
MSc Security and Network Engineering
Research Project 2

Improving availability in Industrial
Control Systems using

Software-Defined Networking

February 7, 2021

Students:
Marios Andreou
marios.andreou@os3.nl

Joris Jonkers Both
joris.jonkersboth@os3.nl

Supervisors:
Pavlos Lontorfos
Dominika Rusek

Lecturer:
Cees de Laat

page 1 of 22

MSc Security and Network Engineering
Research Project 2

Abstract

This research aims to improve availability in Industrial Control Systems (ICS) us-
ing Software-Defined Networking (SDN). Programmable Logic Controllers (PLC) are
the brains of ICSs. If these critical devices would become unavailable, it could lead
to operational disruptions and widespread damage. Network Function Virtualization
(NFV) could be used to create a more agile and lower cost infrastructure, since hard-
ware could be virtualized. On top of that, Software-Defined Networking (SDN) can be
used to manage networks by separating the control plane from the data plane. Our
research has shown that SDN combined with NFV provides efficiency, flexibility and
reduces human error since the action taken by the software will be dynamic. This
raises the question whether SDN combined with NFV could enhance the availability
of ICS environments and thus reduces the risk of disruptions and widespread damage.
According to previous research, on average there is a downtime of one hour, since it
will take 30 minutes to summon a technician and another 30 minutes to repair the
faulty network module (e.g. switch). This research has tried to answer this question
by implementing three SDN driven scenarios: re-routing of the traffic, redeployment of
network hardware and recreation of specific interfaces of the network hardware. Our
experiments showed that all three scenarios could be used to improve the availability
of ICS environments. However, differences can be observed between these scenarios.
Re-routing traffic in case of a switch failure showed to perform the worst which had an
average downtime of 5576ms, while the scenario in which a switch would be redeployed
showed to perform the best which had an average downtime of only 48ms. However,
we were unable to obtain 100% availability. Since the NFV function was written in
Python, the efficiency of the code did not allow us to set an interval small enough to
detect failures fast enough. Moreover, the performance of the machine the code was
running on, could also have played a role. Using SDN and NFV will result in com-
plexity in an ICS environment. One would trade simplicity for the speed of recovery
in case of a hardware failure, availability and also the ability of having more machines
running while using less hardware.

Keywords: Software-Defined Networking (SDN), Industrial Control Systems (ICS),
Network Function Virtualization (NFV)

Marios Andreou, Joris Jonkers Both page 2 of 22

MSc Security and Network Engineering
Research Project 2

1 Introduction

Programmable Logic Controllers (PLC) are the brains of Industrial Control Systems (ICS). If
these critical devices would become unavailable, it could lead to operational disruptions and
loss of money [25]. In recent years, attacks on ICSs have risen dramatically since nowadays
these systems are often IP-based and connected to other networks, or even to the Internet
[7]. With these attacks, malicious external actors seek to compromise or steal information
from the underlying technologies in industrial processes, such as critical controllers [2].

However, cyber attacks are not the only factors that could lead to a threat in an ICS
infrastructure. Hardware failures can also contribute to significant downtime. Due to the
fact that programmable logic controllers need to have a high availability, the network in-
frastructure needs to be resilient against disruption. One of the technologies that can be
used for this purpose is Network Function Virtualization (NFV) [11]. This technology allows
one to virtualize network equipment and therefore create a more agile, lower cost network
infrastructure. Moreover, automation reduces the amount of human intervention, which
allows for autonomous error handling (e.g. if a network switch fails).

Furthermore, Software Defined Networking (SDN) can be used to manage networks by sep-
arating the control plane from data plane. This makes it easier for network engineers to
monitor and configure traffic streams, diagnose threats, as well as apply, modify or remove
security policies through a centralized or distributed controller [26]. Since SDN combined
with NFV provides efficiency and flexibility by optimizing existing applications, services and
infrastructure, it could allow for a more reliable ICS environment [27]. For this project we
will be investigating the appropriate methods to minimize the risk of downtime in an ICS
environment using NFV and SDN. This will give a better understanding of how SDN could
be applied in ICS environments.

The main research question for this project is defined as follows:

How could Software Defined Networking combined with Network Function Virtualization
enhance availability in an Industrial Control System in case of a network hardware failure?

In order to answer our research question, the following sub-questions will be answered:

• How can SDN combined with NFV provision back-up network equipment to maintain
availability during a network failure?

• What are the consequences of provisioning back-up network equipment in an ICS
environment for the manageability and connectivity of the network and its connected
PLCs?

• What are the limitations of using SDN combined with NFV in an ICS environment
regarding the availability of the connected PLCs?

2 Related Work

There has been some research done into the implementation of SDN and NFV in an ICS
environment. Zhou et. al. showed in 2017 that SDN technology combined with NFV tech-
nology can be used in ICS environments to detect and mitigate DDoS attacks by scaling up
resources and/or updating data forwarding rules [27].

On top of that, in the same year, Piedrahita et. al. showed that SDN technology can
be used to respond to security incidents and vulnerabilities by discarding packets from or
to a specific device on the network [21]. To accomplish this, an SDN system and an IDS

Marios Andreou, Joris Jonkers Both page 3 of 22

MSc Security and Network Engineering
Research Project 2

could complement each other, in which the IDS would notify SDN about every incident or
vulnerability. Also, Chavez researched SDN to find out if Moving Target Defense, which is
used to confuse an attacker by changing the IP address of a system as soon as an adversary
has discovered an IP address, could be effective in securing ICS environments [6].

