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Abstract

Iris recognition can be a useful method of biometric identification in a mul-
titude of applications. Previous research determined that iris recognition can
be done using a smartphone camera taking iris photographs in visible light.
This research attempts to determine whether iris recognition can be done at
a distance using commodity sensors and the difference in matching accuracy
between near-infrared light and visible light in this scenario. This is done by
taking photographs of the authors’ irises up close and at a distance, both with
and without an infrared light filter in the camera. Furthermore, a dataset of
iris photographs taken with a smartphone was obtained. Blurred copies of
some photographs were made to simulate the photograph being taken at a dis-
tance and copies were made of these photographs where the red channel was
isolated. These photographs were compared using John Daugman’s algorithm
implemented in Libor Masek’s MATLAB code. The photographs of the authors’
eyes at a distance did not yield any conclusive results, likely due to the cam-
era or environment being unsuitable for iris recognition at a distance. Other
experiments did indicate that near-infrared light is slightly better for matching
accuracy.

Keywords: Iris recogntion, Distance, Near-infrared light, Visible light,
Hamming distance
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1 Introduction

Iris recognition can be both an accurate and convenient method of biometric
identification. Since many years, algorithms for iris recognition achieved a very
low false-positive rate[1]. Furthermore, iris recognition has some added advan-
tages. For example, the pattern in the iris is an epigenetic trait[2], meaning that
it is not influenced by genetics. This allows for biometrics to be used even in
situations where there exist multiple people with nearly the same genes such as
family or twins. Moreover, it does not require touch like fingerprint identifica-
tion and hand outline identification do it also does not require the person to be
identified to get as close to a scanner as with a retinal scan. Both these qualities
can be desirable from a hygiene standpoint or for persons with a certain cultural
background. Lastly, the pattern in the iris does not alter much over time[2].
This ensures that the template likely remains valid for much longer than for
example in biometrics such as facial recognition.

Commercially, only high-grade sensors are used for iris recognition. Further-
more, these sensors are only used in controlled environments. This makes iris
recognition only useful in settings such as access control, where the subject
knows to identify itself and actively cooperates herein. In a forensic setting,
however, it is much more interesting to identify a person that appears in images
where that person does not actively try to identify himself. The first use case
one might think of could be to identify suspects, but identification of victims
and bystanders could be useful to forensic investigators as well. In modern so-
ciety, imaging sensors are built into a plethora of devices, such as smartphones
and home security systems. The ability of these devices to record images where
irises can be recognized could, therefore, be of great value to forensic inves-
tigators. This ability is affected by factors such as distance to the camera,
which impacts the resolution of the final image, lighting and the specular reflec-
tion of ambient light on the cornea and angle of the iris relative to the sensor.
These specular reflections should be invisible to a sensor which detects light in
the near-infrared wavelength spectrum but either blocks out light in the visible
spectrum or records when there is very little light in the visible spectrum present.

This research will focus specifically on the type of lower grade sensors that
is ubiquitous in modern society and the distance at which these sensors can
still accurately detect irises. Furthermore, it will also assess if images taken in
the near-infrared spectrum of light wavelengths are more accurate than images
taken in the visible light spectrum. In order to make such assessments, the
following research questions should be answered.
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1.1 Research Questions

The main research question in this work is as follows:

How does iris recognition perform when presented with photographs
taken with low-quality sensors at a distance in near-infrared light as
opposed to similar photographs taken in visible light?

To answer this research question, four separate subquestions need to be an-
swered.

• How accurately can irises be recognized in photographs from low-quality
sensors taken in the visible light spectrum?

• How does distance to the camera affect the accuracy of iris recognition in
photographs from low-quality sensors taken in the visible light spectrum?

• How accurately can irises be recognized in photographs from low-quality
sensors taken in the near-infrared spectrum?

• How does distance to the camera affect the accuracy of iris recognition
in photographs from a low-quality sensor taken in the near-infrared spec-
trum?
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2 Related work

Daugman [1, 2, 3] has pioneered iris recognition and created a widely used iris
recognition algorithm. Later, other algorithms have been developed. These
algorithms would be compared to one another like in the work of Hsiung and
Mohammed [4] who compared the performance of two iris recognition algorithms
in the specific use-case of attendance monitoring. Some researchers attempted
to use Artificial Intelligence (AI) for iris recognition, such as the work of Minaee
et al. [5] who created a VGGnet based AI for iris recognition. Nguyen et al.
[6] attempted a different approach using pre-trained, off-the-shelf components
to create a Convolutional Neural Network for iris recognition.

