SE

Deloitte.

Real time asset inventory in ICS

Research Project 1, 2021

Supervised by: Michel van Veen Pavlos Lontorfos

Research project by: Artemis Mytilinaios

1

Industrial Control Systems (ICS)

- → Combination of control systems
- → Used to operate and automate industrial processes.
- → Types: SCADA/DCS

Identify an ICS asset

- → Active scanning
 - Probing the targeted device

- → Passive scanning
 - Collecting and analyzing information by sniffing network traffic

→ Hybrid scanning

Combination of Active and Passive

The Problem!

→ Outdated network diagrams

→ ICS components are fragile

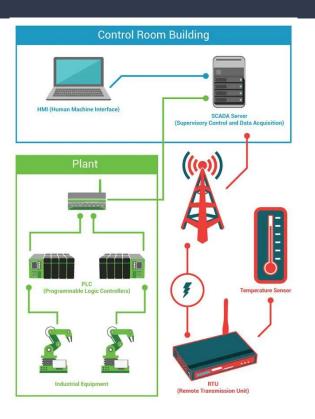
→ Active scanning can cause a lot of problems (e.g. Putting targeted devices out of service)

→ Passive scanning collects small part of the device information

Research Questions

What are the added benefits of hybrid scanning compared to passive?

Research subquestions


→ What are the problems that can occur by using hybrid scanning in ICS environments?

→ How certain types of ICS devices behave under hybrid scanning and what are the problems that may arise in relation to these specific devices?

Components of ICS

- → Programmable Logic Controller (PLC)
- → Human Machine Interface (HMI)

→ Remote Terminal Unit (RTU)

[2]

Related Work

- → Adam Wedgbury et al.(2015)
 - Problems that exist during an identification process on ICS.
- → Mohammed Abdulrazzaq et al.(2018)
 - Definition of asset identification in ICS.
 - Introducing Hybrid scanning.
- → Sergei Bantseev et al.(2003)
 - Available tools for network scanning.
 - No available tools that can do it all.

Methodology(1)

- → Created an ICS environment with the help of:
 - OpenPLC
 - Scada Br
 - VMware Workstation
 - ♦ Kali Linux
- → Conducted experiments using passive tool.
 - Grass Marlin

Methodology(2)

- → Conducted experiments using hybrid approach, with the following combination of active and passive tools.
 - Mmap
 - Modbus-discover
 - Plcscan
 - Scadascan
 - Grass Marlin
- → Analyzed incoming information and document the state of the devices.
 - Performance
 - Availability
 - Responsiveness

Background: OpenPLC

- → OpenPLC is an open source tool developed by Thiago Alves.[3]
 - Aiming to emulate PLC programs in different environments

- → Supports multiple programming languages.
 - Ladder Logic (LD)
 - Instruction List (IL)
 - Function Block Diagram (FBD)
 - Sequential Function Chart (SFC)
 - Structured Text (ST)

Background: Scada Br

→ Open source tool.

 Aiming for development of Automation, Data acquisition and Human Machine Interfaces (HMI).

\rightarrow Useful tool for:

- Universities
- Automation professionals
- Technical schools

Background: Scanning tools(1)

→ Grass Marlin

- Open source tool.
- Passively sniff network traffic.

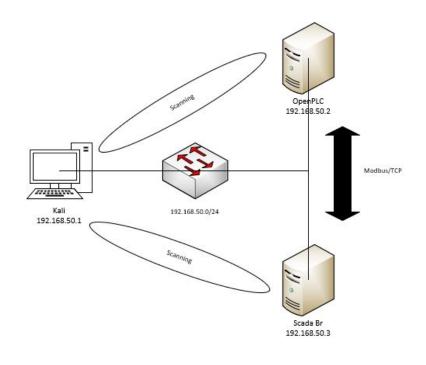
→ Plcscan

- Developed by Dmitry Efanov.[4]
- Discovers PLCs by scanning for Modbus/TCP protocol.