More recent, in 2019, Brugman et al did propose a new architecture in which a Cloud
Based Intrusion Detection and Prevention System is used. This technique leverages SDN
as mechanism to send network traffic to the cloud for analysis and decision making. Fur-
thermore, some research has been done regarding the implementation of SDN in industrial
automation. Ahmed et. al. showed that SDN can be used in industrial automation to
improve the efficiency and productivity while reducing the human intervention required [1].
Next, a research has determined that on average it would take 30 minutes to summon a
technician and another 30 minutes to fix a network component in a virtualized environment
[15].

Moreover, Kálmán also showed that SDN in industrial operations can be applied for traffic
segmentation and security measures [13]. Finally, a research done in 2020 has shown that
SDN can be used to implement hardware failover in an ICS environment [17]. However, the
focus of that research was not on automatic redeployment of the faulty hardware via SDN,
but instead on how SDN can help regarding redundancy, scalability and security.

These researches all focused on how SDN could help mitigate or detect attacks and im-
prove efficiency, productivity and security on an ICS system. However, we were unable to
find any research that was done into how SDN combined with NFV could benefit in terms
of availability in an ICS environment yet.

3 Background

3.1 Software-Defined Networking

Software-Defined Networking (SDN) is a new approach to communication networks which,
through abstraction, tries to eliminate the limitations, like having to manually configure
every network device individually, that traditional networking has. SDN can achieve this,
by introducing a centralized control logic and separating control plane, data plane and
management plane as illustrated in Figure 1. Starting from bottom-up, in the data plane
we have our network infrastructure which consists of forwarding hardware (e.g. switches)
and a southbound interface which is responsible for establishing communication between
the data plane and control plane (e.g. OpenFlow). In the control plane, we have the
Network Operating System (NOS), i.e. controller(s), which is considered the brain of SDN
and therefore, it’s responsible for the abstraction from the hardware, traffic routes, network
topology, state details, statistic details and more. Moreover, a northbound interface is
required in order to connect the control plane and management plane (e.g. REST, RESTful).
Finally, in the management plane, we can visualize the data gathered by the controller using
application layer protocols, which gives the ability and flexibility to manage the network [8].

Marios Andreou, Joris Jonkers Both page 4 of 22

MSc Security and Network Engineering
Research Project 2

Figure 1: SDN Architecture. [8]

3.2 OpenFlow

As discussed before, SDN uses north- and southbound interfaces. One of the standards for
southbound interfaces is OpenFlow. It was developed by Stanford University in 2008. Since
then, it has become the most widely used standard for southbound interfaces [19]. It is
designed to standardize the communication between the control plane and the data plane
[16]. OpenFlow can be used to program the flow table of different switches. A flow table
contains a sequence of rules, which can then be applied to a switch. An overview of an
OpenFlow set up is displayed in Figure 2, where the southbound interfaces are marked with
a red color.

Figure 2: OpenFlow architecture. [16]

Marios Andreou, Joris Jonkers Both page 5 of 22

MSc Security and Network Engineering
Research Project 2

3.3 Network Function Virtualization

Network Function Virtualization (NFV) refers to the strategy of virtualizing network func-
tions moving from separate proprietary hardware to software running on virtual servers using
standard hardware. Using proprietary hardware and upgrading them is costly. While NFV
reduces the costs of the hardware needed by decoupling functions from dedicated hardware
and moving the functions to a virtual server. These functions could for example be a fire-
wall, encryption, DHCP, NAT or virtual switches. Instead of installing expensive proprietary
hardware, inexpensive switches, storage and servers could be purchased to run Virtual Ma-
chines (VMs) to perform network functions[12]. The difference between traditional network
and NFV approach can be illustrated in Figure 3.

Figure 3: Difference between traditional network and NFV approach. [4]

3.4 Open vSwitch

Open vSwitch (OVS) is an open source software application that allows one to deploy and
manage virtual switches on all major hypervisor platforms [20]. One of the main benefits
of using Open vSwitch over other virtual switches is its capability to work with OpenFlow.
This allows one to completely reprogram the working of the switch allowing it to be used
for many different purposes.

The packet forwarding in Open vSwitch is done using two main components. These two
components are the ovs-vswitchd and kernel datapath as is displayed in Figure 4. The ovs-
vswitchd component is used to communicate with the OpenFlow controller (Faucet in this
case), while the kernel datapath is used to handle the packets. If a packet was to enter
the switch for the first time, the kernel datapath component would not know what to do
with it. In that case, the kernel datapath would ask the ovs-vswitchd for instructions. The
ovs-vswitchd should then provide instructions back to the kernel datapath component and
ask it to cache the instructions. The instructions provided by the ovs-vswitchd are derived
from the logic it has received from the SDN controller.

Marios Andreou, Joris Jonkers Both page 6 of 22

MSc Security and Network Engineering
Research Project 2

Figure 4: Open vSwitch architecture. [20]

4 Methodology

4.1 Approach

To answer the research questions, an emulation of an ICS environment should be created.
Due to the fact that setting up a real ICS environment requires specific hardware, a virtual
environment will be created for this research. All experiments will be run on an Ubuntu
server equipped with a Xen hypervisor [23]. On the server two virtual machines (VMs) will
be created. Each VM will be equipped with 2 virtual CPUs, 4 Gigabytes of RAM. On one
of the VMs, OpenPLC will be installed to simulate a PLC. OpenPLC is an open source
software application that can be run on OpenPLC compatible hardware [3]. Since it is also
used in production ICS environments, it should resemble realistic behaviour and load on the
network by a PLC. On the other VM, Faucet will be installed as an SDN controller. Faucet
is an open source software application that can be used to serve as an SDN controller [5].
It has support for Open vSwitch built-in and is built to be used in High Availability (HA)
environments, like ICS environments. These two VMs will then be connected together using
Open vSwitch switches, like is displayed in Figure 5.

