One way for an organization to gain insight in its resilience to
these threat actors is to employ red teaming assessments that simu-
late the approaches of Advanced Persistent Threat (APT) groups
[4, 5]. Such APT groups are often well-resourced, work in an so-
phisticated and stealthy manner and persist in a target network for
a longer period of time [1, 2]. For a red team it is necessary to have
insight in current techniques to evade detection mechanisms to be
able to realistically simulate the modus operandi of APTs.

User mode unhooking has been found in recent malware and
is recognized by Mitre ATT&CK Enterprise as a way to impair
defenses by disabling or modifying tools [6, 7].

This research concerns evading antivirus (AV) products that
place user mode hooks in an attempt to recognize malicious be-
haviour of processes. Removing such hooks from a process, known
as unhooking, can hide malicious activity from the AV software’s
view. The goal of our research is to gain insight in current AV
unhooking techniques for today’s AV software on Windows 10.

2 BACKGROUND
This section describes user mode hooking and architectural aspects
of Windows 10 that are relevant for user mode (un)hooking. Next,
the use of direct syscalls for unhooking is explained.

2.1 User mode hooking
Up to Windows Vista, security software vendors used kernel hooks
on the System Service Dispatch Table (SSDT). This allowed them to
tap into fundamental system services and as such get the required
input for detecting malicious behaviour [8, 9].

Because malware was exploiting kernel hooking as well and
incorrectly implemented kernel patches by AV vendors could make
a system unstable, Microsoft introduced PatchGuard in Windows
Vista in 2006. This led to the situation that security vendors who
utilize hooking could either bypass PatchGuard and risk malfunc-
tioning products after Microsoft patches, or use non kernel hooking
solutions such as user mode hooking. The latter was preferred and
some vendors are still using user mode hooks today.

The relevant user mode hooking technique for this research,
inline user mode hooking, is briefly introduced below based on the
work of Shaid and Maarof [10].

2.1.1 Inline user mode hooking.
Inline hooking typically targets the machine code in a function of
an imported Dynamic-Link Library (DLL). The first bytes of the
machine code are replaced by a 5 byte jump instruction to a custom
made method that allows or blocks execution of an API call, after
which it executes the original functionality of the API call. To be able
to do this, it makes sure it has a trampoline function that contains
the overwritten machine code followed with a jump instruction
to the first byte of unaltered machine code in the original API
method. In Figure 1 an example of a hooked CopyFileExW method
of kernelbase.dll is shown.

Figure 1: Example of Inline hooking on a process importing
the CopyFileExWmethod of a kernelbase.dll instance.

1



The hook replaces instructions 1 and 2 that are saved in the
Trampoline function. If CopyFileExW is called, first the custom
code in the Hook method is executed. If the hook does not block the
call, the original instructions 1 and 2 are executed next, followed by
the original instructions 3, 4 and 5 in CopyFileExW. These hooks
are sometimes called Detour hooks because Microsoft introduced
the Microsoft Detours library to create such hooks for monitoring
and instrumentation of API calls on Windows [11].

To unhook a hooked function, the original bytes should be re-
stored or the jump address should be changed to point at a location
containing the original bytes.

User mode hooks are created by AV products using user permis-
sions. This means that a process with user permissions can remove
the hook if a way can be found to not trigger the hooks in the
process.

2.2 Windows 10 architectural aspects
After a process is created, the AV product hooks certain functions
of imported Windows DLLs called modules. Interesting functions
to hook are close to the point where program execution is handed
over to kernel mode, i.e. methods that perform a “syscall” assembly
instruction after setting up the right registers with the expected
argument data by the syscall. The majority of such methods are
located in kernelbase.dll (or kernel32.dll in earlier Windows ver-
sions) and ntdll.dll, which exports common system calls to user
mode [12, 13]. Both DLLs are imported by a considerable amount
of other modules.

DLLs are memory-mapped and shared with other processes us-
ing virtual memory. The relative module address in memory is in
practice the same for each process. Changes to a loaded module are
process specific and stored in memory using copy-on-write.

2.3 Direct syscalls
To evade user mode hooks altogether, direct syscalls can be used
[6, 14, 15]. This means that the officially undocumented syscall
assembly instruction gets executed directly instead of by calling a
possible user mode hooked Windows API function that calls the
same syscall internally. To make this work, the right registry values
should be set before execution, among others the Windows version
dependent system call index in register eax.

If a payload is implemented using direct syscalls where possible,
there is in theory no need for unhooking because the hooks will
already be evaded. However, creating payloads that way is cum-
bersome in practice. Especially for closed source payloads that are
already compiled into an executable.

3 RELATEDWORK
Shaid andMaarof identified different user mode hooking techniques
and the corresponding forensic artefacts that make the detection
of such hooks possible [10]. The general processes of hooking and
unhooking are documented in several blog posts as well [16, 17].
These articles mainly describe .text section hooks (i.e. inline- or
Detour hooking) in the context of AV evasion.

In 2017, Tang published proof-of-concept code titled “DLLRe-
fresher” that removes the hooks of a process by reloading the origi-
nal instructions from theWindows executable files and overwriting

the instructions in memory that where added for hooking. A rele-
vant finding is that the thread used for unhooking can be detected
due to the API calls that are executed [16].

In 2019, De Plaa demonstrated unhooking of ntdll.dll for AV
bypassing to create a memory dump in an unnoticed way [14].
Direct system calls are used to avoid calling potentially hooked
APIs while unhooking. Inspecting the PoC reveals that the first 5
bytes of the hooked DLL are overwritten with the original bytes
that are hard coded in the unhooking code.

A year later Saha created an utility for removing usermode hooks
in the .text section of a DLL [15]. Different bypassing techniques
are mentioned, of which section remapping is implemented: the
hooked .text section is overwritten with the original DLL content on
disk. Direct system calls are used to evade the AV while unhooking.
The unhooking code itself is compiled as a Position Independent
Code (PIC) reflectively loadable DLL.

Misgav and Yavo identified different tactics for unhooking based
on malware analysis [6]. The techniques described earlier can be
classified as implementations of these tactics. After their publication
more techniques emerged. Winter-Smith introduced Firewalker
that aims to trace the original thunk by interpreting the assembly
code of the hook [18]. The latest unhooking technique published,
Perun’s Fart, starts a new process and copies part of its ntdll.dll
code before AV software has hooked it [19].

Some tactics are mentioned to prevent the hooks from being
triggered while loading shellcode for the purpose of unhooking,
e.g., avoiding names in the assembly source code that reflect the
names of the corresponding legitimate Windows API calls, or by
obfuscating bytes in the shellcode that are used to overwrite hooks
in memory [20].

Various sources describe tests or evasions of specific security
products. These sources discuss older or unknown versions of the
AV software used, or do not mention user mode unhooking explic-
itly [21–23].

To the best of our knowledge, no recent research was publicly
available at the time of writing that describes the effectiveness
and detectability of different user mode unhooking techniques on
today’s AV software.

4 RESEARCH QUESTION
“What is the effectiveness and detectability of today’s user mode

unhooking techniques on a x64 process on a Windows 10 Enterprise
system that is protected by antivirus software?”

