
Involuntary Browser-Based Torrenting

Alexander Bode abode@os3.nl

October 19, 2020

Abstract—WebTorrent is the first torrent client to work in
a browser. The web technology uses WebRTC for its peer-to-
peer communications and is increasingly popular due to its
variety of use cases. The rise in popularity has raised questions
about WebTorrent’s potential for abuse. This study aims to
determine whether it is possible to use WebTorrent to have users
involuntarily participate in peer-to-peer torrent networks. The
WebTorrent API was analysed, and custom clients were built in
order to determine if it is possible to run WebTorrent inconspic-
uously. The usefulness and attack vectors of involuntary browser-
based torrenting have been analysed using a well-recognised
security framework. Methods for the detection and prevention
of WebTorrent usage have been investigated by inspecting the
behaviour of the browser while using WebTorrent. A source-
code search-engine was used to determine if this type of abuse
is a widely used and established tactic. The results show that
it is possible to use WebTorrent for involuntary browser-based
torrenting and that it can be detected and prevented in several
ways. Several proofs-of-concept are presented in this paper for
the usage, detection and prevention of involuntary browser-based
torrenting. Analysis has shown that this type of WebTorrent
abuse is not an established tactic. This research has highlighted
the importance of locking and requiring consent for the use of
WebRTC interfaces and increases awareness of WebTorrent’s
potential for abuse.

I. INTRODUCTION

Advances in web technologies have led to significant
changes in how web servers can interact with web browsers.
WebTorrent [1], a streaming torrent client, allows the browser
to fetch and share content using distributed browser-to-browser
networks. It is attracting considerable interest due to its
variety of use cases. The WebTorrent protocol provides similar
functionalities to that of the BitTorrent protocol but uses
different data transport mechanisms. No additional browser
plugins, extensions or installations are required for its use.
It is completely written in JavaScript, a lightweight inter-
preted programming language and makes use of WebRTC [2],
an open-source technology that supports browser-to-browser
data transfers. The security implications of WebTorrent have
not been established yet. Concerns have been raised which
question its potential for abuse. This study aims to determine
whether WebTorrent can be used for involuntary participation
in browser-based peer-to-peer networks and evaluate the pos-
sibilities for an adversary that uses WebTorrent with malicious
intent. Approaches for the detection and prevention of involun-
tary participation in WebTorrent networks, as well as searching

for abuse in the wild are presented in this paper. Additionally,
proofs-of-concept for the usage, detection and prevention of
involuntary browser-based torrenting are presented in this
paper.

RESEARCH QUESTIONS

The focus of this research is to determine whether it is
possible to use WebTorrent for involuntary participation in
peer-to-peer networks. The main research question is defined
as the following:

Can WebTorrent be abused to have web page visitors
involuntarily participate in peer-to-peer networks?

This question resulted in the following sub-questions:
• Which WebTorrent specific features can be abused?
• In which ways could WebTorrent be useful to an adver-

sary?
• What can be done to prevent involuntary browser-based

torrenting?
• Can we determine if this is an already established and

used tactic?

A. Structure

The remainder of this paper is structured as follows. Sec-
tion II reviews related work on WebRTC and WebTorrent.
Section III provides context to the information that is dis-
cussed in this paper, which includes descriptions of BitTor-
rent, WebRTC and WebTorrent. The proposed approach for
determining whether involuntary browser-based torrenting is
possible is described in Section IV. Approaches for detection
and prevention of WebTorrent usage, as well for determining
if the abuse is an already established tactic are also given
in this section. The findings of the experiments are shown
in Section V. The key findings are summarised, and the
implications and limitations of the results of Section V are
discussed in Section VI. In Section VII, the research question
is answered, and a conclusion is drawn based on the results of
the experiments. Lastly, suggestions for future work are given
in Section VIII.

II. RELATED WORK

Earlier work arises primarily from industry research and is
presented in blog posts.

1



A. Web Real-Time Communication

The Internet Engineering Task Force has presented a doc-
ument that defines the security architecture of WebRTC [3],
the protocol suite that WebTorrent heavily relies on for real-
time communication [4]. Detailed technical descriptions are
given of possible security implications that are relevant to
this study. HTML5Rocks has presented practical information
on WebRTC’s RTCDataChannel API [5], which is used by
WebTorrent for direct browser-to-browser connections.

B. WebTorrent Evaluation

I. Koren and R. Klamma have implemented and evaluated
a system that streams videos peer-to-peer via WebTorrent,
named OakStreaming [6]. They have conducted tests with up
to eight peers. Their primary motivations for the development
were to reduce server loads and avoid transfers of intellectual
property while maintaining a reasonable level of quality for
its users.

Little academic research has been done to evaluate WebTor-
rent. In case WebTorrent can be used to have visitors involun-
tarily participate in browser-based peer-to-peer networks, this
study will make efforts to find out how this can be done and
what the implications may be.

III. BACKGROUND

In this section, background information is given that is
relevant to WebTorrent. We will take a look at the protocol
and functionalities of WebTorrent that may be leveraged for
browser-based torrenting.

A. BitTorrent

BitTorrent is a protocol that is used for distributing files
using peer-to-peer connections. It is considered to be a peer-
to-peer system, as file distribution services are both requested
and provided amongst a set of endpoints [7]. A collection
of endpoints that peer and share a specific file or set of
files is known as a swarm. Files are split into parts, known
as pieces, before distribution for improved efficiency. The
protocol allows peers to download pieces while uploading
other pieces that have already been completed. BitTorrent
supports two kinds of peers, seeders and leechers. A peer that
is both downloading and uploading in the swarm is known
as a leecher. Peers that are only uploading and have all
pieces of a specific resource are known as seeders. BitTorrent
follows the tit-for-tat principle for distribution, i.e., if a peer
wishes to receive data, it must also share data. The rarest
pieces of a file are downloaded first. This way, the protocol
creates an incentive for the peers to share data, which also
helps preserve the availability of pieces in the long run. The
protocol preempts slow downloads by searching for and adding
additional peers. BitTorrent offers the possibility to ease the
load on central servers, support a large number of downloaders
and increase file distribution speeds.