After the topology is created, three different NFV scenarios will be implemented in Python
to detect unreported failures and/or to mitigate them. The first scenario will be to try to
re-route traffic in case of a hardware failure. In this scenario, one of the switches will be
destroyed and the network connection should automatically be re-established by re-routing
the traffic to the other switch.

In the second scenario, one of the switches will be destroyed but now instead of re-routing the
traffic to the other switch, the NFV should redeploy the switch which should re-establish the
connection between the two VMs. This will be achieved by extending the datapath disconnect
in the valve.py file of the Faucet source code. The code checks which switch goes down and
redeploys that switch. The redeployment command is designed to log into the Dom0 ma-
chine over a Secure SHell connection (SSH). Once logged in, the command executes an Open
vSwitch command that will recreate the switch that failed. The final implementation of this
function is displayed in Listing 2 in Section 9.

In the last scenario, if one of the interfaces on one of the switches stops transmitting, the
NFV should detect this and recreate the interface on the switch, which should re-establish
the connection between the two VMs. To implement this, knowledge about what switches

Marios Andreou, Joris Jonkers Both page 7 of 22

MSc Security and Network Engineering
Research Project 2

Figure 5: Virtualized ICS environment used for the experiments.

are present is needed first. This can be acquired by listing the current switches with the
following command ovs-vsctl list-br. Then, since now we have the knowledge of our network,
we are able to perform checks on each switch and its connected ports. In order to deter-
mine that there is a faulty port we will be looking into the transmit values that a specific
port has with the help of the command ovs-ofctl dump-ports <switch-name >. By running
this command we are able to observe how much traffic is transmitted but as well as how
much traffic is received. The output of this command can be found in Listing 1. Whenever
the transmit value is not increasing (TX value), there is no more traffic being transmitted
through that port. Therefore we can say with confidence that the port is faulty. Since in a
network with a larger amount of components (e.g. 104 switches and 202 hosts) it takes time
to evaluate the status of all switches and its ports, an interval of 2 seconds is required in
order to prevent the computer from overtaking itself. Choosing an interval too small showed
to cause errors in the OVS daemon. The final implementation of this function is illustrated
in Listing 2 in Section 9.

OFPST_PORT reply (xid=0x2): 3 ports

port LOCAL: rx pkts=0, bytes=0, drop=0, errs=0, frame=0, over=0,

crc=0, tx pkts=0, bytes=0, drop=0, errs=0, coll=0

port "vif1 .1": rx pkts =179, bytes =10072 , drop=0, errs=0, frame=0,

over=0, crc=0, tx pkts =104045 , bytes =7283406 , drop=0,

errs=0, coll=0

port "vif2 .1": rx pkts =179, bytes =10072 , drop=0, errs=0, frame=0,

over=0, crc=0, tx pkts =104043 , bytes =6242906 , drop=0,

errs=0, coll=0

Listing 1: Switch metrics regarding its connected ports.

To benchmark the impact on the downtime, we will take ten measurements for each scenario.
In this research we define downtime as a machine that is not able to transceive data over the

Marios Andreou, Joris Jonkers Both page 8 of 22

MSc Security and Network Engineering
Research Project 2

network. Each measurement will be taken by starting connectivity check (ping) from the
Faucet VM to the OpenPLC VM, configuring it to send packets every 10 ms. After starting
a connectivity check, the switch or interface will be removed or disabled and the amount of
dropped packets was calculated. Next, the experiments will be repeated with 54 switches
and 102 hosts and 104 switches and 202 hosts.

Finally, this research will look into the advantages and limitations of each scenario. A
comparison between the scenarios will be made.

4.2 Scope

The general scope of this project is to enhance the availability of the network of an ICS
environment. In order to achieve that, we have to detect and identify what the problem is
and therefore, by a dynamic decision, an NFV will be executed. The network should then
recover according to the scenario as explained in Subsection 4.1.
Thus, the scope of our research was limited to finding appropriate and suitable solutions
for an ICS environment using SDN and network functions in order to enhance availability.
More precisely, redeploying a switch, recreating a faulty port or re-routing traffic through
an alternative path that is available. This can be achieved by monitoring the network’s
hardware health and status and, if necessary, the NFV will take action according to the event
that happened. This also limits the necessity of human intervention, as the remediation will
be automatic.

5 Results

5.1 Experiment 1 - Re-routing scenario

The results of the experiments of the first scenario are listed in Tables 1, 2 and 3. For the first
experiment, in which four switches and two hosts were present, the mean downtime observed
was 5576 ms with a standard deviation of 1356 ms. Looking at the second experiment, where
54 switches and 102 hosts were present, a mean downtime of 7217 ms could be observed with
a standard deviation of 3548 ms. Finally, for our last experiment, where 104 switches and
202 hosts were present, a mean downtime of 10050 ms could be observed with a standard
deviation of 2922 ms. The average results of all three experiments are displayed in Figure
6.