Interest increased in creating algorithms that could do iris recognition in a more
difficult environment, such as the work of Zhao and Kumar [7] who created an
AI called UniNet for iris recognition based on corresponding features. Uninet
was tested on a dataset of iris photographs taken in non-ideal environments.
Connaughton et al. [8] researched another aspect of iris recognition, namely the
sensors used to capture the photographs. They compared three different iris
recognition sensors and used three different iris recognition algorithms to miti-
gate bias introduced by the algorithm. They concluded that the combination of
a sensor and an algorithm should be considered when measuring identification
accuracy, as opposed to considering these components individually. Gangwar
and Joshi [9] also investigated the sensors, though instead focussed on the com-
patibility and accuracy of different iris sensors when old sensors are replaced
with newer sensors. Liu et al. [10] tested whether photographs of different
image quality can be used for iris recognition. Huang et al. [11] investigated
whether AI-based image reconstruction of poor quality iris images would im-
prove the recognition accuracy.

Yet other research focussed on specifically commodity sensors, such as the work
of Trokielewicz [12] who experimented with iris photographs using the main
camera of an iPhone model 5S. He found that algorithms that were created for
recognizing irises in photographs taken in the near-infrared spectrum are also
suitable to recognize irises in photographs taken in the visible light spectrum.
Alonso-Fernandes et al. [13] also experimented on iris recognition using two
different smartphone cameras as sensors. They found that when resolution had
been artificially reduced, it can be enhanced again using super-resolution to
improve the match rate.
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3 Methods

3.1 Experiments

To answer the research question, two types of experiments were done for each
of the subquestions. One of these experiments involved the author taking pho-
tographs of their own eyes at different distances. The other type of experiment
involved artificially reducing the resolution and extracting red wavelengths on
existing iris photographs to simulate different distances between the subject and
the camera and the photo taken in near-infrared light. In total eight experiments
were done, with experiments 1 and 2 addressing subquestion 1, experiments 3
and 4 addressing subquestion 2, experiments 5 and 6 addressing subquestion 3
and experiments 7 and 8 addressing subquestion 4.

Table 1 presents an overview of the experiments and their attributes. For exper-
iment 1, the author took five close-up photographs of their own eyes to test their
matching accuracy against one another. For experiment 2, five photographs of
irises of the same person, taken on the same day, were tested against each other
for their matching accuracy. For experiment 3, the author took photographs
of their own eyes at ten different distances. These photographs are matched
to the close-up photograph of the author’s eyes and the matching accuracy is
tested. In experiment 4, one photograph per iris was artificially blurred to four
different levels. The resulting photographs were then matched to one other iris
photograph and the matching accuracy relative to the matching accuracy with-
out blurring was tested. For experiment 5, the red-light-filter of the camera was
removed and the same methodology as experiment 1 was be applied. For ex-
periment 6, the photographs of irises were converted to grayscale images using
the red channel and the same methodology as experiment 2 was be applied. For
experiment 7 the modification of experiment 5 was kept and the methodology
of experiment 3 was applied. For experiment 8 the conversion of experiment 6
was applied and the methodology of experiment 4 was followed.

3.2 Materials

The camera chosen for this research is the Trust Spotlight Pro webcam. This
camera was chosen because the infrared filter can be removed quite easily. Fur-
thermore, it features a manual focus lens, making it easier for the author to
photograph their own irises close-up. Finally, the camera has a resolution of 1.3
megapixels which is comparable to many lower resolution cameras embedded in
popular devices such as selfie camera’s in smartphones and webcams in laptops.
Furthermore, 1.3 megapixels is about the same resolution as a screen capture of
a frequently used video quality. During experimentation, however, it did turn
out that the photographs were saved in a resolution of 640 x 480 pixels, which
amounts to only 0.3 megapixels. It was decided to keep these photographs at
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Experiment
Number

Sub-
research
question

Iris photographs Type of light Distance

1 1 Author iris photographs Visible Close up
2 1 Smartphone iris dataset Visible Close up
3 2 Author iris photographs Visible Distance
4 2 Smartphone iris dataset Visible Simulated distance
5 3 Author iris photographs Near infrared Close up
6 3 Smartphone iris dataset Near infrared Close up
7 4 Author iris photographs Near infrared Distance
8 4 Smartphone iris dataset Near infrared Simulated distance

Table 1: Experiments performed in this research

this resolution because this resolution corresponds with the resolution of pho-
tographs in the dataset, which is also 640 x 480 pixels.