BitTorrent’s peer protocol runs over TCP or µTP; a transport
protocol layered on top of UDP, known as the Micro Transport

Protocol. The µTP protocol was later added as an extension
to utilise unused bandwidth without disrupting internet con-
nections [8].

BitTorrent file distribution consists of the following entities:
• BitTorrent client
• Static meta-info file
• Web server to host meta-info files
• BitTorrent tracker

To serve a single or a set of files, a meta-info file, also
known as a torrent, can be created and published. The first
BitTorrent client to upload a specific resource is known as the
initial seeder. A torrent file contains information, such as the
name and path of distributed files, how the file is split into
pieces, file sizes and cryptographic hash values that are used
for integrity checks [9]. Torrent files also contain data that can
be used to find a swarm. Torrents are usually exchanged using
a torrent repository web server.

Torrent files are used to establish connections to swarms.
The meta-info files are used for both downloading and seeding.
Participating in a swarm can be done using a BitTorrent
client. The client may load a torrent file to identify servers
that reveal the location of peers that can share a specific
resource. BitTorrent clients are expected to keep uploading to
the swarm after the download has completed. However, this
is dependent on the client and its configuration [9]. A later
extension to the BitTorrent specification allows clients to join
a swarm without downloading a torrent file first. The meta-info
is downloaded from peers instead. This method allows users to
join a swarm using a magnet link. Magnet links identify files
using cryptographic hash values, instead of locations [10].

BitTorrent trackers are servers that exist to assist in the
communication between peers. A tracker maintains a list
of endpoints that can share one or multiple pieces of a
specific resource. It identifies a swarm and is only required
during the initial establishment of the peer-to-peer connection
[6]. Torrents often include a list of trackers. Alternatively,
trackerless torrents use Distributed Hash Tables to store peer
contact information. The support for trackerless torrents was
later added as an extension to the BitTorrent specification. This
feature allows every peer in the swarm to act as a tracker.
BitTorrent clients include a Distributed Hash Table node,
which acts as a listening client and server that implements the
distributed hash table protocol. This node is used to contact
other nodes in the table over UDP. Every node maintains a
routing table of healthy nodes. Nonetheless, trackers can still
be included in torrents to increase the speed of the discovery
of peers in a swarm [11].

The creator of a torrent may specify fallback HTTP or FTP
locations for files. These are uniform resource locators that
are used to serve files using FTP or HTTP servers in addition
to the peers in the swarm. This kind of fallback seeders are
known as WebSeeds and are available as long as the server is
available [12]. Torrents may include an optional list of HTTP
servers.

2



B. WebRTC API

WebRTC, also known as Web Real-Time Communication,
is an open-source software project that is supported by the
majority of modern web browsers. The software allows adding
real-time communication capabilities to web applications and
supports browser-to-browser data transfers. It can be used for
web applications that utilise camera’s and microphones or for
more advanced applications, such as the ones that support
screen sharing [2]. WebRTC consists of several API’s and pro-
tocols, which together support direct peer-to-peer connections,
between one or multiple web browsers [6]. Connections can
be established without installing additional software for the
browser.

WebRTC implements three JavaScript API’s:
• MediaStream
• RTCPeerConnection
• RTCDataChannel

MediaStream is used to represent a stream of audio or video
and may contain multiple tracks. RTCDataChannel enables
the peer-to-peer exchange of arbitrary data [5]. The RTCPeer-
Connection interface is used to represent connections between
two peers, the local host and a remote host. Once the con-
nection has been established, media streams or bi-directional
data channels can be added, using the MediaStream and
RTCDataChannel interfaces [13]. RTCPeerConnection shields
developers from underlying complexities, such as packet loss
concealment, echo cancellation, bandwidth adaptivity and
dynamic jitter buffering. Applications that make use of the
RTCPeerConnection API require a mechanism to coordinate
communication. The mechanism is known as signalling. It
is not specified by WebRTC but left up to the developer to
implement. It is left undefined to maximise compatibility with
existing technologies and to avoid redundancy [14].

Peer-to-peer connections are established using the Interac-
tive Connectivity Establishment (ICE) protocol [15], which
implements the Session Traversal Utilities for NAT (STUN)
protocol [16] and its extension Traversal Using Relays around
NAT (TURN) [17]. Initially, an attempt is made to connect
peers directly over UDP. If this is not possible using UDP, then
TCP is used instead. STUN servers are used to assist hosts in
performing NAT traversal by responding with the public IP
address and port of a client from the server’s perspective. If
direct peer to peer connections fail due to reasons, such as
NAT and firewall constrictions, then TURN servers are used
to relay data as a fallback. In this case, data is sent through
a relay server, which consumes the server’s bandwidth [18].
All WebRTC data streams are encrypted with the mandatory
Datagram Transport Layer Security protocol, which is also
known as DTLS [3].

C. WebTorrent

WebTorrent is a streaming torrent client, developed by
Feross Aboukhadijeh. It is available for the browser and
Node.js [1]. It is written in JavaScript, a lightweight interpreted
programming language and is the first torrent client to work

in a browser. In Node.js, it is a simple torrent client, which
communicates using TCP and UDP. In the browser, it utilises
WebRTC for its peer-to-peer transport and does not require
any additional software installations. A great use case for
WebTorrent is peer-assisted delivery, where users help host
a website’s content. The WebTorrent protocol in the browser
is similar to the BitTorrent protocol except that it utilises
WebRTC, instead of TCP or µTP, as its underlying transport
protocol. Another difference is that WebTorrent has a custom
implementation for tracker servers, which also serves to assist
in the communication between peers. The developer claims
that once peers are connected, WebTorrent will work the same
as the BitTorrent protocol [4].

WebTorrent peers that utilise WebRTC, e.g., the peers that
use WebTorrent in a browser, can only directly connect to
other peers that utilise WebRTC. Peering with endpoints that
use TCP, µTP or UDP is not supported in the browser. Hybrid
torrent clients, such as WebTorrent Desktop, act as bridges
between WebRTC WebTorrent peers and regular BitTorrent
peers. These clients allow connecting to both BitTorrent and
WebRTC WebTorrent peers [4].