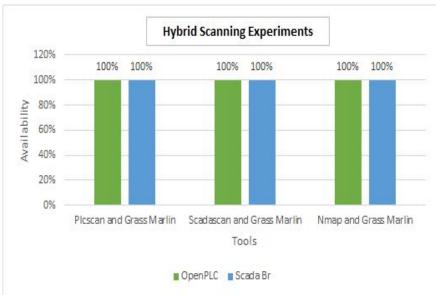
Background: Scanning tools(2)

→ ScadaScan

- Written in Perl
- Identifies Modbus slaves
- Identifies Distributed Network Protocol 3 (DNP3) slaves


→ Nmap

→ Test environment


→ Scanning OpenPLC and Scada Br

→ Collected information and necessary results

Results(1)

- → OpenPLC and Scada Br remained stable during the hybrid scan, using Plcscan and Grass Marlin.
- → Hybrid scanning with Scadascan script and Grass Marling, also resulted to a stable operation.
- → Modbus-discover script and Grass Marling (hybrid scanning) confirmed the continuous availability of the devices.

Results(2)

- → Passive scanning provided information regarding:
 - Manufacturer
 - ICS Protocol(Modbus)
 - Role (Master/Slave)
 - Operating System
- → Hybrid scanning also provided the above information with the following additions:
 - Open port number, Unit ID (Plcscan)
 - DNP3 slaves (ScadaScan)
 - Slave ID data (Nmap: Modbus-discover)

Discussion

- → The results indicate that
 - Hybrid approach did not arise any fragility on the targeted devices.
 - Hybrid scanning offered more information of the targeted devices compared to passive scanning.
- → Limitations of this research:
 - This approach was not tested on physical devices due to COVID-19 restrictions. → The results may differ when the experiments are conducted on physical devices.
 - Only specific devices included in the research

Conclusion(1)

What are the added benefits of hybrid scanning compared to passive?

- → Collection of more details for the targeted devices.
- → Variety of tools can be chosen for scanning.
 - Flexibility to choose appropriate tools depending on the targeted devices.

Conclusion(2)

What are the problems that can occur by using hybrid scanning in ICS environments?

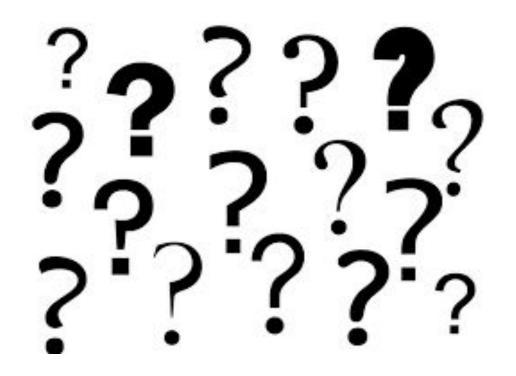
- → Based on the virtualized environment that hybrid scanning was tested, no problems arose regarding
 - Performance
 - Availability
 - Responsiveness

Conclusion(3)

How certain types of ICS devices behave under hybrid scanning and what are the problems that may arise in relation to these specific devices?

- → OpenPLC and Scada Br
 - Stable operation
 - No interruptions

Future Work


→ Expand the scope of the research using physical equipment, like Siemens or ABB PLCs.

→ Investigate what is the methodology of scanning that vendor's tool use, and what are the possibilities of integrating these methods to the hybrid approach.

Thank you!

Research project by: Artemis Mytilinaios Supervised by: Michel van Veen Pavlos Lontorfos

Questions

References

[1] E-Spin, "Understanding industrial control system(ics) basic: E-spin group," Apr 2020.

[2] "Scada systems (supervisory control and data acquisition)," Jan 2021.

[3] T. Alves, "The openplc project," 2018.

[4] M. S. Javate, "Study of adversarial and defensive components in an experimental ma-chinery control systems laboratory environment," tech. rep., NAVAL POSTGRADU-ATE SCHOOL MONTEREY CA, 2014.