
Profiling the abuse of exposed secrets in public repositories

Maurice Mouw
mmouw@os3.nl

University of Amsterdam

February 2020

Abstract

The goal of this research was to gain insight into how secrets are abused after they have been leaked into public
repositories on several code collaboration platforms. To do the research the git project CloMo was created, consisting
of infrastructure-as-code scripts that automatically provision a monitoring system and provide automation to
setup an AWS environment. Using the automation provided by CloMo, honey tokens were intentionally leaked to
GitHub, Bitbucket, GitLab and SourceForge. The events generated during the experiments were analyzed and
classified using the monitoring platform and MITRE ATT&CK framework. Tokens were mainly found on Github
depending on the method of leaking. Of the tokens used all attempts started with a discovery technique, for
example DescribeInstances. In case the initial attempt did not return an error several attacks initiated automation
attempting to modify the cloud compute infrastructure by creating large (expensive) Elastic Compute instances.
The likely motivation behind setting up these instances is to mine crypto currency.



1 Introduction

In 2013 GitHub shutdown its search function because de-
velopers started posting links to sensitive files on twitter
[4]. In 2016 an Uber breach in which 57 million cus-
tomer records were exposed, was due to an access key
being accessible via GitHub [16]. A Starbucks API key
for JumpCloud was discovered by a researcher in a public
GitHub repository [10].

Code collaboration and code sharing have become a
common practice today. Both software developers and
system administrators/engineers use code collaboration
platforms like GitHub, Gitlab, Sourceforge or Bitbucket
to share and collaborate on code. A common problem
with code collaboration is that unintentionally or even
worse intentionally passwords or (secret) keys are stored
in a public code repository.

Meli et al. [13] did a large scale analysis of secret
leaking on GitHub, they found that over a 100.000 repos-
itories contained secrets and thousands of new, unique
secrets are leaked every day. Many tools have been devel-
oped for scanning and finding secrets in repositories for
example publicly available tools like Git-secrets, Shhgit
or commercial variants like GitGuardian or TruffleHog.

The use of code collaboration and cloud platforms in
which secret keys are (un)intentionally stored seems to
be a given today. While many tools exists to find secrets
it still happens (frequently) that secrets are published as
part of a public repository. This brings some interesting
questions, what happens with these keys after they are
published? How fast are keys/secrets found by malicious
users? How are these keys/secrets exploited after they
have been found and can the usage of the abusers be
profiled?

2 Research question(s)

How are leaked credentials/secrets on code collaboration
platforms like GitHub, GitLab, SourceForge and Bitbucket
found and abused by malicious users in a cloud platforms
like Amazon Web Services?

2.1 Sub-research questions

1. How do malicious users find secrets in
public code collaboration repositories?

2. How can the use of leaked
credentials/secrets be profiled?

3. How do malicious users (ab)use found
credentials in code collaboration
repositories?

4. How can the adverse affects/abuse of
compromised keys be limited?

3 Related work

As mentioned in section [1] Meli et al. [13] did a large
scale systematic study in which they used GitHub’s search
API and GitHub’s BigQuery snapshot to extract and vali-
date hundreds of thousands of potential secrets in a nearly
six month scan of real-time public GitHub commits and
a public snapshot that covered 13% of the open-source
repositories. They used regular expressions to find poten-
tial secrets and a set of filters to validate found secrets.
The researchers estimate that 93.74% of the discovered
API secrets are sensitive and 76.24% of the found asym-
metric keys are sensitive. Sinha et al. [18] discuss several
techniques for detecting and mitigating leakage of keys.
The authors discuss a pattern based detection technique
in which regular expressions in combination with static
prefixes/suffixes (e.g. the AKIA prefix for Amazon Web
Services API tokens) are used, this resulted in many false
positives. A heuristics-driven filtering detection technique
in combination with a standard password strength esti-
mator is discussed, this resulted in a 100% recall with a
precision of 91%. Finally a Source-based program slicing
technique in which a algorithm was developed and used in
combination with a password strength filter, this resulted
in a 100% precision with a 84% recall. Atlassian created a
open-source project called Spacecrab in with which they
automated the creation of Amazon Web Services (AWS)
API tokens with the goal of detecting malicious access
attempts. Bourke and Grzelak [3] researchers from At-
lassian created a tool called Spacecrab with which AWS
API tokens can be created in bulk. The researchers used
Spacecrab to create AWS API tokens and publish these
to GitHub/Gist and Pastebin. Of the published tokens on
GitHub 82.38% were found after approximately 30 minutes
of publication. Only 9.33% of the AWS tokens published
on pastebin were discovered and this took considerably
longer with an average of approximately 25 hours.