IV. METHODOLOGY

In order to determine whether WebTorrent can be leveraged
for involuntary participation in peer-to-peer networks, a local
test environment was set up. The first part of the experiments
focused on determining whether involuntary file-sharing with
WebTorrent is possible, followed by an evaluation of its
usefulness for a potential adversary. The second part was
to determine methods for the detection and the prevention
of WebTorrent usage. The third part focused on determining
whether this kind of abuse with WebTorrent is an already
established and widely used tactic.

A. Lab Setup

The test environment consisted of the following elements:
• A web server
• Multiple hosts running web browsers with support for

JavaScript and WebRTC
• A JavaScript and WebRTC debugger on each host

The following operating systems were used to conduct the
experiments:

• Kali GNU/Linux Rolling 2019.2 Virtual Machine
• Microsoft Windows 10 Pro Build 18362 Virtual Machine
• Mac OS Catalina 10.15.7 Machine
• Android 9 Mobile Device

The following web browsers were used to test the proof-of-
concepts:

• Google Chrome 86.0.4240.75
• Mozilla Firefox 81.0.1
• Microsoft Edge 86.0.622.38
• Samsung Internet 12.1.4.3
• Opera 71.0.3770.228
• Safari 14.0

3



B. Involuntary File-Sharing with WebTorrent

The WebTorrent JavaScript methods and procedures that
make it possible to do browser-to-browser file sharing were
analysed. The analysis was performed by reading the official
API documentation of WebTorrent [19] and using the Firefox
browser’s built-in JavaScript console and debugger. The local
test environment was used to perform the experiments. In order
to analyse the features and gain a better understanding of
the WebTorrent library, two custom browser-based WebTorrent
clients were written in JavaScript and HTML. The first client
allowed seeding files, and the second client allowed down-
loading files. Each client was stored as a single HTML file,
which contained the JavaScript WebTorrent code necessary
to perform the experiments. In order to determine whether
WebTorrent can be abused for involuntary file-sharing, proof-
of-concept code was written and tested to see if it is feasible to
perform involuntary browser-based torrenting inconspicuously.
The open-source Damn Vulnerable Web Application software
is an intentionally vulnerable PHP web application that exists
to aid security professionals in testing their skills and tools in
a legal environment [20]. It was used to determine if external
payloads containing WebTorrent code could be successfully
loaded and executed with cross-site scripting attacks.

The steps that were taken to determine the feasibility
of involuntary browser-based torrenting can be outlined as
follows:

1) Determine relevant methods of the API for simple
WebTorrent usage

2) Write custom downloader and uploader clients
3) Debug and test custom client across various devices
4) Remove methods until the client can run inconspicu-

ously in the browser
5) Write, debug and test involuntary browser-based torrent-

ing proof-of-concepts

The usefulness of involuntary browser-based torrenting for
an adversary was determined by analysing the attack vectors
and the impact of the attack. In order to investigate if these
attacks can be utilised with existing offensive techniques or
as a part of a cyber-attack chain, the well-recognised MITRE
ATT&CK framework was used as a guideline during the
analysis. The matrix was created to be used for developing
threat models and methodologies. MITRE has provided a
matrix of adversary tactics and techniques based on real-world
observations [21]. It is used for developing threat models and
methodologies and was used in this study to help determine
how involuntary browser-based torrenting could be used by an
adversary, perhaps in a chained attack.

C. Detection and Prevention of WebTorrent

Methods for the detection and prevention of involuntary
browser-based torrenting were determined by looking into the
source code of WebTorrent, the behaviour of the browser and
its underlying usage of JavaScript and WebRTC while running
WebTorrent.

The Mozilla Firefox and Google Chrome browser both have
built-in tools named WebRTC Internals that allow monitoring
the statistics of active WebRTC sessions. These can be used
for debugging applications that are built with WebRTC and
can be accessed from within the browser using the URL’s that
are listed in Table I:

Browser URL
Mozilla Firefox chrome://webrtc-internals
Google Chrome about:webrtc

TABLE I: WebRTC debuggers

The data was obtained using the WebRTC Internals tool
of Google Chrome. The tool provides information, such as
API traces and network properties, such as the transport
protocols, STUN servers and TURN servers that are used by
the ICE protocol during the establishment of the connection.
As mentioned earlier in Section III, the RTCPeerConnection
interface represents a WebRTC connection between the local
host and a remote host. W3C has published a document that
defines the interface description language objects that provide
access to the statistical information about an RTCPeerCon-
nection. These objects are returned from the getStats API
[22], the application programming interface that both Google
Chrome and Mozilla Firefox rely on to read the statistics
of specific WebRTC connections. In order to interpret the
output of Google Chrome’s WebRTC Internals tool, third-
party documentation supplied by TestRTC, together with the
documentation by W3C were used [23].

Both browsers that were used during the experiments in-
clude built-in developer tools, including a JavaScript console,
a JavaScript debugger and a network traffic monitor. These
helped to understand what the code of the WebTorrent library
did during execution. Pausing execution, controlling execution
and inspecting values of variables and expressions, while
monitoring the network traffic, was done to determine methods
for the detection and prevention of WebTorrent use. Traffic
inspection was also done using the popular network protocol
analyser Wireshark. The tool has helped understand which
protocols are involved during the use of WebTorrent in the
browser. The source code was manually examined to take note
of strings, classes and functions that are likely to be unique to
WebTorrent. These were later used to create proofs-of-concept
for the detection and prevention of involuntary browser-based
torrenting and later also for searching for WebTorrent usage
on the Internet.

D. Searching for Abuse in the Wild

To gain an impression of the popularity of the WebTorrent
library and determine whether involuntary browser-based tor-
renting with WebTorrent is an established and widely used
tactic, a source-code search-engine named PublicWWW [24]
was used to search for pieces of code that are unique to
the WebTorrent library. PublicWWW can find alphanumeric
snippets, signatures or keywords in HTML, JS or CSS code.
It supports using regular expressions to refine the search results

4



and offers the option to exclude results containing a specific
string. The search engine has indexed over a half-billion pages
at the time of writing and allowed exporting results, sorted by
page popularity, to a CSV file. The exported data was used for
later analysis. Access to a professional account, one that allows
searching the entire index, was on request kindly provided by
PublicWWW’s team.