We define an unhooking technique to be effective if the targeted
AV hook is removed for the duration of at least one minute to
allow a malicious payload to be executed successfully. Otherwise
it is ineffective. This means that techniques that evade calling the
hooked function in its entirety are by definition ineffective, because
no hooks are removed and an unmodified payload might still invoke
a hooked function and trigger the hook.

An unhooking action is defined as undetected if no alert is regis-
tered by the AV software for the process that is unhooking and the
unhooking code terminates gracefully. Otherwise it is detected.

2



5 METHODOLOGY
Briefly summarized, we answered the research question as follows.
We started by selecting AV products that place user mode hooks.
Based on the found hooks, we selected unhooking techniques de-
signed for removing user mode hooks and created payloads that
called specific functions that were hooked by at least one of the
AV products. Finally we applied all unhooking techniques on all
payloads for all AV products in a series of experiments. Conclu-
sions about effectiveness and detectability are drawn based on: AV
and Sysmon alerts, exit codes of executed payloads and unhooking
techniques, and hooks in memory of payloads before and after un-
hooking was used. Each step is documented in more detail below.
All source code and scripts are available on GitHub [24].

5.1 Included user mode hooking AV software
We installed several AV products meant for business use that are
listed in the AVTEST published in April 2021 [25]. The default
installation settings were used. We only included those products of
which a free trial version was available for immediate download.
These are listed in Table 1.

Antivirus software User
mode
hooks

✓ Comodo Internet Security Pro 10 Inline
✓ F-Secure Computer Protection Premium 21.5 Inline
✓ Sophos Intercept X Advanced with EDR 10.8 Inline, IAT

G Data Endpoint Protection Business 15.0 None
Kaspersky Small Office Security 21.3 None
Malwarebytes Premium 4.4.0 None
Microsoft Defender Antivirus 4.18 None
Avast Business Antivirus Pro Plus 20.10 Unknown
Bitdefender Endpoint Security 6.6 Unknown

Table 1: Used user mode hooks by AV products. Checked
products are included in our experiments.

We identified the user mode hooks in the following way. We
deployed each AV product on a separate VirtualBox image using
DetectionLab software [26, 27]. We also created an additional image
containing no AV software at all that was used as a baseline image
containing no AV hooks placed. Next we ran three applications, a
predeployed Microsoft executable, and two executables compiled
from the Microsoft Visual Studio Enterprise 2019 boilerplate code
for an C++ Console and Desktop application [28].

HookShark64 was used for identifying hooks, and by using Pro-
cess Dump we saved memory of the processes to disk [29, 30].
Using Ghidra, we inspected the memory dumps and confirmed the
existence of the hooks found by HookShark64 [31]. Because we
were looking for user mode hooks, the three executables as well as
Process Dump were ran with user mode permissions.

Four products placed no hooks on the three executables. Results
for Avast and Bitdefender are inconclusive due to incompatibility
with VirtualBox.

The Import Address Table (IAT) hook found on Sophos is related
to the Sophos specific HitManProAlert DLL called hmpalert.dll, it

hooks the imported LoadLibraryExW function of kernel32.dll by
redirecting the location of the method in the IAT. Since this is the
only IAT hook found in the three AV products, we have left further
analysis for future work.

The amount of functions hooked in DLLs that were inline user
mode hooked by at least two of the three AV products are listed in
Table 2.

ke
rn

el
32

.d
ll

ke
rn

el
ba

se
.d
ll

nt
dl
l.d

l

us
er
32

.d
ll

Comodo notepad.exe 0 10 36 3
Console application 4 10 52 43
Desktop application 4 10 52 43

F-Secure notepad.exe 0 0 0 0
Console application 1 11 0
Desktop application 1 11 0 2

Sophos notepad.exe 1 1 7 0
Console application 1 1 7
Desktop application 1 1 7 0

Table 2: Amount of hooked functions for the DLLs that are
at least hooked by two antivirus products. An empty cell in-
dicates a not imported DLLs for the specified application.

We observed differences between AV products in amounts of
hooked functions on DLLs. We also found that single AV products
place different hooks for different processes.

The full table with the amounts of hooked DLLs can be found in
“Appendix A - Inline Hooks placed by antivirus software”.

The hashes on disk for the DLLs that are inline hooked have the
same SHA256, SHA512 andMD5 hashes before and after installation
of AV software. This indicates that the hooks are placed on a process
after loading DLLs in memory. For the sake of brevity, we only listed
the SHA256 hashes in “Appendix B - Hashes of inline hooked DLLs”.

5.2 Included unhooking techniques
We started by listing all techniques that were documented as un-
hooking techniques for x64 processes. Next, we splitted these tech-
niques in two categories:
(1) Techniques that remove the hook or alter the hook in a way that

it is no longer triggered, e.g. by prologue restoring or section
remapping.

(2) Techniques that evade usage of the hooked Windows API calls,
e.g. by using syscalls, loading a copy of the hooked DLL or
embedding copies of functions in an executable.

The resulting list can be found in “Appendix C - Unhooking tech-
niques overview”. In our research we only included techniques
of the first category that remove the hook because these give an
adversary the advantage of being able to execute payloads that are
not aware of hooks, e.g., closed source payloads.

A total of five unhooking techniques are included as can be seen
in Table 3. Three of those are existing techniques, the other two
are new techniques that we present in this paper.

3



Unhooking
technique Description

✓
Section
Remapping [15, 32]

Reload the hooked .text section in
memory by the .text section in the
original DLL on disk.

✓
Prologue
Restoring [6, 14]

Overwrite the first bytes of the hook
with the known original bytes
stored in the unhooking program.

✓ Perun’s Fart [19]
Overwrite hooked .text section with
code of a not yet hooked ntdll.dll in
a created suspended process.

Rebuilding Function
Stubs [6]

Point the jump to a trampoline
containing the original first bytes
and a jump to right after the hook.

Original Thunk
Tracing [18]

Find the original code in memory
by analysing the code of the hook
and alter hook to jump there.

✓
Interprocess Function
Copying [this paper]

Overwrite hooked function bytes
with the original bytes found in an
other not hooked process.

✓
Interprocess Section
Copying [this paper]

Overwrite the .text section in
memory with original .text found
in an other not hooked process.

Table 3: Unhooking techniques that are able to prevent the
code of the hook from running. Checked techniques are in-
cluded in our experiments.

Due to time constraints, Rebuilding Function Stubs and Original
Thunk Tracing have not been implemented. Compared to the other
techniques, we expect these techniques to be less interesting to
adversaries because of the additional effort needed to implement
the techniques.

We wanted to measure the effect of the unhooking techniques
themselves. Therefore, we implemented an executable containing
only the code needed for unhooking a specified process. In our ex-
periments this was a different process than the unhooking process.
We abstained from implementing code to perform other evasion
techniques in the unhooking application, as is the case for the
proof-of-concept code published for Section Remapping.

We knew that direct syscalls would not be detected by the very
same user mode hooks we were trying to unhook [6, 14, 15]. For
that reason, direct syscalls were used instead of API calls for the
implementation of the unhooking techniques.