1



4 Background

This paper analyzes the effect of leaking secret tokens
on code collaboration platforms. This section discusses
some of the technologies and concepts that are relevant
to the research. First several important technologies of
AWS are discussed. Next a description of honey tokens
is given and relevant technologies regarding this. Finally
the Mitre ATT&CK framework is discussed, which was
used to analyze the results of the experiments.

4.1 AWS concepts and technologies

AWS is one of the major cloud-providers that exists today.
With a majority of the market share its currently the
market leader as a cloud provider [2]. AWS is adopted by
companies both large and small to host its IT infrastruc-
ture or services and comes with a plethora of technologies
to create, configure and manage those infrastructures
and/or services. AWS provides several methods to harden
and monitor cloud infrastructure and services hosted in
AWS.

Amazon allows a Cloudtrail to be created that logs
important management events. Cloudtrail logs events like
listing, creating or modifying information about objects,
for example the creation of an Elastic Computing (EC2)
instance or Virtual Private Cloud (VPC). These logs de-
pending on the configuration could be stored in the AWS
logging facility called Cloudwatch or they could be stored
into a persistent storage called an Simple Storage Service
(S3) bucket. A Cloudtrail by default spans all regions in
the AWS account it was created.

To limit the actions users can take within a single
account policies can be defined to restrict access. AWS by
default applies implicit least privilege access rights when
creating an account via the Identity and Access Manage-
ment (IAM) tooling. If no policies are linked directly or
indirectly via a role/group to an IAM account allowing
certain actions the user can effectively do nothing. The
exception to this is the root account, a root account by
default is allowed to do everything. Within a single AWS
account its not possible to restrict the actions the root
account can take. However, this is possible when creating
an organization.

An organization allows management of AWS accounts
linked to said organization. Within the context of an
organization there is one AWS account that is the man-
agement account and all other AWS accounts linked to

that organization are managed accounts. This structure
allows for more stringent controls on any of the managed
accounts via Service Control Policies (SCPs) and the con-
solidation of billing for all managed accounts. The SCPs
can be assigned to managed accounts directly or via an
Organizational Unit (OU). With SCPs restrictions can
be set so that the actions the root account of a man-
aged AWS account can be limited. When AWS accounts
are members of an organization it is possible to create a
Cloudtrail in the management account of that organiza-
tion that spans all member accounts and its regions. This
effectively allows monitoring of all AWS accounts from a
single Cloudtrail within the management account of the
organization.

4.2 Honey tokens

Honey tokens are the digital entities such as digital data
created and solely analyzed which are used to capture
digital thefts [12]. Honey tokens can come in many forms
it could be an URL, database record, user account, fake
executable or e-mail address. The goal of honey tokens is
(early) detection of malicious activity within an organiza-
tion or environment.

In essence credentials of an account with extremely
limited rights that is intentionally put in a location where
malicious users can find it could be considered a honey
token. In AWS it is possible to manually create accounts
with AWS API keys or use the tools like the in section 3
mentioned Spacecrab project to create these honey tokens.
It is also possible to use honey tokens created with the
tooling provided by the organization Thinkst. Thinkst
provides a publicly available service for creating canary
tokens (synonymous to honey token), these are valid users
with AWS API keys created on the Thinkst AWS infras-
tructure [19]. When such a token is used a mail will be
send to the configured mail address and details like the
IP-address and user-agent regarding the use of the token
will be provided.

4.3 Mitre ATT&CK

MITRE ATT&CK is a globally-accessible knowledge base
of adversary tactics and techniques based on real-world
observations [14]. The Mitre ATT&CK model was created
by Mitre in 2013 and has gone through several updates
since its creation. In 2019 Mitre published ATT&CK for
Cloud. With this publication Mitre attempts to describe

2



the tactics and techniques malicious users/attackers use
against cloud environments and services and possible mit-
igation techniques to counter those. The model provides
information about different techniques used by attackers in
stages/tactics to get access to information or environments
without detection.