Experiment Packets sent Packets received Packets lost Downtime (ms)
1 732 305 427 4270
2 683 242 441 4410
3 898 247 651 6510
4 679 160 519 5190
5 808 247 561 5610
6 788 239 549 5490
7 646 169 477 4770
8 808 166 642 6420
9 1168 299 869 8690

10 636 196 440 4400

Table 1: Experiment 1 - Re-routing scenario - four switches - two hosts.

Marios Andreou, Joris Jonkers Both page 9 of 22

MSc Security and Network Engineering
Research Project 2

Experiment Packets sent Packets received Packets lost Downtime (ms)
1 690 308 382 3820
2 1312 433 879 8790
3 1824 201 1623 16230
4 977 260 717 7170
5 1035 230 805 8050
6 774 175 599 5990
7 898 222 676 6760
8 654 214 440 4400
9 881 241 640 6400

10 622 166 456 4560

Table 2: Experiment 2 - Re-routing scenario - 54 switches - 102 hosts.

Experiment Packets sent Packets received Packets lost Downtime (ms)
1 770 292 478 4780
2 1364 342 1022 10220
3 1347 186 1161 11610
4 1480 147 1333 13330
5 1434 299 1135 11350
6 1449 241 1208 12080
7 1346 220 1126 11260
8 1056 163 893 8930
9 1325 144 1181 11810

10 646 133 513 5130

Table 3: Experiment 3 - Re-routing scenario - 104 switches - 202 hosts.

Figure 6: Average amount of downtime in milliseconds in case of recovering the network
connection by re-routing traffic.

Marios Andreou, Joris Jonkers Both page 10 of 22

MSc Security and Network Engineering
Research Project 2

5.2 Experiment 2 - Switch redeployment scenario

After the implementation of the redeployment code was done in the Faucet source code, the
performance measurements were taken in the three scenarios as is described in Section 4.
The results of these measurements are displayed are in Tables 4, 5 and 6. The averages of
the results of the experiments are 48 ms, 57 ms and 130 ms with a standard deviation of 6,
9, 9 ms respectively. These averages are visualized in Figure 7.

Experiment Packets sent Packets received Packets lost Downtime (ms)
1 202 197 5 50
2 197 192 5 50
3 246 241 5 50
4 235 230 5 50
5 271 267 4 40
6 239 235 4 40
7 255 251 4 40
8 231 226 5 50
9 254 248 6 60

10 440 435 5 50

Table 4: Experiment 1 - Switch redeployment scenario - four switches - two hosts.

Experiment Packets sent Packets received Packets lost Downtime (ms)
1 377 371 6 60
2 235 227 8 80
3 232 225 7 70
4 254 247 7 70
5 254 246 8 80
6 241 233 8 80
7 294 287 7 70
8 242 234 8 80
9 334 327 7 70

10 209 200 9 90

Table 5: Experiment 2 - Switch redeployment scenario - 54 switches - 102 hosts.

Experiment Packets sent Packets received Packets lost Downtime (ms)
1 263 251 12 120
2 196 183 13 130
3 314 300 14 140
4 285 271 14 140
5 219 206 13 130
6 276 263 13 130
7 212 199 13 130
8 211 197 14 140
9 224 213 11 110

10 215 202 13 130

Table 6: Experiment 3 - Switch redeployment scenario - 104 switches - 202 hosts.

Marios Andreou, Joris Jonkers Both page 11 of 22

MSc Security and Network Engineering
Research Project 2

Figure 7: Average amount of downtime in milliseconds in case of recovering the network
connection by redeploying the failed switch.

5.3 Experiment 3 - Recreation of a faulty port scenario

The performance measurements were taken in three scenarios as mentioned before in the
previous experiments. The results of these measurements are displayed in Tables 7, 8 and
9. The averages of the results in the tables are 507 ms, 608 ms, 1254 ms with a standard
deviation of 288 ms, 329 ms, 649 ms respectively. These averages are displayed in Figure 8.

Experiment Packets sent Packets received Packets lost Downtime (ms)
1 227 203 24 240
2 206 151 55 550
3 228 143 85 850
4 167 154 13 130
5 192 121 71 710
6 145 123 22 220
7 147 116 31 310
8 192 125 67 670
9 170 128 42 420

10 241 144 97 970

Table 7: Experiment 1 - Recreation of a faulty port scenario - four switches - two hosts.

Marios Andreou, Joris Jonkers Both page 12 of 22

MSc Security and Network Engineering
Research Project 2

Experiment Packets sent Packets received Packets lost Downtime (ms)
1 290 217 73 730
2 349 304 45 450
3 222 210 12 120
4 249 160 89 890
5 244 173 71 710
6 258 155 103 1030
7 245 230 15 150
8 267 174 93 930
9 243 167 76 760

10 207 176 31 310

Table 8: Experiment 2 - Recreation of a faulty port scenario - 54 switches - 102 hosts.

Experiment Packets sent Packets received Packets lost Downtime (ms)
1 238 176 62 620
2 291 160 131 1310
3 245 192 53 530
4 266 199 67 670
5 283 157 126 1260
6 287 204 83 830
7 298 158 140 1400
8 310 146 164 1640
9 301 142 159 1590

10 422 153 269 2690

Table 9: Experiment 3 - Recreation of a faulty port scenario - 104 switches - 202 hosts.

Figure 8: Experiment 1 - Switch redeployment scenario - four switches - two hosts.