The selected techniques were implemented in a way that empty
handles and erroneous NTSTATUS codes would exit the unhook-
ing program with an exit code other than zero. This gave us an
indication of success of an unhooking attempt as perceived by the
attacker.

Technique specific implementation details are described below.

5.2.1 Section remapping.
For section remapping we used Saha’s Shellycoat source code as
starting point [15]. We changed a few things: we ran the code
as a commandline executable so we changed the entrypoint and
supplied a Process IDentifier (PID) as input. This also meant that
the targeted process and the unhooking process were no longer
the same process and we had to replace the memcpy function by a

direct syscall similar to NtWriteVirtualMemory to avoid an access
violation on writing in the targeted process.

5.2.2 Prologue Restoring.
For Prologue Restoring we used the commandline interface version
of the Dumpert source code by De Plaa as starting point [14]. By
default it also targeted the current process, so we adjusted the code
to take a PID of a target process to unhook as input.

In the proof-of-concept a fixed amount of 5 bytes is assumed for
restoring prologues. The bytes itself were stored as an array in the
code. While an assumed five bytes was enough for most functions
wrapping a syscall in ntdll.dll, it was not enough for hooks on other
functions. If the first five bytes were replaced by an one byte JMP
assembly instruction to a four byte address, but the last overwritten
instruction was not ending on byte five, the remaining bytes of
the instruction would be set to an INT 3 (0xCC) instruction that
would terminate the process when called. By manually checking
the size of the actual hooks, we added the right amount of bytes
for Windows 10 20H2 for the three functions mentioned in Table 4.

5.2.3 Perun’s Fart.
No source code was available for Perun’s Fart at the time of writing.
The proof-of-concept demo video suggested that only part of the
functions of ntdll.dll, those wrapping syscall instructions, were un-
hooked. Since we could not pinpoint the exact unhooked functions
in the video, we instead implemented it in a way that restored the
entire .text section at once.

5.2.4 Introduced technique: Interprocess Function Copying.
We observed that F-Secure and Comodo would not hook exactly the
same functions of a DLL for each process. This could be exploited
for the removal of hooks by comparing the first bytes of a hooked
function with the bytes of the same function in an other process
that was not hooked but owned by the same user. If differences
were found, the hooked bytes (that were recognizable by a jump
instruction) were overwritten with the unhooked version of the
bytes. We will refer to this technique as Interprocess Function
Copying.

5.2.5 Introduced technique: Interprocess Section Copying.
We used the same principle as Interprocess Function Copying to
copy the entire .text section of a DLL at once. We will refer to this
technique as Interprocess Section Copying.

5.3 Payloads for triggering hooked functions
Since the unhooking techniques target an other malicious process,
we needed programs that fulfilled that role.

Three of such programs that we will call payloads have been
implemented in a way that for each AV product at least one of
the hooked functions is called when all three payloads have been
executed in a successful way. In Table 4 we can see which payload
triggers which potentially hooked function and which AV products
hooked the function. The code for the payloads is based on common
malicious behaviour and implemented by combining and adjusting
online examples that use Windows API calls. The payloads are
described below.

5.3.1 Malicious File Copying.
This payload mimics copying files with a malicious content. First,

4



Figure 2: Execution of a single test including unhooking.

Payload and Function called H
oo

ke
d
by

C
om

od
o

H
oo

ke
d
by

F-
Se

cu
re

H
oo

ke
d
by

So
ph

os
Malicious File Copying

Calls CopyFileExW in kernelbase.dll
✓ ✓ ✗

Basic Process Injection

Calls CreateRemoteThreadEx in kernelbase.dll
✗ ✓ ✗

Process Injection by Section Remapping

Calls NtMapViewOfSection in ntdll.dll
✗ ✗ ✓

Table 4: Payloads designed to trigger hooks of specific
AV software by calling specific functions.

a temporary folder “C:\tempdir” is created. Next, a text file con-
taining an executable containing a reverse shell is copied to an
executable file in the temp directory and an attempt is made to
overwrite “ntdll.dll” and “lsass.exe”, and to create new files called
“ntdll2.dll’ and ’lsass2.exe’ using the same malicious file. Next, sim-
ilar actions are performed using a text file containing the EICAR
test string. A similar process is repeated using files that originate
from a networkshare (in our case a VirtualBox shared folder). The
files are copied using CopyFileExW and because we set directive
#UNICODE, this resolves to a call to CopyFileExW.

5.3.2 Basic Process injection.
This payload injects shellcode for showing a MessageBox into a
remote process and spawns a thread in that remote process to
execute the shellcode. First, memory is allocated in the opened
targeted process (OpenProcess) where the shellcode will be stored
(VirtualAllocEx). Next, the shellcode is copied in the allocated mem-
ory (WriteProcessMemory). Next, a new thread is created in the
target process that starts executing the injected shellcode (Cre-
ateRemoteThread). This last step will trigger a call of CreateRe-
moteThreadEx in kernelbase.dll.

5.3.3 Process Injection by Section Remapping.
This payload results in executing the same shellcode mentioned, but
other functions are used for delivering the shellcode to the remote
process and executing it. First the payload will create a section in its

own process (NtCreateSection) and map a view to it (NtMapViewOf-
Section). The received section handle is then used to map a view of
the same section in the target process (NtMapViewOfSection) right
after opening the remote process (OpenProcess). Next, the shellcode
is copied to the section view of the payload (memcpy) resulting in
the shellcode being available for the target process. Finally, a new
thread is started in the target process (RtlCreateThread).

5.4 Automated unhooking experiments
To measure the effect of the unhooking techniques on AV software,
we ran the payloads without unhooking and with unhooking with
each included technique. A PowerShell script was created to per-
form the experiments in an repeatable and convenient way. A single
experiment is executed as shown in Figure 2.

First, a new notepad.exe process is created that will be targeted
by our injection malware. This process is also used as the source
process of unhooked bytes for both Interprocess copying techniques.
Next, the malware started with a ninety second sleep period to
allow us to identify any hooks on the malware before we started
unhooking. We identify hooks in memory one second and one
minute after we started unhooking using a custommade application
(HookDetector). This enabled us to see if removed hooks were
removed for a longer period of time. Next, the malicious activity of
the payload was ran and finally the notepad.exe process was killed.

The exit codes of the process applying the unhooking technique
and the malicious payload were outputted to the screen.

After the execution of all experiments on an AV product, we
manually checked for AV events generated by AV software (both
with user and administrator permissions, both on the local system
and in a remote central dashboard when available).

Also, Sysmon alerts generated using the Sysmon Modular con-
figuration were manually checked [33].

For each experiment an unique version of the payload was com-
piled by changing a string value in a printf statement to make sure
the malware was not blocked on forehand due to detection of ma-
licious behaviour by the same executable during earlier tests. To
be able to identify the exact cause of an AV or Sysmon event, we
gave each payload executable an unique filename. We excluded the
application that reads the hooks from the memory of the payload
from being monitored by the AV software to make sure the hooks
were registered.