5 Methods

To analyze the effect of leaking secrets a Lab environment
with a set of experiments were defined. This section first
describes the Lab and AWS environment setup to do the
experiments in. Next a description is given about the ex-
periments, the first experiment using static users and code
repositories is described. Finally the second experiment
using unique users and repositories is described.

5.1 CloMo

To collect, process and analyze the logging generated dur-
ing the experiments the git project CloMo [15] was created.
The CloMo project contains a set of automation scripts
using Terraform [9] and Saltstack [17] to setup an environ-
ment that can receive logging from AWS and to provide
automation to deploy the experimental setup required for
the research project. To reduce costs and limit risk the

lab environment was setup on a physical server in control
of the author.

The Lab environment setup with CloMo consists of 4
Virtual Machines (VM), the first VM created is installed
and configured with Saltstack to automate the configu-
ration of the other nodes within the environment and
the nodes deployed in AWS during the experiment. The
second VM is installed with Docker and setup to host
the Thinkst canary token Docker container. The third
VM is installed and configured with Logstash [6], Elastic-
search [5] and Grafana [8] to collect, process and analyze
logs gathered during the experiments. Jenkins [11] was
installed on the fourth VM to allow the setup of pipelines
to automate most of the prerequisites required for the
experiments.

A pipeline was setup in Jenkins to automate much of
the required work for the experiments as shown in figure
1. The pipeline creates and configures the AWS instances
using Saltstack and Terraform as the first step. It updates
the prefix in Logstash to identify each iteration of an
experiment as the second step. It then collects dummy
repositories from a private GitLab server. It collects the
required honey tokens as the fourth step. The passwords
and AWS tokens were provided in a file as part of a Git
repository. The tokens are then inserted into the dummy
repositories and pushed to their respective public reposi-
tories on GitLab, GitHub, Bitbucket and SourceForge.

Figure 1: Overview of the Lab environment setup for the experiments detailing the steps a Jenkins pipeline takes to setup an experiment.

3



An additional set of Infrastructure-as-Code (IaC)
scripts were setup using Terraform to create the required
AWS accounts, IAM users, network objects (VPC, Subnet,
SecurityGroup, etc.), S3 buckets and Cloudtrail logging in
the Amazon account(s) setup for this experiment. How-
ever, these are not part of the pipeline but only need to be
executed once to create the proper environment to do the
experiments in. To reduce risk and provide more stringent
controls a organization was setup in AWS from which
the created management account could apply SCPs on
any managed AWS accounts created with Terraform. The
created policies allowed limitations to be set on managed
account(s) for example disabling any actions the root user
of a managed account could take as shown in the example
code snippet below.

{
” Vers ion ” : ”2012−10−17”,
”Statement ” : [

{
” Sid ” : ” RestrictEC2ForRoot ” ,
” E f f e c t ” : ”Deny” ,
” Action ” : [

” ec2 :∗” ,
” hea l th :∗” ,
”iam :∗” ,
” importexport :∗” ,
”networkmanager :∗” ,
” o r g a n i z a t i o n s :∗” ,
” p r i c i n g :∗” ,
” s3 : GetAccountPublic ∗” ,
” s3 : ListAllMyBuckets ” ,
” s3 : PutAccountPublic ∗” ,

] ,
” Resource ” : [

”∗”
] ,
” Condit ion ” : {

” St r ingL ike ” : {
”aws : Pr inc ipa lArn ” : [

” arn : aws : iam : : ∗ : root ”
]

} ,
”ArnNotLike ” : {

”aws : PrincipalARN ” : [
”arn : aws : iam : : ∗ : [ r o l e ] ”

]
}

}
}

]
}

5.2 Experiments

Two experiments were defined for this research project.
Considering the MITRE ATT&CK framework, the ex-
periments make initial access to AWS accounts easy by
publishing honey tokens on the public facing repositories
in GitHub, GitLab, Bitbucket and SourceForge. These

tokens provide access to valid IAM accounts setup in a
managed AWS account to monitor actions taken by ma-
licious users via Cloudtrail after they have established
access to a valid account as shown in figure 2.

5.2.1 Experiment 1 - static users and code repos-
itories

For the first experiment one managed AWS account was
setup with four Identity Access Management (IAM) users.
These IAM users had read access to several AWS services
in the eu-west-1 region (e.g. EC2, S3, Lambda, VPC).
Each IAM account was used for leaking its AWS API
honey tokens on only one of the code collaboration plat-
forms. This allowed for identifying on which platform
a given token was found. For each iteration and code
collaboration platform a unique set of AWS and Canary
tokens were generated. In total 4 valid AWS tokens and 4
Canary tokens were published per iteration.