3.2.1 Dataset

For this research, the Warschau Biobase Smartphone Iris dataset version 1.0 was
used[12]. This dataset was chosen because it was taken with the rear camera
on an iPhone 5S, which is a popular smartphone which was first introduced to
market in 2013 [14]. It can, therefore, be classified as a commodity sensor and
fits the goal of this research. This dataset contains iris photographs of both
the left and right eye of a test subject, taken up close and with the built-in
flash turned on. These photographs are taken in two sessions, with the subjects
blinking and looking away between photographs to introduce inter-measurement
noise. The amount of photographs varies per eye, per session and person. For
this research, only photographs from the first session were used. This is done to
reduce the amount of data due to time restrictions. For the experiment without
modification to the photograph, only five photographs per eye were used. This
also excluded any iris for this experiment if there are less than 5 photographs of
it in the dataset. The decision to use an equal amount of pictures was made to
prevent differentiation in accuracy levels between irises due to one iris having
more photographs available than the other. The number five was chosen as a
balance between minimizing test subject exclusion, the sample size for each iris
and limiting experimentation time.

3.3 Variables

The up-close photographs of the authors’ irises were taken at a distance of
around 5 centimetres to ensure that the iris is represented by a large number of
pixels, while still retaining a sharp focus on each picture. As with the dataset,
the author also looked away and blinked in between photographs to introduce
inter-measurement noise. The distances at which the photographs at a distance
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are taken increased with 10 centimetres every photograph, with the nearest
and furthest distance being 10 centimetres and 100 centimetres respectively.
These distances are based on an estimation of how much pixels will represent
the iris taking into account the relatively low resolution of the Trust Spotlight
Pro camera. The photographs were taken in the middle of the day to control
lighting conditions as much as possible, though many aspects of lighting could
not be controlled.

3.4 Algorithm and software

The software used in this research is presented in table 2. The experimental
environment was set up on a virtual machine, using the Virtualbox software
version 5.2.34 for management. The operating system on the virtual machine
was Ubuntu 20.04. The software to compare irises does not appear to have an
official name, but will from here on be referenced as iris recognition software. It
is code written by Libor Masek in the MATLAB environment[15]. The version
of the MATLAB environment installed was MATLAB R2020a. For the prepa-
ration and transformation of the iris images, ImageMagick version 6.9.10-23 was
used. For the iris photographs taken at a distance, the surrounding image was
cropped away. The GNU Image Manipulation program version 2.10.20 was used
for this.

The iris recognition software works based on the algorithm developed by John
Daugman [3]. The createiristemplate.m function, amongst other steps, detects
the iris, separates it using a mask and stretches it out according to Daugman’s
rubber sheet model[3]. It is then encoded to a template, consisting of binary
values. The code creates a template of the iris, also referred to as the IrisCode.
The gethammingdistance.m function then calculates the Hamming distance of
two given templates and masks. The Hamming distance is a measure of how
dissimilar the two irises are. Given that it consists of binary values, a theoreti-
cal Hamming distance of 0.5 indicates two irises are randomly distant, meaning
they likely are not the same iris. Two more similar, or identical irises, will have
a lower Hamming distance. The discussion of which Hamming distance merits
a positive identification at which confidence level is outside of the scope of this
research. Instead, Hamming distances are used as values relative to one another
to evaluate matching accuracy. Daugman’s results of cross-iris comparison [1]
can be kept in mind to estimate which values indicate a match and which values
do not.

The blurring was done with ImageMagick, by applying a Gaussian blur to the
images. The radius of the gaussian blur was 2 and the sigma was 1 for the
first blur. For every subsequent blur both values are doubled, thereby always
having a radius that is twice the size of the sigma. The largest blur was that
of a radius of 32 and a sigma of 16, though this data was not adopted in the
results as on average 71% of these measurements would fail. These values were
chosen so that the radius would not limit the blurring and so that the furthest
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working simulated distance would be found without generating so much data
that it could not be processed due to time constraints. ImageMagick was also
used for converting visible light images into the gray colorspace, since the iris
recognition software can only take grayscale images as input. The distribution
of red, green and blue color channels was kept at default for the images meant
to represent images taken in visible light. For the images that were simulated
to be taken in the near-infrared spectrum however, only the red color channel
used was used for the conversion to the gray colorspace.

