
Scaling Stack Trace Fingerprinting

Author: Mounir El Kirafi, SNE
Supervisor: Luc Gommans, X41 D-Sec



Introduction

● Stack traces often used for debugging, showing active stack frames

● Contains useful information - function name, file name, line and column #

● Leaks information, useful for fingerprinting

○ Framework name

○ Version

○ CVEs

2



Introduction

● Existing Java stack trace fingerprinting tool: X41 Beanstack

● Extend to JavaScript

● Large number of libraries and data entries

● Java tool 49 million entries for 36 frameworks

○ Scalability issues

○ Need for fast querying

○ Adequate search and storage solution required

3



Research question

● How can the current X41 Beanstack stack trace fingerprinting database be 

improved for a more efficient storage and querying system?

● What is the necessary information from JavaScript libraries to populate the database 

and how can this be extracted?

● What are more optimal database storage solutions for the storage and querying of 

stack traces?

● How can these solutions be adjusted for better performance in the target use case?

4



Related work

● Java tool – X41 Beanstack [1]

○ Extract data from .class files

○ Classes, functions, line numbers, function calls

○ input into MariaDB

● Java PoC – tracefp [2]

○ No focus on storage structure

● “generic” database performance research

5



JavaScript stack trace

● Different formats due to different engines
○ V8 (Chromium), SpiderMonkey (Firefox), JavaScriptCore (Safari), Chakra (IE), Node.JS (server-

side JavaScript)

● General syntax:

● Filter necessary information out with regex
○ Function name

○ File name

○ Line number

○ Column number

● Extract data from frameworks using source maps

Error type: Error message

function name (file name:line number:column number)

6



Current Beanstack 
implementation

[1] beanstack.io
7



Current Beanstack implementation

8



Current Beanstack implementation

9



Database types

● Relational vs non-relational
○ SQL vs NoSQL

● Relational
○ Structured data with relationships

○ Oracle, PostgreSQL, MySQL, MariaDB

● Non-relational
○ Collections of data with no strict structure

○ Wide Column stores

■ HBase, Cassandra

○ Document Stores

■ MongoDB, Couchbase

○ Key-Value stores

■ Couchbase, Redis, Aerospike

○ Graph databases, search engines, object oriented

10



Specific use case

● Search function name, file name, line # and column #

● Always known key

● Key-value store most optimal

● Hash lookup, similar to hash index

11



Possibilities

● Relational database with B-tree index
○ O(log n) lookup

● Relational database with hash index
○ Theoretical O(1) lookup, I/O limited

○ Most implementations only in memory

● NoSQL database with key-value store
○ Built for use case

12



Data model adaptation

● No need for multiple tables and multiple columns

● Hash required values and use as singular lookup column
○ Xxhash, fast and non-cryptographic hash with low collision rate

○ Hash file name, column # and row #

○ Function name may or may not be known, fuzzy search

13



Testing

● MariaDB
○ Original data model

14



Testing

● MariaDB
○ New data model

15



Testing

● PostgreSQL
○ New data model

○ Hash index

■ Memory caching, in 

disk storage

16



Testing

● Couchbase
○ NoSQL

○ Key-value/JSON store

17



Testing

● Difference between data models

● PostgreSQL hash index speedup

● NoSQL DB speedup

● Speedup querying multiple keys at once vs multiple queries single key
○ select * from beanstack_js where digest='testdigest’ x2

vs

○ select * from beanstack_js where digest='testdigest’ or digest='testdigest2’

○ Minimize query processing time, shift more to database lookup performance

18



Testing

● Self generated database with 100 million entries

● Randomized strings to represent data

● 10GB file size

19



Results

● MariaDB “old” vs “new” data 

model

● New model vs old model 

speedup factor of 2-5x

● Speedup less significant as # 

of queries increases

20



Results

21



Results

● PostgreSQL speedup using 

multiple digests in single query

● Due to better IO utilization
○ 1 digest: ~35-37 MB/s disk read

○ 5 digests: ~56-57 MB/s disk read

○ 10 digests: ~67 MB/s disk read 

○ 20 digests: ~75 MB/s disk read

22



Results

● From 2.2s to 1.3s for 10000 

queries

● MariaDB new model takes 2.7s

23



Results

● Couchbase lookup
○ Direct SQL lookup

○ Lookup through Key-Value API

● Direct SQL retrieval very fast
○ Unpacking returned Python iterable very slow

● Key-value lookup in between

24



Results

● Comparing
○ MariaDB best performance (new model)

○ PostgreSQL best performance (new model, 

hash indexing, multiple digests per query)

○ Couchbase different lookups

● KV lookup fastest

25



Conclusion

● Database can be improved through

○ Better data model

○ Better query design

○ Different storage system

● Future work

○ Speedup through distribution over multiple system (sharding)

○ Speedup through parallelism

○ Research effect of hardware optimization

26



References

● [1] - https://beanstack.io/

● [2] - https://github.com/Skyr/tracefp, https://media.ccc.de/v/EH2014_-_5633_-_de_-_degerloch_-_201404201345_-

_java_stacktrace_fingerprinting_-_skyr

27

https://beanstack.io/
https://github.com/Skyr/tracefp
https://media.ccc.de/v/EH2014_-_5633_-_de_-_degerloch_-_201404201345_-_java_stacktrace_fingerprinting_-_skyr


Questions?

28