The first set of experiments consisted of 10 iterations.
In the first 5 iterations the tokens were published for 2
hours before rotating the honey and canary tokens. The
following 5 iterations the honey and canary tokens were
published for approximately 24 hours before rotating them.
The AWS API honey tokens were embedded in the main
Terraform file using the keywords required by Terraform
to identify the keys as shown in the code snippet below.

prov ide r ”aws” {
r eg i on = ”eu−west −1”
acc e s s key = ”<AWS API TOKEN ID>”
s e c r e t k e y = ”<AWS API TOKEN SECRET>”

}

The canary tokens were embedded in a set of Cloud-init
files as shown in the code snipped below, these files also
contained simple MD5 hashed password (e.g. Secret13)
for one account that allowed access to one of the four
EC2 nodes in AWS. This to uniquely identify from which
platform a given password was used. All code including
the tokens were published in a single commit. A single
Jenkins pipeline was setup for the experiment in which
the AWS instances were created, the different reposito-
ries were retrieved, the tokens were updated and code
repositories were pushed.

echo acc e s s key = <CANARY ID> >> s3 bucket . conf
echo s e c r e t k e y = <CANARY SECRET> >> s3 bucket . conf

4



5.2.2 Experiment 2 - unique users and reposito-
ries

In the second experiment 5 unique accounts were setup
with one public repository for each of the code collabo-
ration platforms. A unique IAM user was setup for each
code collaboration platform for each account totaling 20
IAM users. The IAM accounts in this experiment had
read access to multiple services in all AWS regions. Two
iterations were executed per unique account resulting in
a total of 10 iterations. The leaked honey tokens were

active for 72 hours in each of the repositories before de-
activating the keys. In these runs the honey tokens were
added in separate commits using the AWS format. This is
the format used to export the AWS token as environment
variables as shown in the code snippet below. The honey
tokens in this case only consisted of AWS API tokens and
clear-text passwords.

aws ac c e s s k ey i d=”<AWS API TOKEN ID>”
a w s s e c r e t a c c e s s k e y=”<AWS API TOKEN SECRET>”

Figure 2: Overview of the AWS experimental environment.

5



6 Results

This section the results of the experiments are described.
First the results of the first experiment are described which
used static users and repositories . Followed by the results
of the second experiment in which unique users and code
repositories were setup.

6.1 Static users and code repositories

For each iteration of the first experiment, the code con-
taining honey tokens and passwords were committed to
the same repository on each of the code collaboration plat-
forms. The following tables provide an overview results of
the first experiment.

GH GL BB SF
API tokens found 2/10 0/10 0/10 0/10

Canary tokens found 2/10 0/10 0/10 1/10
Percentage found 20% 0% 0% 5%

Table 1: Overview of tokens found by malicious users in the first exper-
iment, regardless of the amount of times a single token was (ab)used.

GH = GitHub, GL = GitLab, BB = Bitbucket, SF = SourceForge

Each iteration contained one usable AWS API honey
token and one Canary token resulting in a total of 10
tokens per code collaboration platform for all iterations
combined. Table 1 details the amount of tokens found in
the first 10 experiments by malicious users. None of the
MD5 hashed passwords were used in the EC2 instances.
None of the AWS API or Canary tokens were found on
GitLab or Bitbucket, while only 4 of the 20 tokens placed
in the public GitHub repository were found and 1 of the
20 tokens placed in Sourceforge. However, all AWS API
tokens created for the experimental AWS environment
on GitHub or Bitbucket triggered the automated quar-
antine policy within a minute of committing the token.
This effectively denied any actions on such a quarantined
account.

Table 2 details the fastest and slowest time after which
tokens were found and the amount of times they were
used. The identification was done based on the time gaps
between the attempts a honey token was used. The fastest
a token was (ab)used is 45 minutes and 26 seconds, this
was a token placed on Github. The longest it took for a
token to be found was approximately 56 and a half hours,
this was a canary token placed on Sourceforge in iteration
8. The AWS API honey token placed in the Sourceforge
repository that allowed access to the AWS environment

ITR FA SL HON CAN
1 01:44:56 01:27:33 0 3
2 00:45:26 01:37:33 4 0
3 N.A. N.A. 0 0
4 N.A. N.A. 0 0
5 N.A. N.A. 0 0
6 01:18:34 03:04:56 3 0
7 N.A. N.A. 0 0
8 54:03:57 56:24:21 0 3
9 N.A. N.A. 0 0
10 04:04:59 N.A. 0 1

Table 2: Detailed overview of the time (HH:MM:SS) in which tokens
were found and the amount of times they were used per iteration.