5



Detectability Effectiveness

Malware Unhooking technique AV alert
on payload

Payload
exit code 0

Unhooking
exit code 0

Hook
removed

F-Secure Computer Protection Premium 21.5
Malicious File Copying None ✗1 ✓ - -

Interprocess Function Copying ✗1 ✓ ✓ ✓

Interprocess Section Copying ✗1 ✓ ✓ ✓

Hook: kernelbase.dll Peruns Fart ✗1 ✓ ✓ ✗3

CopyFileExW Prologue Restoring ✗1 ✓ ✓ ✓

Section Remapping ✗1 ✓ ✓ ✓

Shellcode Injection - None ✓2 ✗ - -
Basic Interprocess Function Copying ✗ ✓ ✓ ✓

Interprocess Section Copying ✗ ✓ ✓ ✓

Hook: kernelbase.dll Peruns Fart ✓2 ✗3 ✓ ✗3

CreateRemoteThreadEx Prologue Restoring ✗ ✓ ✓ ✓

Section Remapping ✗ ✓ ✓ ✓

Sophos Intercept X Advanced with EDR 10.8
Shellcode Injection - None ✗ ✓ - -
Section Mapping Interprocess Function Copying ✗ ✗4 ✓ ✗6

Interprocess Section Copying ✗ ✗4 ✓ ✗6

Using ntdll.dll Peruns Fart ✗ ✓ ✓ ✓

NtMapViewOfSection Prologue Restoring ✗ ✓ ✓ ✓

Section Remapping ✗ ✓ ✓ ✓

Comodo Internet Security Pro 10
Malicious File Copying None ✗1 ✓ - -

Interprocess Function Copying ✗1 ✓ ✓ ✗5

Interprocess Section Copying ✗1 ✓ ✓ ✗5

Using kernelbase.dll Peruns Fart ✗1 ✓ ✓ ✗3

CopyFileExW Prologue Restoring ✗1 ✓ ✓ ✓

Section Remapping ✗1 ✓ ✓ ✓
1 Antivirus event related to the harmful content of copied files, not the payload itself.
2 Reason: Exploit:W32/ShellCodeInjection.A!DeepGuard.
3 Peruns Fart can only copy ntdll.dll because no other dll’s are available for a sleeping process.
4 Execution failed because hooks are copied from source process refering to relative memory not existing in target process.
5 Hook is overwritten by code containing exactly the same hooks.
6 Hook is overwritten by code containing hooks referring to nonexistent memory.

Table 5: Results for experiments of which the payload called a function that
was hooked by the antivirus software.

6 RESULTS
Table 5 contains the results for those experiments for which the
AV software hooked the function that was called by the payload.
The results for the full series of experiments per AV product can be
found in “Appendix D - Full experimental results”.

The Sysmon events and AV details for alerts are described below.

6.1 Sysmon events
For all three AV products used, a Sysmon event 8 (CreateRemoteThread,
Process injection) was generated within one second of the execution
of the actual Process Injection code. The alert identified notepad.exe

as the target image of the process injection. Also, all three AV prod-
ucts generated alerts for files that were copied by payload Malicious
File Copying, but not for the payload itself.

Within 0.3 seconds after the creation of a payload- or unhooking
process on F-Secure or Sophos, the following Sysmon events were
generated:
- Event 7 (Image Load, DLL Side-Loading)
- Event 10 (Process Accessed)
- Event 25 (Process Tampering)
Sysmon registered suspended processes created by Perun’s Fart

as events with ID 4688 (Process Creation) and mentioned that the
Perun’s Fart process was the parent process.

6



AV product specific observations related to Sysmon, application
and AV logs are discussed below.

6.1.1 F-Secure specific observations.
When the exit code of the payload was non-zero, we observed an
Application Closed event in the F-Secure Graphical User Interface
(GUI) with reason “Exploit:W32/ShellCodeInjection.A!DeepGuard”.

6.1.2 Sophos.
In addition to the warning in the GUI, an application warning log
with event ID 32 (Sophos Anti-Virus) was created. It mentioned the
names of malicious files that were copied and marked as “virus/spy-
ware”. For files removed by Sophos, an event with ID 36 was gener-
ated.

An application error event ID 1000 (Faulting Application) was re-
ported within one second of the execution of the malicious payload
Process Injection By Section Mapping if a variant of Interprocess
Copying was used that was terminated with a non-zero exit code.

During the experiments we observed 15 informative Security-
Center logs with event ID 15 (“Updated Sophos Anti-Virus status
successfully to SECURITY_PRODUCT_STATE_ON.”) with intervals
between one second and 5:51 minutes.

6.1.3 Comodo.
All executed payloads and unhooking techniques were marked as
unrecognized by Comodo. This led to containerized execution.

The experimental results were the same if the experiment was
repeated with the auto-containment feature set to off.

Malicious files were listed as “Detected Threats” in the AV Events
list of the Comodo GUI.

7 DISCUSSION
If we look at the results in “Appendix D - Full experimental results”
we can observe that all unhooking techniques were terminated
gracefully with exit code zero. This means the processes were not
blocked by AV and that none of the checks in the unhooking tech-
niques themselves failed. This is not surprising because the security
mechanism (hook) is created with user permissions, so the user has
the permissions needed to tamper with it. This issue is inherent
to user mode hooking and an alternative mechanism should be
found that is not accessible through user permissions. Using Event
Tracing for Windows (ETW) might be a suitable alternative for real
time tracing and acting on both user and kernel mode events on
a granular level [34]. Additional kernel tracing events have been
introduced in Windows 10 build 1809 as a means for AV vendors
to receive events from kernel mode memory management (MM)
and Asynchronous Procedure Calls (APC) APIs. The related ETW
provider is called “Microsoft-Windows-Threat-Intelligence” and
can only be consumed by security vendors with proper signing cer-
tificates recognized by Microsoft [35]. Also, drivers have been used
as a means to get control beyond user mode, but the possibilities
are limited compared to the aforementioned alternative.

In most cases the hooks in memory were removed because the
expected original bytes were found in memory after the unhooking
technique was performed. There were two exceptions:
- If Perun’s Fart was executed when a non ntdll.dll function was
hooked. This makes sense, since only an unhooked ntdll.dll was
accessible in the suspended process that was created.

- If any of the two variants of Interprocess Copying were used and
both the function in source (notepad.exe) and target of copying
were hooked. This resulted in a hook being overwritten by a hook.
For Sophos this led to failing payloads because the location of the
hooks differed between source and target process, resulting in
a jump to nonexistent memory by the target of the copy action.
An additional check in the unhooking code to confirm that the
source is hook free before copying can solve this issue.
Payloads were executed successfully in all cases, except when

the payload failed because of invalid hook addresses as mentioned
above due to Interprocess Copying, or if Basic Process Injection
was ran on F-Secure without unhooking or using Perun’s Fart.

In all experiments, the hooks are exactly the same after one
second and one minute of unhooking. Since it is unlikely that AV
products (temporarily) remove their own hooks, we assume that
no hooks are restored within one minute after unhooking.