V. RESULTS

This section covers the outcomes of the performed exper-
iments, including how involuntary browser-based torrenting
can be done, an analysis of its usefulness for an adversary,
proposed detection and prevention methods and methods for
searching for abuse in the wild.

A. Involuntary File-Sharing with WebTorrent

The results of the experiments show that involuntary
browser-based torrenting is possible using the WebTorrent
library. The browser and the library do not prompt the user
for permission to initiate peer-to-peer connections. The results
include proofs-of-concept in the form of web documents,
JavaScript files and a custom Mozilla Firefox browser ex-
tension. However, it is worth mentioning that torrents only
remained actively uploading to the swarm as long as the victim
kept the malicious web document open in the browser. This
drawback does not apply to the browser extension proof-of-
concept, which kept running until the browser was closed.

Involuntary browser-based torrenting was tested and suc-
cessful on both desktop and mobile browsers listed in Table
II.

Browser Operating System Result
Google Chrome 86.0.4240.75 Android, Linux, Windows Vulnerable
Mozilla Firefox 81.0.1 Android, Linux, Windows Vulnerable
Microsoft Edge 86.0.622.38 Windows Vulnerable
Samsung Internet 12.1.4.3 Android Vulnerable
Opera 71.0.3770.228 Linux Vulnerable
Safari 14.0 Mac OS Vulnerable

TABLE II: Tested web browsers

The first step towards developing a proof-of-concept in-
volved taking note of the JavaScript methods that were used
for building the custom WebTorrent Downloader and the
WebTorrent Uploader clients [25]. The custom WebTorrent
Downloader and Uploader clients can be retrieved from the
GitHub page that has been set up for this research [26]. The
JavaScript methods that were used can be seen in Table III.

The second step involved removing code from the custom
clients until each client only used JavaScript methods that
are required to download or seed files. This step resulted
in two proofs-of-concept, HTML web documents, each con-
taining HTML and JavaScript code. The proofs-of-concept
demonstrate that it is possible to use the WebTorrent library
without the consent of an end-user. The Stealth Downloader
proof-of-concept includes an optional file.getBlobURL
JavaScript method to store the location of the downloaded
resource to a variable. The value could be retrieved using
the JavaScript console and the browser’s Window interface.

JavaScript Method Purpose
new WebTorrent([options]) Create new WebTorrent client instance
client.seed(file, [callback]) Create torrent and seed file
client.add(torrent, [callback]) Add torrent and start downloading
file.getBlobURL Return local URL to (cached) file
torrent.magnetURI Return Magnet URI of torrent
torrent.torrentFileBlobURL Return local URL to (cached) torrent file
torrent.ratio Return download/upload ratio
torrent.numPeers Return number of connected peers
torrent.wires Return addresses of connected peers
torrent.downloadSpeed Return current download speed
torrent.uploadSpeed Return current upload speed
torrent.progress Return torrent progress

TABLE III: WebTorrent JavaScript methods

The Window interface represents a window containing the
Document Object Model [27]. To further clarify, this means
that retrieving the value of the stored variable makes it
possible to download the resource from the browser’s cache
to a location of choice. It is important to note that browsers
have limited cache available for WebTorrent downloads. The
available cache storage differs from browser to browser. The
proof-of-concept Stealth Downloader can be retrieved from
the GitHub page that has been set up for this research [26].
The WebTorrent JavaScript methods that were used for this
proof-of-concept can be seen in Table IV.

JavaScript Method Purpose
new WebTorrent([options]) Create new WebTorrent client instance
client.add(torrent, [callback]) Add torrent and start downloading
file.getBlobURL Return local URL to file

TABLE IV: Stealth Downloader JavaScript methods

The Stealth Seeder proof-of-concept includes a custom
function to convert a JavaScript byte-array to a file, which is
then used as input for the client.seed JavaScript method.
It also includes two WebTorrent JavaScript methods, which
are used to store the magnet URI and the local torrent file
URL in a variable. This can be read using the JavaScript
console and the Window interface, in the same way as with the
Stealth Downloader. The Background Seeder proof-of-concept,
a Firefox browser extension, requires that an initial seeder
shares a resource first so that it can be downloaded and shared
once again by the Background Seeder. The use of a WebSeed
is recommended in this case. The WebTorrent Background
Seeder extension can be retrieved from the GitHub page
that has been set up for this research [26]. The WebTorrent
JavaScript methods that were used for the Stealth Seeder can
be seen in Table V.

JavaScript Method Purpose
new WebTorrent([options]) Create new WebTorrent client instance
client.seed(file, [callback]) Create torrent and seed file
torrent.magnetURI Return Magnet URI of torrent
torrent.torrentFileBlobURL Return local URL to (cached) torrent file

TABLE V: Stealth Seeder JavaScript methods

Multiple JavaScript proofs-of-concept were written. The
WebTorrent JavaScript methods used in the JavaScript proofs-
of-concept are identical to the ones used in the Stealth
Downloader and Stealth Seeder proofs-of-concept, except for

5



a single custom function that is required for cross-site script-
ing attacks. The results of the experiments with the Damn
Vulnerable Web Application software show that cross-site
scripting attacks that load external JavaScript files containing
WebTorrent code is possible. A requirement for the attack to
be successful was to implement a custom function that waits
for the page and its resources to finish loading, before loading
the WebTorrent library and executing the code responsible
for downloading or seeding. The custom function loads the
WebTorrent library from an external resource by appending
a JavaScript script source tag in the head section of the
document. It continues by executing WebTorrent code, which
is implemented as a callback function. The JavaScript proofs-
of-concept can be retrieved from the GitHub page that has
been set up for this research [26].

An adversary may use the following attack vectors to reach
victims for involuntary browser-based torrenting:

• Malicious or compromised web servers
• Compromised externally hosted JavaScript libraries
• Malicious browser extensions

An adversary could set up a web page and run WebTor-
rent code in the background without the user’s consent or
use a compromised web server. Compromising an externally
hosted JavaScript library has the benefit of reaching all web
servers that include the library and thus its clients. A browser
extension that downloads and seeds a specific torrent in the
background was written for Mozilla Firefox, in addition to the
web document and JavaScript proofs-of-concept. Creating the
background seeder was done to demonstrate that it is possible
to do involuntary browser-based torrenting using a browser
extension.