ITR = Iteration, FA = Fastest, SL = Slowest, HON = Total usage
attempts AWS API honey tokens, CAN = Total usage attempts

Canary tokens

was already rotated and unusable.

Action T*U MAT
DescribeInstances 7 CID

GetAccountAuthorizationDetails 2 AD
N.A 5 N.A

Table 3: Overview of actions taken by abusers with found tokens.
T*U = Times used, MAT = Mitre ATT&CK Technique, CID = Cloud

Infrastructure Discovery, AD = Account Discovery

Table 3 details the type of actions that were taken,
how many times those were taken and what type of tech-
nique this is considering the MITRE ATT&CK framework.
From the tokens that were abused most attempts were
made using the AWS Software Development Kit (SDK) for
JavaScript version 2 (aws-sdk-js), this is one of the official
tools provided by AWS for interfacing with the APIs. All
attempts made that could be recognized started with a De-
scribeInstances regardless of the user agent. In some cases
this was followed by a GetAccountAuthorizationDetails.
The regions in which this action was executed differed but
most of them were in the AWS region us-east-1.

6



6.2 Unique users and code repositories

The following tables show the results of the second set of
experiments in which unique users with unique repositories
were setup for each iteration. In total 10 AWS API honey
tokens and 10 clear-text passwords were committed to
public repositories and this was done in separate commits
after committing the initial code base.

GH GL BB SF
API tokens found 10/10 0/10 0/10 0/10
Percentage found 100% 0% 0% 0%

Table 4: Overview of honey tokens found by malicious users in the
second experiment, regardless of the amount of times a single token was
(ab)used.

GH = GitHub, GL = GitLab, BB = Bitbucket, SF = SourceForge

Table 4 details the amount of times each of the leaked
honey tokens were used. All honey tokens placed on
GitHub were found and none of the tokens place on GitLab,
Bitbucket or SourceForge were found. None of the clear-
text passwords were ever used.

REPO FA SL HON
1 00:14:19 11:22:01 3
2 00:04:27 26:41:13 4
3 00:08:16 01:30:15 3
4 00:02:56 06:52:58 2
5 14:45:36 26:37:01 9

Table 5: Detailed overview of the time (HH:MM:SS) in which tokens
were found and the amount of times they were used per iteration.
REPO = Public Code Repository, FA = Fastest, SL = Slowest, HON
= Total usage attempts AWS API honey tokens, TOT CAN = Total

usage attempts Canary tokens

Table 5 shows the fastest and slowest time after which
tokens were used and the amount of times they were found
by uniquely identifiable malicious users. The identification
was done based on the time gaps between the attempts a
honey token was used. During this experiment the fastest
a honey token was found and used, was in 2 minutes and 56
seconds for one of the repositories. The time in which the
honey tokens were used varied some tokens were used in
minutes while others took over a day before any attempts
were made. The longest duration before a token was used
was 26 hours and 41 minutes. While some tokens were
used only once by a unique malicious user, others were
used by multiple unique users, the most being 9 times.

After a key was found different types of Discovery
technique were used. There were few attempts to get more
information regarding the users, roles and policies that

were configured. There were several attempts to get more
information about MFA devices and access-keys. Table
6 provides an overview of most used account discovery
attempts that were made in the AWS environment.

Action T*U MAT
GetUser 5 AD

GetCallerIdentity 4 AD
ListUsers 2 AD
ListRoles 2 AD

ListMFADevices 2 AD
ListGroups 2 AD

Table 6: Overview of the Account Discovery actions taken most by
abusers with found tokens.

T*U = Times used, MAT = Mitre ATT&CK Technique, AD =
Account Discovery

There were multiple attempts to get more information
about the infrastructure by using Cloud Infrastructure
Discovery (CID) techniques. Table 7 details some of the
CID techniques used most frequently. Most attempts to
gain information about the AWS environment started
with DescribeInstances. One of these attempts used au-
tomation to iterate over all the AWS regions requesting
information about the VPCs, Subnets, SecurityGroups,
addresses, hosts among other objects. In this case Boto3
was used which is based on the AWS SDK for Python.