AV alerts are only generated by F-Secure if no unhooking is
used or unhooking is unsuccessful. Comodo and Sophos are not
generating alerts for any of the three payloads and neither when
no unhooking is used. This is an unexpected result because the pay-
loads used were performing malicious behaviour and no shellcode
obfuscation was applied.

One explanation for the shellcode injections not being detected
could be that the AV recognizes a MessageBox as not harmful and
allowed it. However, a rerun of the experiments with a clearly
malicious payload (using shellcode for an unencoded reverse shell
instead of a MessageBox) led to similar results.

To prove that the hooked functions are in fact executed, we
created a copy of the Prologue Restoring payload and replaced the
original bytes with INT 3 assembly instructions (0xCC). This causes
a trap normally used for debugging that results in unsuccessful
termination of a program when it executes the instructions. This
way, we confirmed that all payloads on all AV products were in fact
executed because all payloads exited with a non-zero exit code.

A possible explanation for Sophos and Comodo accepting the
shellcode injection is that this behaviour is accepted by design.
After all, one user mode program is injecting in an other user mode
program for the same user. But this would not explain why these
hooks are placed at all.

Other possible explanations that are left for future work are:
- Usage of hooks for the collection of data that make AV trigger
after aggregation of events.

- AV software utilizing machine learning that marks activity early
after the installation of the AV software as normal activity.

- Hooks being placed due to legacy code, but the hooks are no
longer used to act upon.

For Comodo the latter possibility is not unrealistic because a blog
post published in 2013 already explains how to evade Comodo
user mode hooks [22]. Furthermore, the Host Intrusion Protections
System feature of Comodo seem to be triggered based on gener-
ated events, not on the lines of code in a payload that call hooked
functions.

For F-Secure we can observe that all unhooking techniques that
are able to unhook hooks on kernelbase.dll make a difference be-
tween a blocked Basic Shellcode Injection payload or an unblocked
one. This means unhooking was successfully used for AV evasion.

7



For all Malicious File Copying payloads, copied malicious files
are detected by all AV products, even if unhooking is successful.
The event generated does not mention the payload as source of
the problem and the payload process is not blocked. This could
indicate that file scanning functionality of AV, instead of the hooked
function, is responsible for detection and removal of these files.

The Sysmon alerts that are created shortly after the execution
of a process by Sophos or F-Secure can be attributed to these AV
products placing the user mode hooks based on the moment that
these events are generated. These events should therefore been
seen as false positives from a defensive point of view.

Sysmon event 8 is only generated right after a successful Process
Injection (Basic or Section mapping variant). For that reason we
attribute these events to actual Process Injection. The events with
ID 8 could therefore be used by AV products as an indicator of
Process Injection, instead of using unhooking.

8 LIMITATIONS
There are some limitations to this research. A limited amount of
AV products have been analyzed for user mode hooks. Therefore,
no reliable statements can be made about the effectiveness and
detectability of the techniques on AV products in general.

The default settings of AV products were used. Using different
settings might have led to different results. A quick exploration
of enabling the Host Intrusion Protection System (HIPS) mode on
Comodo showed numerous alerts asking the user for permission to
execute certain actions. Answering all questions with “no” would
block the execution of payloads and unhooking techniques alto-
gether.

For eachAV product, one or two hooked functionswere triggered.
Our conclusions are based on the assumption that AV products treat
all hooks the same way. It is not unthinkable that results differ if
other hooked functions of the same product are triggered.

Selected unhooking methods were based on the inline user mode
hooks that were used by the three AV products. Other AV products
might use other types of user mode hooks such as Import Address
Table (IAT) hooks and require different unhooking techniques.

Proof-of-concept code for Perun’s Fart was not yet available. The
original implementation by the author of the blog of the technique
might differ. The proof-of-concept code of Shellycoat and Dumpert
has been adapted to run as a commandline program unhooking an
other process using direct syscalls. Running the original techniques
might have led to different results, e.g. because virus signatures
might exist for the original executables.

9 CONCLUSION
Our work showed that unhooking might still be used for antivirus
evasion today, depending on the AV product used. We have demon-
strated this for F-Secure using different techniques.

We published code for testing user mode unhooking techniques
on payloads in an automated fashion.

Section Remapping and Prologue Restoring effectively unhooked
user mode hooks on eachWindows 10 system that we installed with
a default configuration of Comodo, Sophos or F-Secure. Perun’s
Fart was limited to unhooking functions in ntdll.dll. None of the
unhooking attempts were detected by antivirus software.

There are no indications that removed hooks were restored by
AV software in the first minute after removal of a hook.

We introduced two variants of a new unhooking technique based
on copying memory from an unhooked process to a hooked process
and we called these techniques Interprocess Function Copying and
Interprocess Section Copying.We have shown that these techniques
were effective and undetected as long as a source process was
available without hooks on the same function as the function that
was being unhooked.

A security issue inherent to using user mode hooks is that user
permissions allow tampering with the hooks. Alternatives to user
mode hooking should be found in security mechanisms that do not
allow tampering by using user permissions, such as EventTracing
for Windows.

10 FUTUREWORK
Implementing the two remaining unhooking techniques and adding
more payloads for other hooked functions will lead to a better im-
pression of the resilience of an AV product to user mode unhooking
techniques.

While analysing hooks, we found an import address table hook
on Sophos. Because these hooks are also placed in user mode, fur-
ther analysis might uncover similar security issues as we have seen
for inline user mode hooking.

Finally, additional research is required to see if unnecessary
unhooking attempts are detected as malicious behaviour on AV
products that do not place user mode hooks themselves.

11 RESPONSIBLE DISCLOSURE
We have disclosed our findings to F-Secure prior to the publication
of this paper or source code.

12 ACKNOWLEDGEMENTS
This research was carried out in the context of red teaming security
assessments performed by KPMG. The author wishes to thank
Sander Ubink at KPMG for his in-depth technical advise and detailed
reviews.

Also, I want to thank my friends and family for their support.
Especially my wife and my friends Martijn and Erik.

REFERENCES
[1] Ping Chen, Lieven Desmet, and Christophe Huygens. In Communications and

Multimedia Security, pages 63–72, Berlin, Heidelberg, 2014.
[2] Colin Tankard. Advanced persistent threats and how to monitor and deter them.

Network security, 2011(8):16–19, 2011.
[3] Lingwei Chen, Yanfang Ye, and Thirimachos Bourlai. Adversarial machine learn-

ing in malware detection: Arms race between evasion attack and defense, 2017.
[4] B.J Wood and R.A Duggan. Red teaming of advanced information assurance con-

cepts. In Proceedings DARPA Information Survivability Conference and Exposition.
DISCEX’00, volume 2, pages 112–118 vol.2. IEEE, 2000.

[5] Ivan Kovacevic and Stjepan Gros. Red teams - pentesters, apts, or neither. In
2020 43rd International Convention on Information, Communication and Electronic
Technology (MIPRO), pages 1242–1249. Croatian Society MIPRO, 2020.

[6] Omri Misgav and Udi Yavo. Bypassing user-mode hooks: Analyzing malware
evasion trend. https://www.first.org/resources/papers/telaviv2019/Ensilo-Omri-
Misgav-Udi-Yavo-Analyzing-Malware-Evasion-Trend-Bypassing-User-Mode-
Hooks.pdf, 2019. Visited: 2021-05-31.