Software name Version number Distributor
Matlab R2020a MathWorks Inc.
Virtualbox 5.2.34 Oracle Corporation
Ubuntu 20.04 Canonical Ltd.
ImageMagick 6.9.10-23 ImageMagick Studio LLC
GNU Image Manipulation Program 2.10.20 The GIMP Team
MATLAB code for iris recognition - Libor Masek

Table 2: Software used in this research
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Experiment numbers
1 2 3 4 5 6 7 8

Comparison
error

Left Iris 0 96 0 228 1 49 0 116
Right Iris 0 96 0 181 0 32 0 91

IrisCode
extraction error

Left Iris 0 11 5 11 0 2 22 2
Right Iris 0 0 5 10 0 2 29 7

Irises
omitted

Left Iris 0 40 0 40 0 0 0 0
Right Iris 0 40 0 40 0 0 0 0

Initial amount of
comparisons

Left Iris 10 700 50 700 10 350 50 350
Right Iris 10 700 50 700 10 350 50 350

Usable
measurements

Left Iris 10 553 45 421 9 299 28 232
Right Iris 10 564 45 469 10 314 21 258

Table 3: Numbers of errors due to comparisons, numbers of errors due to
IrisCode extractions, numbers of comparisons omitted due to lack of pho-
tographs, numbers of comparisons planned and the final number of usable mea-
surements obtained for these comparisons taking the failures into account.

4 Results

In the results of experiments performed on the unaltered iris images of the
dataset, some entries of the database were omitted as they did not have enough
iris photographs taken in that particular session. Therefore, of person 8, 24, 29,
and person 62 the left iris was omitted from test results. For person 17, 20, 24
and 29 the right iris is omitted from test results. Since the database contains
iris photographs of 70 persons in total, both left and right eye, this results in
66 left irises and 66 right irises. Furthermore, the eye comparison code would
fail to detect irises in some images and results for a certain eye of a certain
person would not be produced by the script. These results are omitted in cal-
culations such as means and plotting of graphs. At times when the code did
successfully extract an IrisCode, it did occasionally return a NaN value instead
of a numerical value to represent the Hamming distance. This likely indicates
an error in the matching of the two irises, though the exact root cause could
not be determined due to time constraints. The frequency of these values and
the remaining legitimate values are displayed in table 3. The NaN values are
also not included in the calculation such as means nor in the creation of plots.
All decimal numbers are rounded down to three digits after the decimal point
for readability.

The results of experiment 1 and experiment 5 are presented together in table
4. The values are Hamming distances resulting from the iris comparisons. In
these results, we can see that the average Hamming distance is lower for the
comparisons done in near-infrared light. However, comparisons of photographs
in near-infrared light are not invariably more accurate than comparisons in near-
infrared light.
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Comparison
Left iris
Visible light

Right iris
Visible light

Left iris
Near-IR light

Right iris
Near-IR light

1 - 2 0.498 0.385 0.247 0.497
1 - 3 0.418 0.477 0.369 0.307
1 - 4 0.49 0.503 0.449 0.431
1 - 5 0.477 0.401 0.336 0.336
2 - 3 0.489 0.384 NaN 0.390
2 - 4 0.442 0.396 0.286 0.410
2 - 5 0.222 0.341 0.383 0.479
3 - 4 0.517 0.274 0.455 0.376
3 - 5 0.484 0.369 0.271 0.392
4 - 5 0.464 0.378 0.348 0.470
Average 0.450 0.391 0.349 0.409

Table 4: Results of experiment 1 and experiment 5, five close-up iris photographs
of each eye compared to one another.

Figure 1 displays a box-and-whisker plot of the average Hamming distance cal-
culated per iris for both experiment 2 and experiment 4. The top and the
bottom line of the box represent the first and the third quartile of these values.
The line in the middle of the box represents the median. The caps at the end of
the whiskers represent the highest and lowest average Hamming distance found
in these experiments, outliers excluded. Outliers are represented as circles, with
outliers defined as being more than one and a half times the interquartile range
above the third quartile or below the first quartile. The total average of all
these measurements in experiment 2 is for the left eye 0,283 and for the right
eye 0,299. In experiment 4 the total average of all measurements is 0,268 for
the left eye and for the right eye it is 0,291. These averages indicate a slightly
lower average Hamming distance for photographs taken in near-infrared light.
The box-and-whisker plot seems to support this, with only minute differences
between the medians and inter-quartile ranges of comparisons in visible light
and the comparisons in near-infrared light.
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Figure 1: Box-and-whisker plot representing the medians, interquartile ranges
and outliers of the averages taken of the 10 comparisons for each iris.