Action T*U MAT
DescribeInstances 43 CID
DescribeSubnets 25 CID

DescribeVpcs 25 CID
DescribeRouteTables 23 CID
DescribeNetworkAcls 23 CID

DescribeHosts 22 CID
RunInstances 1076 MCCI

Table 7: Overview of the actions taken most by abusers with found
tokens.
T*U = Times used, MAT = Mitre ATT&CK Technique, CID = Cloud

Infrastructure Discovery, MCCI = Modify Cloud Compute
Infrastructure

After an initial Discovery technique there were occur-
rences where automation was activated if those discovery
attempts did not return an error/access denied. In total
automation was used four times with the aws-sdk-js ver-
sion 2. These attempts tried to created dozens or hundreds
of large EC2 instances over a span of minutes in multi-
ple AWS regions. A total of 1076 attempts were made
to modify the cloud compute infrastructure as shown in
Table 7.

7



7 Discussion

In this section the results are discussed. First the some of
the aspects of searching in the different code collaboration
platform is discussed. Next the difference in committing
to code repositories is discussed, namely on GitHub. The
profile of repositories in which secrets were leaked is dis-
cussed and finally the effect of the AWS quarantine policy
is discussed.

7.1 Searching in Code collaboration plat-
forms

From the code collaboration platforms on which secrets
were leaked during the experiments only GitHub provides
a REST API with extensive search capabilities on public
repositories. An example of this is the ability to search
commits done to public repositories on a specific date.
There are limitations to this, for example the results per
page is set to a maximum of 100 and the maximum amount
of requests for non enterprise users is set to 5.000 per hour
[7]. This still allows the retrieval of 500.000 commits per
hour done to public repositories.

Both GitLab and Bitbucket provide (REST) APIs for
searching. The API provided by GitLab limits searches to
a specific repository, there are advanced search function-
alities available in GitLab however, this is a paid feature.
The API provided by Bitbucket seems to limit anonymous
requests to 60 per hour, when logged in this is increased
1000 requests per hour. However, to browse commits the
API also seems to require to specify a specific repository
[1]. Considering these restrictions, its harder to search
public repositories on both platforms. Sourceforge does
not provide an API with search capabilities that any of
the other repositories do provide. This helps explain why
published tokens are frequently found on GitHub and not
on any of the other platforms.

7.2 Committing to Code repositories

In addition to an API for searching, the contents and size
of a commit also seem to influence the results. In the
first experiment the tokens were committed as part of
larger code bases in a single commit. In addition to the
keywords identifying tokens the format could also make
a difference as the first experiment using the Terraform
format was not found often. The second experiment used
the shell environment variable method used by AWS to

identify the tokens and these were published in a commit
only containing those values. This seemed to increase ease
of finding the tokens.

7.3 Repository profile

The experiments did not focus on the profile of the code
bases in which the honey tokens were leaked. The abuse
of tokens seems random and its likely that a high profile
repository that is setup by a large enterprise might attract
more and different type of attackers. A targeted attack
would most likely result in more/different types of tech-
niques to do reconnaissance, attempts to consolidate and
obfuscate gained access to an AWS environment.

7.4 AWS Quarantine policy

When AWS tokens linked to an IAM account are pushed
to a public repository on GitHub or Bitbucket a quaran-
tine policy is automatically applied to that IAM account.
In the first experiment the policy was not removed on
accounts on which it was applied. The negative result
when tokens were tested by malicious users seemed to
deter them from doing any further investigation on what
the tokens could do in AWS. To get better data the quar-
antine policy was removed in the second experiment. For
two iterations of the second experiment this resulted in
a malicious user trying to access the account before the
quarantine policy was removed. Again the attackers did
not make any other attempts after the initial attempt
failed.

8 Conclusion

The goal of this research was to identify how leaked creden-
tials/secrets on code collaboration platforms like GitHub,
GitLab, SourceForge and Bitbucket are found and abused
by malicious users in a cloud platforms like AWS. In order
to identify how secrets are found and abused a set of ex-
periments were defined in which secrets were intentionally
leaked to code collaboration platforms.