[7] Mitre. Mitre att&ck enterprise matrix, impair defenses: Disable or modify tools.
https://attack.mitre.org/techniques/T1562/001/, 2021. Visited: 2021-04-29.

[8] Gartner. Mcafee ad highlights ongoing microsoft security skirmish.
https://www.gartner.com/resources/144000/144073/mcafee_ad_highlights_
ongoing_144073.pdf, 2006-10-10. Visited: 2021-05-30.

8

https://www.first.org/resources/papers/telaviv2019/Ensilo-Omri-Misgav-Udi-Yavo-Analyzing-Malware-Evasion-Trend-Bypassing-User-Mode-Hooks.pdf
https://www.first.org/resources/papers/telaviv2019/Ensilo-Omri-Misgav-Udi-Yavo-Analyzing-Malware-Evasion-Trend-Bypassing-User-Mode-Hooks.pdf
https://www.first.org/resources/papers/telaviv2019/Ensilo-Omri-Misgav-Udi-Yavo-Analyzing-Malware-Evasion-Trend-Bypassing-User-Mode-Hooks.pdf
https://attack.mitre.org/techniques/T1562/001/
https://www.gartner.com/resources/144000/144073/mcafee_ad_highlights_ongoing_144073.pdf
https://www.gartner.com/resources/144000/144073/mcafee_ad_highlights_ongoing_144073.pdf


[9] Wikipedia. Kernel patch protection. https://en.wikipedia.org/wiki/Kernel_Patch_
Protection/, 2021. Visited: 2021-05-30.

[10] Syed Zainudeen Mohd Shaid and Mohd Aizaini Maarof. In memory detection of
windows api call hooking technique. In 2015 International conference on computer,
communications, and control technology (I4CT), pages 294–298. IEEE, 2015.

[11] Galen Hunt and David Tarditi. Event tracing. https://www.microsoft.com/en-
us/research/project/detours/, 2002-01-16. Visited: 2021-06-06.

[12] Geoff Chappell. Ntdll. https://www.geoffchappell.com/studies/windows/win32/
ntdll/index.htm?tx=4, 2016. Visited: 2021-05-30.

[13] Wikipedia. Native api. https://en.wikipedia.org/wiki/Native_API, 2021. Visited:
2021-04-29.

[14] Cornelis de Plaa. Red team tactics: Combining direct system calls and srdi to
bypass av/edr. https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-
direct-system-calls-and-srdi-to-bypass-av-edr/, 2019-06-19. Visited: 2021-05-15.

[15] Upayan Saha. Shellycoat. https://github.com/slaeryan/AQUARMOURY/tree/
master/Shellycoat, 2020-11-4. Visited: 2021-05-28.

[16] Jeffrey Tang. Universal unhooking: Blinding security software.
https://blogs.blackberry.com/en/2017/02/universal-unhooking-blinding-
security-software, 2017-02-28. Visited: 2021-05-22.

[17] Mantvydas Baranauskas. Full dll unhooking with c++. https://www.ired.team/
offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++, 2020-06.
Visited: 2021-04-29.

[18] PeterWinter-Smith. Firewalker: A new approach to generically bypass user-space
edr hooking. https://www.mdsec.co.uk/2020/08/firewalker-a-new-approach-to-
generically-bypass-user-space-edr-hooking/, 2020-08. Visited: 2021-05-28.

[19] Sector7. Perun’s fart - yet another unhooking method. https://blog.sektor7.net/
#!res/2021/perunsfart.md, 2021-04-21. Visited: 2021-06-08.

[20] Fabian Mosch. A tale of edr bypass methods. https://s3cur3th1ssh1t.github.io/A-
tale-of-EDR-bypass-methods/, 2021-01-31. Visited: 2021-05-22.

[21] Mantvydas Baranauskas. Bypassing cylance and other avs/edrs by unhook-
ing windows apis. https://www.ired.team/offensive-security/defense-evasion/
bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis, 2021-01.
Visited: 2021-05-31.

[22] George Nicolaou. Bypassing cylance and other avs/edrs by unhooking windows
apis. http://rce.co/why-usermode-hooking-sucks-bypassing-comodo-internet-

security/, 2012-05-13. Visited: 2021-06-01.
[23] Mitre Engenuity. Att&ck evaluations. https://attackevals.mitre-engenuity.org/,

2021. Visited: 2021-05-31.
[24] Tom Broumels. User mode unhooking test script. https://github.com/TomOS3/

UserModeUnhooking, 2021-07-04. Visited: 2021-07-04.
[25] AVTEST. Test antivirus software for windows 10 - april 2021. https://www.av-

test.org/en/antivirus/business-windows-client/windows-10/april-2021/, 2021-04.
Visited: 2021-05-30.

[26] Oracle. Virtualbox version 6.1.22 for windows. https://download.virtualbox.org/
virtualbox/6.1.22/VirtualBox-6.1.22-144080-Win.exe, 2021. Visited: 2021-05-29.

[27] Chris Long. Detectionlab. https://github.com/clong/DetectionLab, 2021. Visited:
2021-05-29.

[28] Microsoft Visual Studio Enterprise 2019 version 16.9.2. https:
//docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes-v16.9#--
visual-studio-2019-version-1692, 2021. Visited: 2021-05-29.

[29] Geoff McDonald. Process dump version 2.1. http://www.geoffmcdonald.ca/pd.
html, 2021. Visited: 2021-05-29.

[30] HookShark64 version beta 0.1. https://www.unknowncheats.me/forum/pc-
software/72799-hookshark64-beta-0-1-a.html, 2011. Visited: 2021-05-29.

[31] National Security Agency. Ghidra version 9.2. https://ghidra-sre.org/
releaseNotes_9.2.html#9_2, 2021. Visited: 2021-05-29.

[32] Theodoros Apostolopoulos, Vasilios Katos, Kim-Kwang Raymond Choo, and
Constantinos Patsakis. Resurrecting anti-virtualization and anti-debugging:
Unhooking your hooks. Future Generation Computer Systems, 116:393–405, 2021.

[33] Olaf Hartong. Sysmon modular. https://github.com/olafhartong/sysmon-
modular, 2021. Visited: 2021-05-29.

[34] Matthew Eidelberg. Endpoint detection and response: How hackers have
evolved. https://www.optiv.com/insights/source-zero/blog/endpoint-detection-
and-response-how-hackers-have-evolved, 2021-02-02. Visited: 2021-05-31.

[35] Filip Olszak. Endpoint detection and response: How hackers have
evolved. https://blog.redbluepurple.io/windows-security-research/kernel-
tracing-injection-detection, 2021-04-07. Visited: 2021-05-31.

[36] ShengHao Ma. Wow hell: Rebuilding heavens gate. https://conference.hitb.org/
hitbsecconf2021ams/sessions/wow-hell-rebuilding-heavens-gate/, 2021-05-27.
Visited: 2021-06-01.

