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Industrial Control Systems
● Mission critical systems

● Need reliable network

● Downtime → Issues

● Problem: network failures cause 
long downtimes due to manual 
intervention
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● Kalman et. al. (2016)
○ SDN used for traffic segmentation
○ SDN-based IDS

● Zhou et. al. (2017)
○ SDN + NFV used to mitigate DDoS attacks
○ No hardware failure detection implemented

● Pavlos Lontorfos (2020)
○ SDN can be used for hardware failover in an ICS environment
○ No automatic hardware replacement implemented in case of a failure

Related Work
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Research question

How could Software Define Networking combined with Network 
Function Virtualization enhance availability in an Industrial Control 

Systems in case of a network hardware failure?
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Research subquestions
● How can SDN combined with NFV provision backup network equipment to 

maintain availability during a network failure?

● What  are  the  consequences  of  provisioning  backup  network  equipment  
in  an  ICS environment for the manageability and connectivity of the network 
and its connected PLCs?

● What are the limitations of using SDN combined with NFV in an ICS 
environment regarding the availability of the connected PLCs?
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Methodology
● Set up a virtualized ICS environment using:

○ OpenPLC
○ Open vSwitch
○ Faucet

● Implement different NFV solutions to detect unreported failures
○ Re-route traffic in case of a hardware failure
○ Redeploy a new network hardware in case of a failure
○ Redeploy a new interface in case of an interface failure

● Benchmark difference between solutions
○ Run ping with interval 10 ms
○ Measure amount of packets dropped
○ Calculate downtime
○ Repeat 10 times
○ With more deployed hosts and switches on the network

● Research advantages and limitations of solutions
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Background: Software Defined Networking
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[1]

● Separation of Control Plane from Data plane

○ Management Plane → Routing, MAC Learning, etc.

○ Control Plane → Centralized/Distributed Controller

○ Data Plane → Forwarding Switches

● Vendor independent 



Background: Software Defined Networking (Cont.)
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● Northbound interfaces
○ Used to connect the control plane to the management plane

■ Communication Between Applications and Controller

■ Allow for monitoring applications (metrics)

■ REST(ful) API

● Southbound interfaces
○ Used for communication between the SDN controller and the 

underlying network devices

■ OpenFlow API



Background: Faucet
● Open source controller using OpenFlow 1.3

● Designed for High Availability (through idempotency)

● Built-in support for Open vSwitch (OVS)

● Supports:
○ Layer 2 switching
○ VLANs
○ BGP
○ Layer 3 and 4 routing
○ ACLs
○ And more

● Release v1.9.53 (December 8, 2020)
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[2]



Background: Faucet
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Background: Open vSwitch
● Virtual switches

● Support for OpenFlow

● Main components:
○ ovs-vswitchd → communication with 

OpenFlow controller
○ kernel datapath → handles packets
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Background: Network Function Virtualization
● Virtual Machines offer network services

○ Intrusion Detection System (IDS)
○ DNS
○ DHCP
○ NAT
○ Firewall
○ Load Balancer
○ Virtual Switches

● Can be used to extend SDN

● Dynamic
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Scenario (1)
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● Two bridges for redundancy 
(br0 and br1)

● Two intermediate switches 
(br2 and br3)

● One bridge goes down 
(br0 or br1)

● Traffic would be rerouted to other 
bridge (br0 or br1)



Scenario (2)
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● One bridge (br0)
● br0 goes down → br0 will be 

redeployed
● Connection re-established



Scenario (3) - NFV
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● Used same topology as scenario 2
● Write code for NFV to look which ports are 

connected to bridge (1)
● Get TX value of each port every two seconds and 

compare them to previous values (2)
○ Two seconds needed to perform evaluation on 

104 bridges
● Interface fails → tx value stops increasing → 

interface recreated

(1)

(2)



Results: Scenario (1)
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● 4 switches - 2 hosts → Mean: 
5576ms

● 54 switches - 102 hosts → Mean: 
7217ms

● 104 switches - 202 hosts → Mean: 
10050ms



Results: Scenario (2)
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● 4 switches - 2 hosts → Mean: 
48ms

● 54 switches - 102 hosts → Mean: 
75ms

● 104 switches - 202 hosts → 
Mean: 130ms



Results: Scenario (3)
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● 4 switches - 2 hosts → Mean: 
507ms

● 54 switches - 102 hosts → Mean: 
608ms

● 104 switches - 202 hosts → Mean: 
1254ms



Results: Comparison
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● Redeployment < Recreation < Rerouting



● Virtualization Architecture
○ Xen hypervisor type 2 used
○ Container-based
○ Native hypervisor (Type 1)

● SDN controller
○ Faucet written in Python → High-level language
○ Floodlight (Java), Nox (C++) or Trema (Ruby and C)

● Network Functions
○ Scenario (3) limitation on 2 seconds interval for every check
○ Scenario (2) and (3) not feasible on hardware

● Topology
○ Single-point of failure for intermediate switches

■ Scenario (2) could be used (48-130 ms average downtime)
● Downtime measured as ICMP packets dropped

○ Bidirectional traffic
○ Short interval 

Discussion
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Conclusion

How can SDN combined with NFV provision backup network equipment to 
maintain availability during a network failure?

○ Monitor health of switch and its ports
○ Instruct system to redeploy switch or port if failure detected
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Conclusion (Cont.)

What  are  the  consequences  of  provisioning  backup  network  equipment  in  an  ICS 
environment for the manageability and connectivity of the network and its connected 

PLCs?
● Reduced downtime

○ Redeployment < Recreation < Rerouting

● Restored connectivity
○ After redeployment, ICMP packets arrived at destination

● Restored manageability
○  Device re-established connection to Faucet dynamically 
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Conclusion (Cont.)

What are the limitations of using SDN combined with NFV in an ICS environment regarding 
the availability of the connected PLCs?

● Additional load on the controller and network 
○  Checks require bandwidth and CPU power

● Reaction delays present 
○ NFV interval to check every 2 seconds

● Limited effectivity in case of using hardware 
○ Hardware cannot be re-deployed dynamically
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Conclusion (Cont.)

How could Software Define Networking combined with Network Function 
Virtualization enhance availability in an Industrial Control Systems in case of a 

network hardware failure?

● Dynamic decision
○ Automatic deployment of virtualized hardware in case of a failure
○ Automatic port recreation in case of a failure
○ Automatic rerouting
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Future Research
● Run experiments on hardware

● Look into different SDN controllers
○ E.g. Nox ( C++ ), Floodlight ( Java )

● Research NFV function efficiency
○ Code efficiency
○ Shorter check intervals
○ Network size limitations
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Summary
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● Reduce downtime in ICS environments
○ Redeployment < Recreation < Rerouting

● SDN combined with NFV has shown to be an effective solution
○ Improve availability by reducing downtime

■ Re-routing
■ Redeployment of a switch
■ Recreation of a port

● Detecting failures and dynamically take action according to the scenario
○ No human intervention
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