To monitor if the tokens were found a open-source
project was setup called CloMo. CloMo contains a fully au-
tomated setup using Terraform and Saltstack for Logstash,
Elasticsearch, Grafana and Jenkins. CloMo was used to
setup the lab environment and AWS environment in which
the experiments were performed. The lab environment
was used to collect and analyze the Cloudtrail and Filebeat

8



logs from the AWS environment. Jenkins was equipped
with several pipelines to automate the creation of the
AWS environment and publication of the honey tokens to
public code repositories for the experiments.

Of the honey tokens stored in public repositories on
GitHub, GitLab, Bitbucket and SourceForge only those
on GitHub were frequently discovered by malicious users.
The successful reconnaissance step on GitHub could be
contributed to the REST API GitHub provides for search-
ing through commits done to public repositories. Mali-
cious users can find tokens within minutes after publishing
the tokens. When a honey token was found almost all
attempts started with a discovery step using the Describe-
Instances action, in case an error was returned this was
sometimes followed by an additional Discovery action like
GetAccountAuthorizationDetails.

In case no error occurred the malicious user in some
cases attempted to create EC2 instances with large re-
sources, for example the r4.large, m3.large or m5n.large
instance types. This process seemed to be automated as
there was a large number of attempts in a short period of
time using the AWS SDK for JavaScript in combination
with Tor. The most likely reason for this is to use the
instances for crypto mining. Actions to consolidate access
to an account by for example changing the password or
setting up lambda’s that created new users or tokens were
not made.

In the first set of experiments all commits done to
Bitbucket and GitHub automatically triggered the secret
scanning features enabled on all public repositories on
either platform. This in turn automatically enabled a
quarantine policy on the IAM user in AWS, effectively
disabling any actions that IAM user could take. When a
malicious user attempted to abuse found tokens and the
response resulted in an error containing an Access Denied
or Client.UnauthorizedOperation due to the quarantine
policy no further actions were taken.

A good practice to reduce risk would be to create IAM
users with very specific policies enabled, allowing it to do
only those things the account was setup for. Regardless
if an AWS environment is used by a single person or
multiple people, using an organization and setting up
at least 2 AWS accounts can help limit the actions a
malicious can take when setup with proper SCPs. A proper
SCP on a managed account can limit the risks in case
a (root) AWS account is compromised. It also provides
monitoring capabilities from the management account
across all managed accounts via Cloudtrail. Additional

SCPs could be setup to limit actions taken on managed
account for example blocking the removal of a Cloudtrail
or blocking the use/creation of instances or services in
specific regions.

Relying solely on the secret scanning feature and pro-
tection provided by GitHub or Bitbucket could still result
in compromised accounts. When publishing tokens to a
private Bitbucket repository and switching it to a public
repository the quarantine policy in AWS will not be trig-
gered. When a token ID and token secret are published in
separate commits they will not trigger any secret scanning
done by the GitHub or Bitbucket, while they are found by
malicious users. Using tools like Shh-git or Git-secrets in
combination with Git (pre-commit) hooks could prevent
a secret from every being committed to a repository. This
ensures that a secret is not accidentally committed to
a public repository even if they are split over multiple
files. In practice making secrets available to other users
of software is not always avoidable, in those cases using
a tool like Vault for storing and using secrets like API
tokens or passwords is a better practice then storing them
in files.

9 Future work

Code collaboration platforms with public repositories have
existed for several years now. The abuse of (accidentally)
leaked secrets can be traced back to shortly after people
starting publishing code in public repositories. It would
be interesting to redo the experiments after a period of
time (e.g. 1 year) to see if secrets are still found, if GitHub
is still the platform on which most secrets are found and
how they are abused after they are found. Leaking secrets
to more/different platforms could also provide interesting
results.

This research did not focus on the profiling of the code
bases/repositories secrets were leaked in. Using a code
base that has had more exposure (e.g. forking a well-
known project) might provide very different results and
could be interesting as an extension to the experimental
setup provided by CloMo. Creating the profile of a fake
company could also be an interesting approach. This could
be done by setting up websites, multiple repositories and
other items that increase the profile of the published code
to see if this attracts different types of attackers.

Finally the policies currently provided in CloMo could
be modified with less stringent policies on the created

9



IAM users. This could provide more interesting data on
how an attacker tries to use the gained access. The risks
of this could be high costs at the end of the experiment if
the policies are not carefully setup and reviewed.