Marios Andreou, Joris Jonkers Both page 13 of 22

MSc Security and Network Engineering
Research Project 2

5.4 Average downtime comparison

When comparing these results, as is displayed in Figure 9, we can observe that redeploying
a switch is faster than recreating a faulty port. However, recovering a faulty port has a
lower amount of downtime in comparison to the scenario of re-routing traffic. Moreover, the
amount of downtime a PLC will have grows exponentially while the amount of switches and
hosts grows linearly. This is true for all three scenarios performed in this research.

Figure 9: Comparison of the average downtime of all scenarios per experiment.

6 Discussion

6.1 Network Functions

Through the experiments we were able to observe that the least amount of downtime (48ms,
75ms, 130ms) occurs when a redeployment of a new switch is performed. However, there
is a limitation, one cannot replace actual hardware when it is faulty using these functions
because this is only feasible when virtual switches are used. The same can be expected for
recreating a port on a virtual switch. On the other hand, our first experiment, which was
about re-routing traffic to an alternative path that is available from a source to a destination,
could be implemented on actual hardware. However, this scenario showed to be the slowest
scenario (5576ms, 7217ms, 10050ms) out of all scenarios proposed in this research. Moreover,
regarding our third scenario (average downtime: 507ms, 608ms, 1254ms) we had to set a
delay in between every check since evaluating 104 switches in order to check whenever traffic
is transmitted or not takes time. The time interval we set for this interval is 2 seconds. This
reduces the performance of our scenario since a 2 seconds delay will be present between
every check. Having more hardware present on the network will require even more time
to evaluate and therefore a modification on the code should be made. Furthermore, the
performance of the scenarios may not be sufficient for all ICS environments since there is
still some downtime present. If a downtime of 48-10050 ms can be allowed, depending on the
amount of hardware, the scenarios might still be sufficient. According to the United States
National Institute of Standards and Technology (NIST), every organization that runs an
ICS environment should define what loss of communications means (i.e. downtime), since

Marios Andreou, Joris Jonkers Both page 14 of 22

MSc Security and Network Engineering
Research Project 2

the downtime allowed could be different [25]. This means that our solution would have to be
evaluated before implementing it in an ICS environment. Some ICSs would prefer to trade
simplicity for the speed of recovery in case of a hardware failure, availability and also the
ability of having more machines running while using less hardware.

6.2 Virtualization Architecture

During this research, as we mentioned in Section 4, we used Xen as our hypervisor to deploy
two virtual machines with two virtual CPUs. However, using a different hypervisor could
provide different results. Since we used a type two hypervisor which requires a host operating
system (OS), more delays are likely to occur due to the fact that all instructions have to
pass through the host OS (Dom0). While using a type one hypervisor, the guest operating
systems will be able to communicate directly to the hardware and therefore is likely to
result in better performance [18]. Furthermore, using virtual machines with more resources
could also lead to better results since more computation power will be available to run the
software on. In general testing our experiments on a different virtualization architecture
(container-based, library OS on a hypervisor) could improve our results. Moreover, this
research could be applied to a hardware infrastructure by having backup hardware available
which could be enabled when a network hardware component would fail. However, using
a virtualized infrastructure multiple virtual hardware components could be run on a single
hardware component. This would also reduce the cost of hardware significantly, since this
solution would require less hardware.

6.3 SDN Controller

The SDN controller we used is Faucet. However, Faucet is written in Python which is
considered as a high-level programming language. An alternative SDN controller which is
written in a lower-level programming language could lead to different results. Since Python
code is interpreted by the Python runtime environment and not precompiled, the execution
of the code takes more time [22]. For example looking into Floodlight, which is written in
Java, Nox which is written in C++ or Trema which is written in Ruby and C could shed a
light on the differences [14].

6.4 Metric detecting downtime

We used ICMP protocol for measurements, because it is bidirectional. The protocols used
in an ICS environment are oftentimes based on the TCP protocol, which is also bidirectional
(e.g. Modbus, DNP3, rs-232, rs-485, etc.) and thus will lead to a realistic scenario [9]. In
the TCP and ICMP protocol, packets that are received by one side are acknowledged to
the sending side. Since reliability is very important in ICS environments, it is crucial that
instructions that are being send are acknowledged. Moreover, the ping command gives us
the ability to set a shorter interval of how often packets should be transmitted. By doing
so, a shorter interval did help us to perform more accurate experiments and therefore to get
more accurate results.

6.5 Network Topology

Since some of the PLCs in an ICS environment do not support any modifications, modifying
a PLC is often not a viable solution. Sometimes, this is because a PLC is dated, other
times modifying all PLCs causes instability and a manual reconfiguration will have to be
performed [24]. In order to avoid that, an intermediate switch should be present in order to
listen to OpenFlow protocol and forward traffic to an alternative path in case of a failure
on the primary path. However, there is a single point of failure in this situation as is
illustrated in Figure 5. That being said, our scenario to redeploy a switch in case of a failure

Marios Andreou, Joris Jonkers Both page 15 of 22

MSc Security and Network Engineering
Research Project 2

could be implemented, which would re-establish the connection in approximately 48-130 ms,
depending on the amount of hosts and switches that are present on the network.