An adversary may use involuntary browser-based torrenting
for the following:

• Resource hijacking
• Repudiation
• Data exfiltration

An attacker could let a victim involuntarily participate
in swarms to increase the download speed of a particular
resource. This kind of attack is known as resource hijacking.
Increasing the number of users will generally increase the
availability of torrent pieces. The protocol makes sure that
the rarest piece is downloaded first, which is beneficial for
the health of torrents in the long run. Another use case is
repudiation. As a number of clients are forced to download a
specific resource, it becomes harder to determine who intended
to receive the downloaded data. It will not be visible on the
server-side if a client retrieves the file from a local cache using
the WebTorrent’s file.getBlobURL JavaScript method.
WebTorrent may also be useful for data exfiltration, as all
communications have mandatory Data Transport Layer Secu-
rity encryption, which makes it harder to distinguish benign
traffic from malicious traffic. DTLS is often used to encrypt
benign traffic, such as that of voice calls or video conferences.
Nonetheless, it might be useful for an adversary in certain
cases.

B. Detection and Prevention
Further analysis has helped to determine the behaviour

of WebTorrent that could be leveraged for detection and
prevention methods. Observations are listed in Table VI.

Level Purpose
Browser Window interface is loaded with WebTorrent objects
Browser WebSocket handshake may be performed with trackers
Browser WebTorrent library may be included with common name
Browser WebRTC communication exists with STUN servers
Network DNS queries are done for torrent trackers
Network DNS queries are done for STUN servers

TABLE VI: WebTorrent behaviour

1) Window Interface: The Window interface allows reading
JavaScript variables that are currently loaded in the Document
Object Model. This interface was leveraged to detect com-
mon names of loaded WebTorrent JavaScript objects, such as
”WebTorrent”. A custom Mozilla Firefox browser extension
was written that attempts to detect and block WebTorrent usage
by checking the Window for specific names and by prompting
the user for permission to use WebTorrent. This kind of exten-
sion is known as a content script [28]. The WebTorrent Blocker
browser extension runs the WebTorrent JavaScript method
client.destroy() when WebTorrent usage has been
rejected through the prompt. The client.destroy()
method prevents the client from starting by destroying the
client before peer-to-peer connections take place. The browser
extension relies on the wrappedJSObject JavaScript prop-
erty, which allows sharing JavaScript objects with browser
extensions. Web pages usually do not expose loaded JavaScript
objects to browser extensions, as this might have security
implications. It is good security practice to rewrap objects
with the XPCNativeWrapper() JavaScript method, once
they have been read with the wrappedJSObject property
[29]. The code responsible for detecting names of WebTorrent
objects can be seen in Appendix IX-D. The WebTorrent
Blocker proof-of-concept browser extension can be retrieved
from the GitHub page that has been set up for this research
[26].

2) WebSocket Handshake: WebTorrent clients communi-
cate with trackers in order to establish connections with
swarms. This is done using the WebSocket protocol. Initially,
the WebSocket server listens using a standard TCP socket
on a web server. To establish a WebSocket connection, an
opening handshake, an HTTP Upgrade request, is sent by the
client. Both parties negotiate the details of the connection, and
the connection is established upon a successful negotiation
[30]. The opening handshake request may contain the URL
of the tracker; an example can be seen in Appendix IX-A.
The handshake may exhibit connections with trackers but is
usually encrypted with TLS. These requests can be blocked by
blacklisting the WebSocket URLs to the torrent trackers, using
a browser extension, such as uBlock Origin. The uBlock Origin
browser extension allows implementing a static filter list. The
extension uses a custom filter syntax [31]. The results showed
that it is possible to block torrents that require a tracker server
to find its peers. This solution does not apply to torrents that

6



make use of Distributed Hash Tables. The static filter list used
in this experiment can be seen in Appendix IX-C. Blocking
the trackers might prevent peers from finding the swarm, thus
making it unavailable for file-sharing. A list of default trackers
that WebTorrent uses was retrieved from the library’s source
code.

3) Included WebTorrent Library: The WebTorrent library
may be included using the JavaScript source attribute.
These includes can be detected and prevented in two ways.
The first option is to check for the common names of
the WebTorrent library, webtorrent.min.js or webtorrent.js,
then block URLs containing the common name. Blocking
URL’s can be done using a browser extension, such as
uBlock Origin. The second option is to filter all web browser
responses that contain JavaScript files with patterns that are
unique to the WebTorrent library. A custom Mozilla Firefox
browser extension was written, which relied on Firefox’s
browser.webRequest.filterResponseData()
JavaScript method to allow monitoring and modifying
requests in transit [32]. The filter drops requests upon
detecting specific strings. It is worth mentioning that page
loading times are increased and that web pages may not load
correctly due to a currently present bug in the API [33].
Making the library inaccessible could prevent WebTorrent
clients from being created. The WebTorrent Filter proof-of-
concept browser extension can be retrieved from the GitHub
page that has been set up for this research [26].

4) WebRTC Signalling: STUN servers allow WebTorrent
clients to perform NAT traversal by returning the public IP
address and port of a client from the server’s point of view,
as previously mentioned in Section III. This behaviour is
part of WebRTC’s signalling process. WebTorrent includes
public STUN servers in its source code, which can be seen
in Appendix IX-E. Access to the IP addresses of these STUN
servers could be blocked on a network level, e.g., in the net-
work router. Blocking STUN servers could prevent WebRTC
from establishing peer-to-peer connections for WebTorrent,
as fallback TURN servers have not been included in the
WebTorrent library and need to be added manually as an option
when creating a new WebTorrent client instance. A summary
of a packet capture that shows a STUN binding request and
response with the default server and the client is shown in
Appendix IX-F. It is worth mentioning that Google’s STUN
server is public, blocking it might cause other benign web
applications to stop working.

5) DNS Requests: The web browser performs DNS requests
to discover the IP addresses of torrent trackers and STUN
servers when a WebTorrent client is created. Blocking DNS
requests for these specific domain names might prevent a
WebTorrent client from participating in a swarm, as these
might be required for initiating connections. Summaries of
the packet capture that show DNS queries for the STUN
servers and trackers can be seen in Appendix IX-G and IX-H
respectively.