Average result values of experiment 3 and experiment 7 are displayed in ta-
ble 5. Missing values are due to one of the photographs at a distance failing to
be processed by the iris recognition software and therefore all matches to close
up photographs failing. In this experiment, we see relatively high Hamming
distances, with no clear variance at a greater distance as opposed to a short
distance. Hamming distances in comparisons in near-infrared light are slightly
higher in most values, though the difference is small.

For experiment 6 and 8, the averages of the Hamming distances in the blurred
images are presented in table 6. In these results, we see that the average Ham-
ming distance mostly increases with the level of blurring, save for the compar-
isons of the right eye in near-infrared light. We also see that the average Ham-
ming distance is generally better for comparisons done in near-infrared light.
Finally, we see that in some cases the Hamming distance even decreased at
higher levels of blurring in comparisons in near-infrared light. Box-and-whisker
plots representing the individual measurements of experiment 6 and 8 are pre-
sented in figure 2 for the left iris and figure 3 for the right iris. Again the
line in the middle of the box represents the median of the measured Hamming
distances and the top and the bottom line of the box represent the third and
first quartile respectively. The outliers are represented as circles and defined as
more than one and a half times the interquartile range below the first quartile
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Distance
in cm

Left eye
Visible
light

Left eye
Near-IR
light

Right eye
Visible
light

Right eye
Near-IR
light

Difference
Left eye

Difference
Right eye

10 0.433 0.428 0.427 -0.005
20 0.457 0.404 0.422 0.426 -0.053 0.004
30 0.424 0.410
40 0.450 0.429 0.455 0.428 -0.021 -0.027
50 0.420 0.439 0.415 0.019
60 0.420
70 0.430 0.389 0.432 0.429 -0.043 -0.002
80 0.469 0.440 0.466 0.026
90 0.429 0.404 0.463 0.387 -0.025 -0.075
100 0.478 0.455

Table 5: Averages of measurement values of self-taken iris photographs taken at
a distance when compared with photographs taken close-up. Last two columns
indicate the difference between averages of the visible light spectrum and the
near-infrared spectrum. Negative numbers indicate a lower Hamming distance
in the near-infrared spectrum.

or above the third quartile. These plots do not indicate as clear a trend as the
averages do however, with both higher and lower means and interquartile ranges
in near-infrared light compared to visible light.
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Average Hamming distance measured
Left eye
Visible light

Left eye
Near-IR light

Right eye
Visible light

Right eye
Near-IR light

Original 0.259 0.251 0.297 0.286
2x1 blur 0.276 0.264 0.314 0.299
4x2 blur 0.277 0.294 0.293 0.281
8x4 blur 0.315 0.273 0.31 0.289
16x8 blur 0.405 0.355 0.362 0.285

Average difference between original and blur
Left eye
Visibile light

Left eye
Near-IR light

Right eye
Visibile light

Right eye
Near-IR light

2x1 blur -0.002 -0.036 0.008 -0.015
4x2 blur 0.019 -0.049 -0.003 0.011
8x4 blur 0.059 -0.064 0.018 0.003
16x8 blur 0.165 -0.157 0.05 -0.051

Table 6: Average values and differential values of the difference between the
Hamming distance of the original comparison and comparison of the blurred
image for experiments 6 and 8. In blur values, the first digit indicates the
radius and the second digit indicates the sigma of the Gaussian blur.

Figure 2: Box-and-whisker plot representing the medians, interquartile ranges
and outliers of the Hamming distances in the individual measurements of the
left iris in experiment 6.
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Figure 3: Box-and-whisker plot representing the medians, interquartile ranges
and outliers of the Hamming distances in the individual measurements of the
left iris in experiment 8.
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5 Discussion