9

https://en.wikipedia.org/wiki/Kernel_Patch_Protection/
https://en.wikipedia.org/wiki/Kernel_Patch_Protection/
https://www.microsoft.com/en-us/research/project/detours/
https://www.microsoft.com/en-us/research/project/detours/
https://www.geoffchappell.com/studies/windows/win32/ntdll/index.htm?tx=4
https://www.geoffchappell.com/studies/windows/win32/ntdll/index.htm?tx=4
https://en.wikipedia.org/wiki/Native_API
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://github.com/slaeryan/AQUARMOURY/tree/master/Shellycoat
https://github.com/slaeryan/AQUARMOURY/tree/master/Shellycoat
https://blogs.blackberry.com/en/2017/02/universal-unhooking-blinding-security-software
https://blogs.blackberry.com/en/2017/02/universal-unhooking-blinding-security-software
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://www.ired.team/offensive-security/defense-evasion/how-to-unhook-a-dll-using-c++
https://www.mdsec.co.uk/2020/08/firewalker-a-new-approach-to-generically-bypass-user-space-edr-hooking/
https://www.mdsec.co.uk/2020/08/firewalker-a-new-approach-to-generically-bypass-user-space-edr-hooking/
https://blog.sektor7.net/#!res/2021/perunsfart.md
https://blog.sektor7.net/#!res/2021/perunsfart.md
https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/
https://s3cur3th1ssh1t.github.io/A-tale-of-EDR-bypass-methods/
https://www.ired.team/offensive-security/defense-evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis
https://www.ired.team/offensive-security/defense-evasion/bypassing-cylance-and-other-avs-edrs-by-unhooking-windows-apis
http://rce.co/why-usermode-hooking-sucks-bypassing-comodo-internet-security/
http://rce.co/why-usermode-hooking-sucks-bypassing-comodo-internet-security/
https://attackevals.mitre-engenuity.org/
https://github.com/TomOS3/UserModeUnhooking
https://github.com/TomOS3/UserModeUnhooking
https://www.av-test.org/en/antivirus/business-windows-client/windows-10/april-2021/
https://www.av-test.org/en/antivirus/business-windows-client/windows-10/april-2021/
https://download.virtualbox.org/virtualbox/6.1.22/VirtualBox-6.1.22-144080-Win.exe
https://download.virtualbox.org/virtualbox/6.1.22/VirtualBox-6.1.22-144080-Win.exe
https://github.com/clong/DetectionLab
https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes-v16.9#--visual-studio-2019-version-1692
https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes-v16.9#--visual-studio-2019-version-1692
https://docs.microsoft.com/en-us/visualstudio/releases/2019/release-notes-v16.9#--visual-studio-2019-version-1692
http://www.geoffmcdonald.ca/pd.html
http://www.geoffmcdonald.ca/pd.html
https://www.unknowncheats.me/forum/pc-software/72799-hookshark64-beta-0-1-a.html
https://www.unknowncheats.me/forum/pc-software/72799-hookshark64-beta-0-1-a.html
https://ghidra-sre.org/releaseNotes_9.2.html#9_2
https://ghidra-sre.org/releaseNotes_9.2.html#9_2
https://github.com/olafhartong/sysmon-modular
https://github.com/olafhartong/sysmon-modular
https://www.optiv.com/insights/source-zero/blog/endpoint-detection-and-response-how-hackers-have-evolved
https://www.optiv.com/insights/source-zero/blog/endpoint-detection-and-response-how-hackers-have-evolved
https://blog.redbluepurple.io/windows-security-research/kernel-tracing-injection-detection
https://blog.redbluepurple.io/windows-security-research/kernel-tracing-injection-detection
https://conference.hitb.org/hitbsecconf2021ams/sessions/wow-hell-rebuilding-heavens-gate/
https://conference.hitb.org/hitbsecconf2021ams/sessions/wow-hell-rebuilding-heavens-gate/


APPENDIX A - INLINE HOOKS PLACED BY ANTIVIRUS SOFTWARE
Table 6 shows the amount of hooked functions placed by antivirus products on three different applications.

ad
va

pi
32

.d
ll

co
m
ba

se
.d
ll

fl
tl
ib
.d
ll

gd
i3
2.
dl
l

ke
rn

el
32

.d
ll

ke
rn

el
ba

se
.d
ll

nt
dl
l.d

ll

rp
cr
t4
.d
ll

se
ch

os
t.d

ll

sh
el
l3
2.
dl
l

us
er
32

.d
ll

w
in
32

u.
dl
l

No antivirus Notepad 0 0 0 0 0 0 0 0 0 0 0
Console 0 0 0
Desktop 0 0 0 0 0 0 0 0 0 0

Comodo Notepad 0 0 3 6 0 10 36 0 0 2 3 29
Console 7 2 3 6 4 10 52 1 14 7 43 32
Desktop 7 2 3 6 4 10 52 1 14 7 43 32

F-Secure Notepad 0 0 0 0 0 0 0 0 0 0 0
Console 1 11 0
Desktop 0 0 0 1 11 0 0 0 2 0

Sophos Notepad 0 0 0 1 1 7 0 0 0 0 0
Console 1 1 7
Desktop 0 0 0 1 1 7 0 0 0 0

Table 6: Inline hooks placed by AV products on MS Notepad, and two Visual
Studio 2019 boilerplate applications, a Console and a Desktop application. If a
DLL was not imported by an application, the corresponding cell is left empty.

APPENDIX B - HASHES OF INLINE HOOKED DLLS
The SHA256 hashes for the inline hooked DLLs are listed in Table 7.

DLL SHA256 hash value of DLL
advapi32.dll D9B3BB2AC2CE939DD485EDDD1184684698A9D7CA2A04F4E79DC32B2E806077E3
combase.dll E2556FC888D8A419234C7559B2C2D255A958223AE69E8D0E7587F77CA688CDFE
fltlib.dll 353F8D4E647A11F235F4262D913F7BAC4C4F266EAC4601EA416E861AFD611912
gdi32.dll 4FC9460147D5A3AA1F9498863CF10BB7BE6099BEF1A3D55503164CA51E36E27E
kernel32.dll DC1BCAE0A3DD5ED5C91C1A26C8DC9DEF93CA9926D3335226803479D27C3C0377
kernelbase.dll 733BD624C3BFC8F57FAD79835D31790F4489582352D5CB696B4C3717DB31E820
ntdll.dll 2CF67E1CC1E6F43637FDA35315FFE16B2CA140BCBA149944D5E4B8ECC49391B1
rpcrt4.dll 78C4D3F9607A399DCD96E9067A14F143E9838FB02E78E7775675BC7D46D8D703
sechost.dll D5DE7C00A5BD8E766EB1ECAA651687E84A227ACDFC110847E3F595342953E29C
shell32.dll BC8637E2F6D6E18CD60452498FE48DB54FF4742CE7252EE0953CB72F3A4A5E3D
user32.dll 6ECB526489C26424A7D8A8C58C770CC3E41377CCB3B87B5E126F21ADBEA316C0
win32u.dll 5462B14DCD51B06596F0B6A8154A36F8346C42D5C4DE6B31CFC1F4CA9977D662

Table 7: Hash values of the DLL files on the lab systems

10



APPENDIX C - UNHOOKING TECHNIQUES OVERVIEW
Table 8 shows known techniques that can be used to remove or evade inline user mode hooks.