7 Conclusion

In this paper, three different scenarios were implemented to combine SDN technology with
NFV to improve availability in ICS environments have been researched. To do this, three
different NFV functions were implemented. The experiments consisted of: re-routing traf-
fic, redeploying a switch and redeploying a specific interface on the switch if connectivity
with the switch was lost. These implementations were then applied by altering the Faucet
SDN controller’s source code. To allow the Faucet SDN controller to redeploy switches or
interfaces of a switch, a connection between the controller and the Open vSwitch (OVS)
daemon had to be created. This showed to be possible by implementing code in the Faucet
controller that would execute commands to provide the Open vSwitch daemon with the right
instructions. By monitoring the health of the switches and its ports periodically, the NFV
was able to detect when a switch or port became unavailable. In the scenario where the data
would be rerouted, the switches received an instruction to reroute the traffic to a different
switch to restore the connectivity. In the scenario where a switch would be redeployed as
a whole, the OVS daemon would receive the command to first delete and then create the
switch again. In the last scenario where a single interface on a switch would be replaced,
the OVS daemon would be instructed to first remove the faulty interface and then recreate
it. This way backup network equipment could be provisioned to enhance availability. This
answers our first sub-question: How can SDN combined with NFV provision back-up network
equipment to maintain availability during a network failure?.

As for the performance of all three scenarios, a clear distinction can be made. While all
scenarios were able to restore connectivity, variation in the amount of downtime between
failure and recovery of the connection was visible. The re-routing of the traffic to a different
switch took the longest, taking 5576 ms on average to restore connectivity in a network
of four switches and two hosts. This is probably due to the controller having to recalcu-
late the route the data needs to travel over, which could take some time. The recreation
of an interface on a switch turned out to be faster, taking 507 ms in the same situation.
However, the scenario that tried to redeploy a switch completely showed to be the fastest:
only 48 ms were required to restore connectivity between the two hosts on average. In all
cases, the connection between the Faucet SDN controller, the switches and their ports was
re-established. Meaning that updates from the Faucet controller would still be obeyed by
the network devices. This answers our second sub-question: What are the consequences of
provisioning back-up network equipment in an ICS environment for the manageability and
connectivity of the network and its connected PLCs?.

While these scenarios did reduce the average downtime in different situations, the scenarios
also have their limitations. Because the NFV functions will have to monitor all switches
and their ports periodically, CPU power and network bandwidth is required to provide the
NFV with this information and to allow for evaluation of the data. Moreover, because all
switches need to be evaluated, some time is required to complete all evaluations. In this
research at least two seconds was required to let the NFV evaluate the state of 104 switches
and 202 hosts. It is likely that in case the amount of switches and hosts would increase
further, the amount of time it would take to evaluate all these devices would increase as
well. This means that it will take some time before the NFV will check on a specific switch
again, introducing a delay which results in downtime. Furthermore, because these scenar-
ios used software functions to provision backup hardware, it will probably be less effective
when implemented in a hardware environment. Since hardware most of the times cannot be
redeployed using a software call, manual intervention would still be required to replace the

Marios Andreou, Joris Jonkers Both page 16 of 22

MSc Security and Network Engineering
Research Project 2

hardware part. This answers our third sub-question: What are the limitations of using SDN
combined with NFV in an ICS environment regarding the availability of the connected PLCs?.

After evaluating these results, we can answer our main research question: How could Software
Defined Networking combined with Network Function Virtualization enhance availability in
an Industrial Control System in case of a network hardware failure?. One may conclude
that SDN combined with NFV could enhance the availability in an ICS environment in case
of a network hardware failure. Due to dynamic decision making, the NFV scenarios showed
to be able to deploy backup virtualized hardware, recreate ports on a switch and reroute
traffic in case of a failure, downtime in an ICS environment could be enhanced significantly.
Reducing the risk of incidents and reducing the amount of required human intervention.

8 Future Work

Since this research has primarily focused on experiments in a virtualized ICS environment,
the future research could focus on what significant performance differences there could be
between a virtual ICS environment and a hardware ICS environment.

Moreover, in this research only one specific SDN controller has been used. A future re-
search could validate if a different SDN controller would make a difference in the amount
of downtime of each scenario that was tried. A different SDN controller, especially one
that is written in a different programming language than Python, could lead to different
performance of the NFV and therefore different results. One could for example look into
Floodlight, which is written in Java [14]. Another SDN controller that could be used for
comparison is Nox. Since Nox is written in C++, which is considered a lower level language
than Python, it should have the potential to be more efficient than the Python based Faucet
[10].

Finally, choosing a different programming language for our NFV could lead to the mini-
mization of the interval we had for checking (2 seconds) since more efficient code could do
checks more frequently. Moreover, looking into network size limitations would be interesting
since there was an exponential increase regarding the downtime when more hardware was
present on the network, therefore a research could be conducted to find out what are the
limitations of our NFV code.

Marios Andreou, Joris Jonkers Both page 17 of 22

MSc Security and Network Engineering
Research Project 2

References

[1] Khandakar Ahmed et al. “Software defined networks in industrial automation”. In:
Journal of Sensor and Actuator Networks 7.3 (2018), p. 33.

[2] Otis Alexander, Misha Belisle, and Jacob Steele. MITRE ATT&CK R© for industrial
control systems: Design and philosophy. 2020.

[3] Thiago Rodrigues Alves et al. “OpenPLC: An open source alternative to automation”.
In: IEEE Global Humanitarian Technology Conference (GHTC 2014). IEEE. 2014,
pp. 585–589.

[4] Ahmed Alwakeel, Abdulrahman Alnaim, and Eduardo Fernández. “Toward a Ref-
erence Architecture for NFV”. In: May 2019, pp. 1–6. doi: 10.1109/CAIS.2019.
8769449.