6) WebRTC Interface Locking: A more robust and el-
egant solution would be to prompt the user and ask for
permission to use the RTCPeerConnection WebRTC inter-
face. The MediaDevices.getUserMedia() JavaScript
method prompts the user for permission to unlock access to a
microphone or camera [34]. A similar mechanism could be im-
plemented for the RTCPeerConnection interface, which would
alert the user when peer-to-peer connections are initiated and
prevent these when permission is not granted.

C. Searching for Abuse in the Wild

The results have shown that involuntary browser-based
torrenting is not a widely used and established tactic. The
source-code search-engine PublicWWW was used to search
for WebTorrent script includes, JavaScript methods, base64 en-
coded strings and hexadecimal encoded strings. The common
name of the WebTorrent library webtorrent.min.js resulted in
307 listed pages, which was the most extensive result and
helped estimate the popularity of the library. Searching for the
new WebTorrent() JavaScript method returned 50 results,
of which all pages were manually examined and found to be
benign WebTorrent usage or a false positive. Searching for
base64 or hex-encoded patterns did not yield any results. The
search queries that were used can be seen in Appendix IX-I.
The CSV exports of the search results can be retrieved from
the GitHub page that has been set up for this research [26].

VI. DISCUSSION

The overall purpose of this research is to determine whether
it is possible to leverage WebTorrent for having users partici-
pate in peer-to-peer networks involuntarily. The results indicate
that involuntary browser-based torrenting is possible and that
user consent is not a requirement for initiating peer-to-peer
connections. Both the WebTorrent library and the browser fail
to prompt the user, which makes it possible to have the user
create and run a WebTorrent client inconspicuously in the
background. Malicious WebTorrent code could reach users
through web pages, browser extensions or externally hosted
JavaScript library includes. Moreover, WebTorrent could be
used for resource hijacking, the repudiation of downloads and
data exfiltration.

Several methods have been presented for the detection and
prevention of WebTorrent usage. The most remarkable result
that emerged from these methods is the WebTorrent Blocker
browser extension. The approach for this proof-of-concept is
likely applicable to other JavaScript libraries. Nonetheless, a
more robust solution would be to implement a permission-
based locking mechanism for the WebRTC interface that is
responsible for peer-to-peer connections. This solution is the
most reliable way to detect and prevent WebTorrent usage, as
WebTorrent relies on peer-to-peer connections for its distribu-
tion of data. No significant WebTorrent abuse was found by
analysing the results of the source-code search-engine. The
results, therefore, suggest that involuntary browser-based tor-
renting is not a widely used and established tactic. The findings
of this study are well substantiated by factual information,

7



which can be found on the project’s GitHub page. Reproducing
the experiments delivers consistent results. As far as we know,
this is the first time that the potential abuse of WebTorrent
is researched. This study provides considerable insight into
involuntary browser-based file-sharing with WebTorrent.

Given that the findings, which determined whether involun-
tary browser-based torrenting is a widely used and established
tactic, are based on a single source-code search-engine, the
results from such analyses should consequently be treated with
considerable caution. We are aware that the proofs-of-concept
that are presented in this paper have limitations. Inconspic-
uously running WebTorrent clients are destroyed when the
browser or malicious page is closed, or the malicious page
is refreshed. It is beyond the scope of this study to address
the question of how persistence can be achieved. Furthermore,
the WebTorrent blocker extension depends on finding common
names of WebTorrent objects, which could be altered in order
to circumvent detection and prevention.

VII. CONCLUSION

This research aimed to determine whether WebTorrent can
be abused to have web page visitors involuntarily participate
in peer-to-peer networks. The results of this study clearly
indicate that involuntary browser-based torrenting is possible
and highlight the importance of requiring consent for the use
of WebRTC interfaces. Based on a qualitative and experimen-
tal analysis, it can be concluded that involuntary browser-
based torrenting can be detected and prevented in various
ways. It is useful for resource hijacking, data exfiltration
and repudiation but is not a widely used and established
tactic. Following the proposed methodology, several proofs-
of-concept were created and presented in this paper, including
stealth WebTorrent clients and browser extensions that detect
and block WebTorrent usage. However, a better solution would
be to implement a permission-based locking mechanism for
WebRTC interfaces that are used by WebTorrent. Furthermore,
an important limitation lies in the fact that a single source-code
search-engine was used to determine if it is a widely used and
established tactic. Nonetheless, we believe that the results of
this study could increase awareness of its potential for abuse.

VIII. FUTURE WORK

Currently, there are no known methods for maintaining
the state of torrents across browsing sessions when using
WebTorrent. To further clarify, even though it is possible to
do involuntary browser-based torrenting, the usefulness limited
due to the volatility of the WebTorrent client in the browser.
Further work needs to be done to determine methods for
achieving persistence. Further experimental tests are needed to
determine if involuntary browser-based torrenting can be used
in other ways than presented in this paper. On a wider level,
research is also needed to determine the feasibility of real-
world attacks. Another important matter to resolve in future
studies is to find a way to address the absence of user consent
when certain WebRTC interfaces are used.

REFERENCES

[1] Webtorrent. [Online]. Available: https://webtorrent.io/
[2] Webrtc - real-time communication for the web. [Online]. Available:

https://webrtc.org/
[3] E. Rescorla, “Ietf - webrtc security architecture,” Work in Progress, 2013.

[Online]. Available: https://ftp.ripe.net/rfc/v3test/testing dl v25.pdf
[4] Webtorrent faq. [Online]. Available: https://webtorrent.io/faq/
[5] D. Ristic. Webrtc’s rtcdatachannel api. [Online]. Available: https:

//www.html5rocks.com/en/tutorials/webrtc/datachannels/
[6] I. Koren and R. Klamma, “Peer-to-peer video streaming in html5 with

webtorrent,” in International Conference on Web Engineering. Springer,
2018, pp. 404–419.