References

[1] Atlassian. API request limits.
https://support.atlassian.com/bitbucket-
cloud/docs/api-request-limits/.

[2] A. R. Bala, B. Gill, D. Smith, D. Wright,
and K. Ji. Magic quadrant for cloud
infrastructure and platform services.
https://www.gartner.com/document/3989743,
Sep 01, 2020.

[3] D. Bourke and D. Grzelak. Breach detection
at scale with aws honey tokens. In Black-
hat Asia, https://www.blackhat.com/asia-
18/briefings.htmlbreach-detection-at-scale-with-
aws-honey-tokens, 20-23 March, 2018 Mar 23,
2018.

[4] D. Bradbury. Github users warned over security risk.
The Guardian, Jan 25, 2013.

[5] Elastic. Elasticsearch.
https://www.elastic.co/elasticsearch/, Jan 14,
2021.

[6] Elastic. Logstash. https://www.elastic.co/logstash,
Jan 14, 2021.

[7] Github. Resouces in the REST API.
https://docs.github.com/en/rest/overview/resources-
in-the-rest-apipagination.

[8] Grafana Labs, https://grafana.com/grafana/.
Grafana, Jan 14, 2021.

[9] HashiCorp. Terraform. https://www.terraform.io/,
Jan 06, 2021.

[10] A. Hashim. Starbuck exposed an api key in github
public repository. Jan 4, 2020.

[11] Jenkins. Jenkins. https://www.jenkins.io/, Jan 13,
2021.

[12] N. Kambow, L. Kaur, and . Passi. Honeypots: The
need of network security. International Journal of
Computer Science and Information Technologies, Vol.
5 (5), 5, 2014.

[13] M. Meli, M. R. McNiece, and B. Reaves. How bad
can it git? characterizing secret leakage.

[14] The MITRE Corporation,
https://attack.mitre.org/versions/v8/matrices-
/enterprise/cloud/. Cloud Matrix, Oct 27, 2020.

[15] M. Mouw. CloMo.
https://github.com/Mandorath/CloMo, Feb 7,
2021.

[16] E. Newcomer. Uber paid hackers to delete stolen data
on 57 million people. Bloomberg News, Nov 21, 2017.

[17] Saltstack. Salt Project. https://saltproject.io/, Nov
18, 2020.

[18] V. S. Sinha, D. Saha, P. Dhoolia, R. Padhye,
and S. Mani. Detecting and mitigating secret-key
leaks in source code repositories. pages 396–400,
https://ieeexplore.ieee.org/document/7180102, May,
2015. IEEE.

[19] Thinkst. Canarytokens’ new mem-
ber: AWS API key Canarytoken.
https://blog.thinkst.com/2017/09/canarytokens-
new-member-aws-api-key.html, 15 sep, 2017.

List of Figures

1 Overview of the Lab environment setup
for the experiments detailing the steps a
Jenkins pipeline takes to setup an experiment. 3

2 Overview of the AWS experimental envi-
ronment. . . . . . . . . . . . . . . . . . . . 5

List of Tables

1 Overview of tokens found by malicious users
in the first experiment, regardless of the
amount of times a single token was (ab)used. 6

2 Detailed overview of the time (HH:MM:SS)
in which tokens were found and the amount
of times they were used per iteration. . . . 6

10



3 Overview of actions taken by abusers with
found tokens. . . . . . . . . . . . . . . . . 6

4 Overview of honey tokens found by mali-
cious users in the second experiment, re-
gardless of the amount of times a single
token was (ab)used. . . . . . . . . . . . . 7

5 Detailed overview of the time (HH:MM:SS)
in which tokens were found and the amount
of times they were used per iteration. . . . 7

6 Overview of the Account Discovery actions
taken most by abusers with found tokens. 7

7 Overview of the actions taken most by abusers
with found tokens. . . . . . . . . . . . . . 7

11


	Introduction
	Research question(s)
	Sub-research questions

	Related work
	Background
	AWS concepts and technologies
	Honey tokens
	Mitre ATT&CK

	Methods
	CloMo
	Experiments
	Experiment 1 - static users and code repositories
	Experiment 2 - unique users and repositories


	Results
	Static users and code repositories
	Unique users and code repositories

	Discussion
	Searching in Code collaboration platforms
	Committing to Code repositories
	Repository profile
	AWS Quarantine policy

	Conclusion
	Future work