[5] Josh Bailey and Stephen Stuart. “Faucet: Deploying SDN in the enterprise”. In: Com-
munications of the ACM 60.1 (2016), pp. 45–49.

[6] Adrian R Chavez. “Parametrization and Effectiveness of Moving Target Defense Se-
curity Protections for Industrial Control Systems”. In: (2017).

[7] cisa. ICS-CERT Alerts. 2020. url: https://us-cert.cisa.gov/ics/alerts?page=
0.

[8] Rui Miguel da Conceição Queiroz. Integration of SDN technologies in SCADA Indus-
trial Control Networks. 2017. url: https://estudogeral.sib.uc.pt/bitstream/
10316/83367/1/Relat%c3%b3rio%20de%20Estagio%20-%20versao%20FINAL_pos%

20correcoes_v3.pdf.

[9] Z. Drias, A. Serhrouchni, and O. Vogel. “Taxonomy of attacks on industrial control
protocols”. In: 2015 International Conference on Protocol Engineering (ICPE) and
International Conference on New Technologies of Distributed Systems (NTDS). 2015,
pp. 1–6. doi: 10.1109/NOTERE.2015.7293513.

[10] Daniel Frampton et al. “Demystifying magic: high-level low-level programming”. In:
Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments. 2009, pp. 81–90.

[11] Bo Han et al. “Network function virtualization: Challenges and opportunities for in-
novations”. In: IEEE Communications Magazine 53.2 (2015), pp. 90–97.

[12] Nerea Toledo Juanjo Unzilla Jon Matias Jokin Garay and Eduardo Jacob. “Toward
an SDN-Enabled NFV Architecture”. In: 2015, pp. 187–193.

[13] György Kálmán. “Prospects of Software-Defined Networking in Industrial Opera-
tions,””. In: International Journal on Advances in Security 9.3 (2016).

[14] Zuhran Khan Khattak, Muhammad Awais, and Adnan Iqbal. “Performance evaluation
of OpenDaylight SDN controller”. In: 2014 20th IEEE international conference on
parallel and distributed systems (ICPADS). IEEE. 2014, pp. 671–676.

[15] Dong Seong Kim, Fumio Machida, and Kishor S Trivedi. “Availability modeling and
analysis of a virtualized system”. In: 2009 15th IEEE Pacific Rim International Sym-
posium on Dependable Computing. IEEE. 2009, pp. 365–371.

[16] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. “Network innovation us-
ing openflow: A survey”. In: IEEE communications surveys & tutorials 16.1 (2013),
pp. 493–512.

[17] Pavlos Lontorfos. “Securely accessing remote sensors in critical infrastructures.” In:
(2020).

[18] R. Morabito, J. Kjällman, and M. Komu. “Hypervisors vs. Lightweight Virtualiza-
tion: A Performance Comparison”. In: 2015 IEEE International Conference on Cloud
Engineering. 2015, pp. 386–393. doi: 10.1109/IC2E.2015.74.

Marios Andreou, Joris Jonkers Both page 18 of 22

https://doi.org/10.1109/CAIS.2019.8769449
https://doi.org/10.1109/CAIS.2019.8769449
https://us-cert.cisa.gov/ics/alerts?page=0
https://us-cert.cisa.gov/ics/alerts?page=0
https://estudogeral.sib.uc.pt/bitstream/10316/83367/1/Relat%c3%b3rio%20de%20Estagio%20-%20versao%20FINAL_pos%20correcoes_v3.pdf
https://estudogeral.sib.uc.pt/bitstream/10316/83367/1/Relat%c3%b3rio%20de%20Estagio%20-%20versao%20FINAL_pos%20correcoes_v3.pdf
https://estudogeral.sib.uc.pt/bitstream/10316/83367/1/Relat%c3%b3rio%20de%20Estagio%20-%20versao%20FINAL_pos%20correcoes_v3.pdf
https://doi.org/10.1109/NOTERE.2015.7293513
https://doi.org/10.1109/IC2E.2015.74

MSc Security and Network Engineering
Research Project 2

[19] Andrés Felipe Murillo Piedrahita et al. “Securing virtual industrial control systems
using SDN/NFV platforms”. PhD thesis. Uniandes, 2019.

[20] Ben Pfaff et al. “The design and implementation of open vswitch”. In: 12th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 15). 2015,
pp. 117–130.

[21] Andrés F Murillo Piedrahita et al. “Leveraging software-defined networking for inci-
dent response in industrial control systems”. In: IEEE Software 35.1 (2017), pp. 44–
50.

[22] Programiz. Interpreter Vs Compiler : Differences Between Interpreter and Compiler.
2021. url: https://www.programiz.com/article/difference-compiler-interpreter.

[23] The Linux Foundation Project. Xen Project. 2020. url: https://xenproject.org/.

[24] Carl D Schuett. “Programmable logic controller modification attacks for use in detec-
tion analysis”. In: (2014).

[25] Keith Stouffer, Joe Falco, and Karen Scarfone. “Guide to industrial control systems
(ICS) security”. In: NIST special publication 800.82 (2011), pp. 16–16.

[26] Wikipedia. Software-defined networking. 2020. url: https://en.wikipedia.org/
wiki/Software-defined_networking.

[27] Luying Zhou and Huaqun Guo. “Applying NFV/SDN in mitigating DDoS attacks”.
In: TENCON 2017-2017 IEEE Region 10 Conference. IEEE. 2017, pp. 2061–2066.