[7] Rfc#5694: Peer-to-peer (p2p) architecture. [Online]. Available: https:
//tools.ietf.org/html/rfc5694#section-2.4

[8] Bep#29: utorrent transport protocol. [Online]. Available: http://
bittorrent.org/beps/bep 0029.html

[9] Bep#3: The bittorrent protocol specification. [Online]. Available:
http://bittorrent.org/beps/bep 0003.html

[10] Bep#9: Extension for peers to send metadata files. [Online]. Available:
http://bittorrent.org/beps/bep 0009.html

[11] Bep#5: Dht protocol. [Online]. Available: http://www.bittorrent.org/
beps/bep 0005.html

[12] Bep#19: Webseed - http/ftp seeding. [Online]. Available: http:
//bittorrent.org/beps/bep 0019.html

[13] Mdn web docs: Webrtc api. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/API/WebRTC API

[14] Getting started with webrtc. [Online]. Available: https:
//www.html5rocks.com/en/tutorials/webrtc/basics/

[15] Rfc#8445 - interactive connectivity establishment (ice): A protocol
for network address translator (nat) traversal. [Online]. Available:
https://tools.ietf.org/html/rfc8445

[16] Rfc#5389 - session traversal utilities for nat (stun). [Online]. Available:
https://tools.ietf.org/html/rfc5389

[17] Rfc#5766 - traversal using relays around nat (turn): Relay extensions
to session traversal utilities for nat (stun). [Online]. Available:
https://tools.ietf.org/html/rfc5766

[18] Webrtc in the real world: Stun, turn and signaling. [Online]. Available:
https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/

[19] Webtorrent documentation. [Online]. Available: https://webtorrent.io/
docs/

[20] Damn vulnerable web application. [Online]. Available: https://
github.com/digininja/DVWA

[21] Mitre attck. [Online]. Available: https://attack.mitre.org/
[22] W3c - identifiers for webrtc’s statistics api. [Online]. Available:

https://www.w3.org/TR/webrtc-stats/
[23] The missing chrome://webrtc-internals documentation. [Online].

Available: https://testrtc.com/webrtc-internals-documentation/
[24] Publicwww: Search engine for source code. [Online]. Available:

https://publicwww.com/
[25] Custom webtorrent clients. [Online]. Available:

https://github.com/alexander-47u/Involuntary-WebTorrent-Test/tree/
main/1-webtorrent-test-clients/custom-clients

[26] Github project page: Involuntary webtorrent test. [Online]. Available:
https://github.com/alexander-47u/Involuntary-WebTorrent-Test

[27] Mdn web docs: Window interface. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/API/Window

[28] Mdn web docs: Content scripts. [Online].
Available: https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/Content scripts

[29] Mdn web docs: wrappedjsobject. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/Sharing objects with page scripts

[30] Rfc#6455 - the websocket protocol. [Online]. Available: https:
//tools.ietf.org/html/rfc6455#section-1.3

[31] ublock origin browser extension. [Online]. Available: https://github.com/
gorhill/uBlock

[32] Mdn web docs: webrequest.filterresponsedata() api. [Online].
Available: https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/API/webRequest/filterResponseData

[33] webrequest.filterresponsedata() bug. [Online]. Available: https:
//bugzilla.mozilla.org/show bug.cgi?id=1561604

[34] Mdn web docs: Mediadevices.getusermedia() method. [Online]. Avail-
able: https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/
getUserMedia

8

https://webtorrent.io/
https://webrtc.org/
https://ftp.ripe.net/rfc/v3test/testing_dl_v25.pdf
https://webtorrent.io/faq/
https://www.html5rocks.com/en/tutorials/webrtc/datachannels/
https://www.html5rocks.com/en/tutorials/webrtc/datachannels/
https://tools.ietf.org/html/rfc5694#section-2.4
https://tools.ietf.org/html/rfc5694#section-2.4
http://bittorrent.org/beps/bep_0029.html
http://bittorrent.org/beps/bep_0029.html
http://bittorrent.org/beps/bep_0003.html
http://bittorrent.org/beps/bep_0009.html
http://www.bittorrent.org/beps/bep_0005.html
http://www.bittorrent.org/beps/bep_0005.html
http://bittorrent.org/beps/bep_0019.html
http://bittorrent.org/beps/bep_0019.html
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://www.html5rocks.com/en/tutorials/webrtc/basics/
https://www.html5rocks.com/en/tutorials/webrtc/basics/
https://tools.ietf.org/html/rfc8445
https://tools.ietf.org/html/rfc5389
https://tools.ietf.org/html/rfc5766
https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/
https://webtorrent.io/docs/
https://webtorrent.io/docs/
https://github.com/digininja/DVWA
https://github.com/digininja/DVWA
https://attack.mitre.org/
https://www.w3.org/TR/webrtc-stats/
https://testrtc.com/webrtc-internals-documentation/
https://publicwww.com/
https://github.com/alexander-47u/Involuntary-WebTorrent-Test/tree/main/1-webtorrent-test-clients/custom-clients
https://github.com/alexander-47u/Involuntary-WebTorrent-Test/tree/main/1-webtorrent-test-clients/custom-clients
https://github.com/alexander-47u/Involuntary-WebTorrent-Test
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Web/API/Window
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Sharing_objects_with_page_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Sharing_objects_with_page_scripts
https://tools.ietf.org/html/rfc6455#section-1.3
https://tools.ietf.org/html/rfc6455#section-1.3
https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/filterResponseData
https://bugzilla.mozilla.org/show_bug.cgi?id=1561604
https://bugzilla.mozilla.org/show_bug.cgi?id=1561604
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia


IX. APPENDIX

A. WebSocket Upgrade Request

Host: tracker.openwebtorrent.com
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:76.0) Gecko/20100101 Firefox/76.0
Accept: */*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Sec-WebSocket-Version: 13
Origin: null
Sec-WebSocket-Extensions: permessage-deflate
Sec-WebSocket-Key: 9JTwGTG/y3zs/+o7iL3dDw==
DNT: 1
Connection: keep-alive, Upgrade
Cookie: __cf_bm=07a422fa5ec0fbb068206aa734b3ad1b809a2c0f-1602169183-1800-Aat0hH+pWz3DDzZNIrfE c

NBZupxwI8VPjGNgzbu7y/ufuKNmHoagW+/bimGH0up/qrEgexJ5XD2C/H8KNokedeSM=↪→

Pragma: no-cache
Cache-Control: no-cache
Upgrade: websocket

B. WebTorrent Filter JavaScript Code

// WebTorrent Filter

// Array of strings to filter
var detectionStrings = ['WEBTORRENT_ANNOUNCE']