Technique Category
Original Thunk Tracing [18] Removal
Perun’s Fart [19] Removal
Prologue Restoring [6, 14] Removal
Rebuild function stubs with trampoline [6] Removal
Section Remapping [15, 32] Removal
Clone and load DLL from disk [6] Evasion
DLL Parsing for using direct syscalls [6] Evasion
New Heaven’s Gate (WoW Hell) [36] Evasion
Manually load DLL from disk [6, 16] Evasion
Table 8: Known techniques for removal or evasion of user mode hooks.

APPENDIX D - FULL EXPERIMENTAL RESULTS
The results for all the experiments performed on F-Secure, Sophos and Comodo can be found in tables 9, 10 and 11 respectively.

F-Secure Computer Protection Premium 21.5 Detectability Effectiveness

Malware Unhooking technique AV alert
on payload

Payload
exit code 0

Unhooking
exit code 0

Hook
removed

Malicious File Copying None ✗1 ✓ - -
Interprocess Function Copying ✗1 ✓ ✓ ✓

Interprocess Section Copying ✗1 ✓ ✓ ✓

Hook: kernelbase.dll Peruns Fart ✗1 ✓ ✓ ✗3

CopyFileExW Prologue Restoring ✗1 ✓ ✓ ✓

Section Remapping ✗1 ✓ ✓ ✓

Shellcode Injection - None ✓2 ✗ - -
Basic Interprocess Function Copying ✗ ✓ ✓ ✓

Interprocess Section Copying ✗ ✓ ✓ ✓

Hook: kernelbase.dll Peruns Fart ✓2 ✗3 ✓ ✗3

CreateRemoteThreadEx Prologue Restoring ✗ ✓ ✓ ✓

Section Remapping ✗ ✓ ✓ ✓

Shellcode Injection - None ✗ ✓ - -
Section Mapping Interprocess Function Copying ✗ ✓ ✓ ✗7

Interprocess Section Copying ✗ ✓ ✓ ✗7

Hook: ntdll.dll Peruns Fart ✗ ✓ ✓ ✗7

NtMapViewOfSection Prologue Restoring ✗ ✓ ✓ ✗7

Section Remapping ✗ ✓ ✓ ✗7

1 Antivirus event related to the harmful content of copied files, not the payload itself.
2 Reason: Exploit:W32/ShellCodeInjection.A!DeepGuard.
3 Peruns Fart can only copy ntdll.dll because no other dll’s are available for a sleeping process.
7 Function not hooked by antivirus.

Table 9: Results for all experiments on a system provided with F-Secure.

11



Sophos Intercept X Advanced with EDR 10.8 Detectability Effectiveness

Malware Unhooking technique AV alert
on payload

Payload
exit code 0

Unhooking
exit code 0

Hook
removed

Malicious File Copying None ✗1 ✓ - -
Interprocess Function Copying ✗1 ✓ ✓ ✗7

Interprocess Section Copying ✗1 ✓ ✓ ✗7,8

Hook: kernelbase.dll Peruns Fart ✗1 ✓ ✓ ✗7

CopyFileExW Prologue Restoring ✗1 ✓ ✓ ✗7

Section Remapping ✗1 ✓ ✓ ✗7

Shellcode Injection - None ✗ ✓ - -
Basic Interprocess Function Copying ✗ ✓ ✓ ✗7

Interprocess Section Copying ✗ ✓ ✓ ✗7,8

Hook: kernelbase.dll Peruns Fart ✗ ✓ ✓ ✗7

CreateRemoteThreadEx Prologue Restoring ✗ ✓ ✓ ✗7

Section Remapping ✗ ✓ ✓ ✗7

Shellcode Injection - None ✗ ✓ - -
Section Mapping Interprocess Function Copying ✗ ✗4 ✓ ✗6

Interprocess Section Copying ✗ ✗4 ✓ ✗6

Hook: ntdll.dll Peruns Fart ✗ ✓ ✓ ✓

NtMapViewOfSection Prologue Restoring ✗ ✓ ✓ ✓

Section Remapping ✗ ✓ ✓ ✓
1 Antivirus event related to the harmful content of copied files, not the payload itself.
4 Execution failed because hooks are copied from source process refering to relative memory not existing in target process.
6 Hook is overwritten by code containing hooks referring to nonexistent memory.
7 Function not hooked by antivirus.
8 Hook unchanged but other functions overwritten by code containing hooks referring to nonexistent memory.

Table 10: Results for all experiments on a system provided with Sophos.

12



Comodo Internet Security Pro 10 Detectability Effectiveness

Malware Unhooking technique AV alert
on payload

Payload
exit code 0

Unhooking
exit code 0

Hook
removed

Malicious File Copying None ✗1 ✓ - -
Interprocess Function Copying ✗1 ✓ ✓ ✗5

Interprocess Section Copying ✗1 ✓ ✓ ✗5

Hook: kernelbase.dll Peruns Fart ✗1 ✓ ✓ ✗3

CopyFileExW Prologue Restoring ✗1 ✓ ✓ ✓

Section Remapping ✗1 ✓ ✓ ✓

Shellcode Injection - None ✗ ✓ - -
Basic Interprocess Function Copying ✗ ✓ ✓ ✗7

Interprocess Section Copying ✗ ✓ ✓ ✗7

Hook: kernelbase.dll Peruns Fart ✗ ✓ ✓ ✗3,7

CreateRemoteThreadEx Prologue Restoring ✗ ✓ ✓ ✗7

Section Remapping ✗ ✓ ✓ ✗7

Shellcode Injection - None ✗ ✓ - -
Section Mapping Interprocess Function Copying ✗ ✓ ✓ ✗7

Interprocess Section Copying ✗ ✓ ✓ ✗7

Hook: ntdll.dll Peruns Fart ✗ ✓ ✓ ✗7

NtMapViewOfSection Prologue Restoring ✗ ✓ ✓ ✗7

Section Remapping ✗ ✓ ✓ ✗7

1 Antivirus event related to the harmful content of copied files, not the payload itself.
3 Peruns Fart can only copy ntdll.dll because no other dll’s are available for a sleeping process.
5 Hook is overwritten by code containing exactly the same hooks.
7 Function not hooked by antivirus.

Table 11: Results for all experiments on a system provided with Comodo.

13


	Abstract
	1 Introduction
	2 Background
	2.1 User mode hooking
	2.2 Windows 10 architectural aspects
	2.3 Direct syscalls

	3 Related work
	4 Research question
	5 Methodology
	5.1 Included user mode hooking AV software
	5.2 Included unhooking techniques
	5.3 Payloads for triggering hooked functions
	5.4 Automated unhooking experiments

	6 Results
	6.1 Sysmon events

	7 Discussion
	8 Limitations
	9 Conclusion
	10 Future work
	11 Responsible Disclosure
	12 Acknowledgements
	References