As presented in the results, the photographs taken at a distance with the Trust
Spotlight Pro had relatively high Hamming distances and these values differed
little in relation to the distance at which the photograph was taken. This indi-
cates that this camera in combination with the environment is likely not suitable
for iris recognition at a distance. In this experiment the positioning was done so
that relatively bright light to the surrounding shone through a window directly
into the iris, creating only a specular reflection in the pupil, so it is likely not
specular reflection that made this experiment unsuccessful. It could be related
to lens quality or possibly the photograph was slightly blurred or the iris was at
a slight angle relative to the camera due to the author being both the subject
in the photograph and photographer simultaneously. With the knowledge that
this experimental set-up is imperfect, we can also infer that the improvement
in the Hamming distance in photographs taken at a larger distance is likely due
to measurement error. This result was not supported by the similar experiment
done on the dataset and the improvement was small enough to infer that it is
due to measurement error. Also, knowing that this set-up was unsuitable for iris
recognition at a distance, we cannot infer anything about the difference between
using Gaussian blur to simulate distance and having physical distance to the
subject in photographs.

The experiments of the close-up photographs taken with the Trust Spotlight
Pro, the experiments on the dataset and the blurred version of the dataset pho-
tographs all seemed to indicate that iris recognition does, in general, yield more
favorable Hamming distances. While the sample size of the experiment on the
blurred dataset photographs is relatively large, only two specific photographs
per iris were used. This decision had been consciously made to reduce the
amount of data to process, but more iris photographs compared per iris would
have yielded more accurate results. In the case of the photographs taken of
the authors’ irises, photographs of a larger number of irises would have yielded
more accurate results. This was unfortunately not possible since this research
was done during a global pandemic which prevented the author from taking iris
photographs of volunteers. It should be noted that experiments with greater
Gaussian blurs were also planned. However, in the experiment using a Gaussian
blur with a radius of 32 and a sigma of 16 around 71% of the measurements failed
on average. After reviewing these preliminary results the experiment with even
greater Gaussian blur was scrapped due to time considerations. While these
measurements are not incorporated into the results of this research, they are
a clear indicator that around that level of blurring iris recognition no longer
functions.

The accuracy of this research could be impacted by the fact that the used
methodology did not allow for fine-grained control over the exact wavelengths
of light used to image the irises. Furthermore, while genealogy seems to have
little effect on the pattern in the iris, the color of the iris is determined by genet-
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ics. Brown eyes get their color from the melanin pigment, but blue eyes do not
contain this pigment and get their color from Rayleigh scattering instead[16].
Because near-infrared light excites melanin, the results of this experiment can
vary between differently coloured eyes. Therefore it should be noted that the
irises of which photographs were used in this research likely come from a very
narrow demographic, due to the use of volunteers for a specific research project
at one specific, localized institute.
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6 Conclusion

While matching accuracy did decrease at further simulated distances, the used
iris recognition software can still recognize iris images at a moderate distance.
Though depending on desired insult threshold, it could be undesirable to use
at longer distances especially when making use of cheaper, lower-quality sen-
sors. Though no exact conclusions can be drawn about the prerequisites of iris
recognition at a distance, controlled lightning conditions and a medium quality
sensor are likely desired.

The use of red light seems to have a slightly positive effect on average matching
accuracy, though not in every individual case was matching accuracy better. A
slight absolute decrease of the Hamming distance can contribute greatly to the
confidence level of a match though, due to the steepness of the bell curve of
random comparisons listed in Daugman’s research [1].

The results of the iris comparisons against photographs taken at physical dis-
tances resulted in a sample size too small and results too inconsistent to draw
any conclusions about the difference between physical distance and simulated
distance through Gaussian blur.

6.1 Future work

This research has focused on the accuracy of finding a positive match. Fur-
ther research could focus on the accuracy of non-matches and how to lower the
fraud rate of biometric identification. Both of these aspects are required to
accurately do identification based on iris recognition. While this research has
been very general, it would be valuable to do further research for a specific use
case, where desired insult and fraud rates are known. This way more clarity can
be had about what constitutes an accurate recognition for that specific use-case.

Furthermore, this research has been limited by the datasets currently available.
Ideally, similar experiments would be repeated with a dataset of iris photographs
taken at a distance, in different lighting or of people on the move. While the
UBIRIS datasets of the University of Beira Interior[17] do provide this, these
photographs are taken with higher quality camera’s and therefore cannot pro-
vide deeper insight into the usefulness of commodity sensors.

Another interesting avenue of research is to test which wavelengths of red or
near-infrared light are best for iris recognition, especially considering the spe-
cific iris color of the subject. This information would be very valuable to enable,
for example, iris recognition in security cameras, as night vision footage can be
supplemented with infrared light.
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