// Function for creating a HTTP filter
function listener(details) {

// Create stream filter object
let filter = browser.webRequest.filterResponseData(details.requestId);

// Create text encoder/decoder objects
let decoder = new TextDecoder("utf-8");
let encoder = new TextEncoder();

// If filter detects strings, drop response
filter.ondata = event => {
let str = decoder.decode(event.data, {stream: true});

if (contains(str, detectionStrings)){
filter.close()

}
else {

// If filter does not detect string, pass response and disconnect filter
filter.disconnect();}

}

return {};
}

// Function for checking for specific string
function contains(target, pattern){

var value = 0;
pattern.forEach(function(word){
value = value + target.includes(word);

});
return (value === 1)

}

// Listener function executes when a request is about to be made, and before headers are
available↪→

browser.webRequest.onBeforeRequest.addListener(
listener,
{urls: ["<all_urls>"], types: ["script"]},
["blocking"]

);

9



C. uBlock Origin Static Filter List for WebTorrent

udp://tracker.leechers-paradise.org:6969
udp://tracker.coppersurfer.tk:6969
udp://tracker.opentrackr.org:1337
udp://explodie.org:6969
udp://tracker.empire-js.us:1337
wss://tracker.btorrent.xyz
||tracker.btorrent.xyzˆ$websocket,domain=file-scheme,important
wss://tracker.openwebtorrent.com
https://cdn.jsdelivr.net/npm/webtorrent@latest/webtorrent.min.js

D. WebTorrent Blocker JavaScript Code

// Checks if typical names of WebTorrent objects are in object window using "wrappedJSObject"
if ((typeof window.wrappedJSObject.WebTorrent != "undefined") || (typeof

window.wrappedJSObject.client != "undefined")) {↪→

// Prompts user to ask if WebTorrent user is allowed
if (confirm("WebTorrent Usage Detected! \nAllow file sharing?")) {

// Do nothing!
}
else {

// Close WebTorrent client using WebTorrent's destroy() function
if (window.wrappedJSObject.WebTorrent){

window.wrappedJSObject.WebTorrent = {};
}

if (window.wrappedJSObject.cl){
window.wrappedJSObject.cl.destroy();

}
if (window.wrappedJSObject.client){

window.wrappedJSObject.client.destroy();
}

}
}

// Rewrap object since unwrapping is transitive
XPCNativeWrapper(window.wrappedJSObject.WebTorrent);

E. WebTorrent Hardcoded STUN Server from Source-Code

"stun:stun.l.google.com:19302"
stun:global.stun.twilio.com:3478?transport=udp

F. WireShark Capture: STUN Binding

No. Time Source Destination Protocol Length Info
58 1.066393439 172.16.217.136 74.125.128.127 STUN 62 Binding

Request↪→

No. Time Source Destination Protocol Length Info
59 1.079101737 74.125.128.127 172.16.217.136 STUN 74 Binding

Success Response XOR-MAPPED-ADDRESS:[REDACTED PUBLIC IP]↪→

G. WireShark Capture: DNS Query for STUN Servers

No. Time Source Destination Protocol Length Info
308 6.133504005 192.168.192.4 216.239.32.10 DNS 88 Standard query 0xc768

A stun.l.google.com OPT↪→

No. Time Source Destination Protocol Length Info
309 6.133526348 192.168.192.4 84.53.139.64 DNS 93 Standard query 0x7dd2

A global.stun.twilio.com OPT↪→

10



H. WireShark Capture: DNS Query for Tracker

No. Time Source Destination Protocol Length Info
11 0.847021744 172.16.217.136 172.16.217.2 DNS 80 Standard query 0x2e4e

A tracker.btorrent.xyz↪→

No. Time Source Destination Protocol Length Info
12 0.847108950 172.16.217.136 172.16.217.2 DNS 80 Standard query 0x9f4a

AAAA tracker.btorrent.xyz↪→

I. PublicWWW Search Results
Description | Results | Exact Query
==========================================================================================================
WebTorrent library | 308 | "webtorrent.min.js" depth:all

new WebTorrent() method | 50 | "new WebTorrent();" depth:all

client.add() method | 86 | "webtorrent.min.js" snipexp:|WebTorrent\(\);.*?\.add\(| depth:all

client.add() method | 15 | "new WebTorrent" snipexp:|WebTorrent\(\);.*?\.add\(| depth:all

hex string "webtorrent" | 0 | "\\x77\\x65\\x62\\x74\\x6f\\x72\\x72\\x65\\x6e\\x74" depth:all

hex string "WebTorrent" | 0 | "\\x57\\x65\\x62\\x54\\x6f\\x72\\x72\\x65\\x6e\\x74" depth:all

hex string "magnet:" | 0 | "bWFnbmV0Oj" depth:all

base64 string "webtorren" | 0 | "d2VidG9ycmVud" depth:all

base64 string "WebTorren" | 0 | "V2ViVG9ycmVud" depth:all

base64 string "magnet:" | 0 | "bWFnbmV0Oj" depth:all

11


	Introduction
	Structure

	Related work
	Web Real-Time Communication
	WebTorrent Evaluation

	Background
	BitTorrent
	WebRTC API
	WebTorrent

	Methodology
	Lab Setup
	Involuntary File-Sharing with WebTorrent
	Detection and Prevention of WebTorrent
	Searching for Abuse in the Wild

	Results
	Involuntary File-Sharing with WebTorrent
	Detection and Prevention
	Window Interface
	WebSocket Handshake
	Included WebTorrent Library
	WebRTC Signalling
	DNS Requests
	WebRTC Interface Locking

	Searching for Abuse in the Wild

	Discussion
	Conclusion
	Future work
	References
	Appendix
	WebSocket Upgrade Request
	WebTorrent Filter JavaScript Code
	uBlock Origin Static Filter List for WebTorrent
	WebTorrent Blocker JavaScript Code
	WebTorrent Hardcoded STUN Server from Source-Code
	WireShark Capture: STUN Binding
	WireShark Capture: DNS Query for STUN Servers
	WireShark Capture: DNS Query for Tracker
	PublicWWW Search Results