Marios Andreou, Joris Jonkers Both page 19 of 22

https://www.programiz.com/article/difference-compiler-interpreter
https://xenproject.org/
https://en.wikipedia.org/wiki/Software-defined_networking
https://en.wikipedia.org/wiki/Software-defined_networking

MSc Security and Network Engineering
Research Project 2

9 Appendix

def datapath_disconnect(self , now):

""" Handle Ryu datapath disconnection event ."""

self.logger.warning(’[RP2] SWITCH IS DOWN !!!!! ’)

self.logger.warning(’this switch with number ’+ str(self.dp.

dp_id)+’ is down.’)

self.logger.warning(str(self.dp))

self.logger.warning(’datapath down ’)

self.notify(

{’DP_CHANGE ’: {

’reason ’: ’disconnect ’}})

self.dp.dyn_running = False

self._inc_var(’of_dp_disconnections ’)

self._reset_dp_status ()

self.ports_delete(self.dp.ports.keys(), now=now)

if str(self.dp) == ’ps ’:

os.system(’sudo ssh root@145 .100.104.125 "sudo ovs -vsctl

add -br ps -- set bridge ps other -config:datapath -id

=0000000000000001 -- set bridge ps other -config:

disable -in -band=true -- set bridge ps fail_mode=secure

-- set -controller ps tcp :145.100.111.130:6653 -- add -

port rs vif1.1 -- set interface vif1.1 ofport_request

=1 -- add -port rs vif2.1 -- set interface vif2.1

ofport_request =2"’)

else:

os.system(’sudo ssh root@145 .100.104.125 "sudo ovs -vsctl

add -br ss -- set bridge ss other -config:datapath -id

=0000000000000002 -- set bridge ss other -config:

disable -in -band=true -- set bridge ss fail_mode=secure

-- set -controller ss tcp :145.100.111.130:6653 -- add -

port ss vif1.2 -- set interface vif1.2 ofport_request

=1 -- add -port ss vif2.2 -- set interface vif2.2

ofport_request =2"’)

Listing 2: NFV function extension to recreate switches

import os

import threading

import time

import subprocess

prevEvals = {}

prevInterfaces = {}

def main():

evaluateSwitches ()

def evaluateSwitches ():

threading.Timer(2, evaluateSwitches).start()

switches = getSwitches ()

for switch in switches:

if switch in prevEvals.keys():

if switch in prevInterfaces.keys():

interfaces = getSwitchInterfaces(switch)

Marios Andreou, Joris Jonkers Both page 20 of 22

MSc Security and Network Engineering
Research Project 2

interfaceDiff = list(set(prevInterfaces[switch]) -

set(interfaces))

for interface in interfaceDiff:

os.system(’sudo ovs -vsctl -- add -port ’ + switch + ’ ’ +

interface + ’ -- set interface ’ + interface + ’

ofport_request=’ + interface.split(’st ’)[1])

txValues = getTxFromSwitch(switch)

interfaces = getSwitchInterfaces(switch)

interfaceDiff = list(set(prevInterfaces[switch]) -

set(interfaces))

if len(interfaceDiff) > 0:

break

for interface in interfaces:

if (interface in prevEvals[switch] and txValues[

interface] == prevEvals[switch][interface]):

os.system(’ovs -vsctl del -port ’ + switch + ’ ’ +

interfaces[i])

os.system(’sudo ovs -vsctl -- add -port ’ + switch + ’ ’

+ interfaces[i] + ’ -- set interface ’ +

interfaces[i] + ’ ofport_request=’ + str(i + 1))

break

if switch not in prevInterfaces.keys():

prevInterfaces[switch] = getSwitchInterfaces(switch)

prevEvals[switch] = getTxFromSwitch(switch)

def getSwitchInterfaces(switch):

switchInfo = os.popen(’ovs -vsctl list -ports ’ + switch).read()

return switchInfo.split ()

def getSwitches ():

switches = os.popen(’ovs -vsctl list -br ’).read()

return switches.split ()

def getTxFromSwitch(switchId):

report = os.popen(’sudo ovs -ofctl dump -ports ’ + switchId).read

()

report = report.split(’port ’)

portReports = []

txValues = {}

for interfaceLine in report:

if ’LOCAL ’ not in interfaceLine:

portReports.append(interfaceLine)

portReports = portReports [2:]

switchInterfaceNames = prevInterfaces[switchId]

Marios Andreou, Joris Jonkers Both page 21 of 22

MSc Security and Network Engineering
Research Project 2

for portReport in portReports:

portReportTxString = portReport.split(’tx pkts=’)[1]

portReportTxInt = int(portReportTxString.split(’,’)[0])

interfaceId = str(switchInterfaceNames[int(portReport.split

(’tx pkts=’)[0]. strip(’ ’)[:1]) - 1])

txValues[interfaceId] = portReportTxInt

return txValues

if __name__ == "__main__ ":

main()

Listing 3: NFV function to evaluate interfaces

Marios Andreou, Joris Jonkers Both page 22 of 22

	Introduction
	Related Work
	Background
	Software-Defined Networking
	OpenFlow
	Network Function Virtualization
	Open vSwitch

	Methodology
	Approach
	Scope

	Results
	Experiment 1 - Re-routing scenario
	Experiment 2 - Switch redeployment scenario
	Experiment 3 - Recreation of a faulty port scenario
	Average downtime comparison

	Discussion
	Network Functions
	Virtualization Architecture
	SDN Controller
	Metric detecting downtime
	Network Topology

	Conclusion
	Future Work
	Appendix

