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ABSTRACT
The goal of this research was to gain insight into how the
VPN implementations strongSwan,OpenVPN, theWireGuard
kernel implementation (WireGuard-C), and the WireGuard
Go implementation (WireGuard-Go) compare to each other
in terms of performance when a maximum throughput of 1
Gbit/s can be achieved. We did this by measuring the UDP
and TCP goodput, latency, CPU utilization, and connection
initiation time for each implementation. As OpenVPN and
strongSwan are both configurable in terms of ciphers suites,
we measured multiple cipher suites for these implementa-
tions. Our results show that strongSwan with an AES-GCM
cipher in general achieves the highest goodput, lowest la-
tency, and lowest CPU utilization. WireGuard-C achieved
the lowest connection initiation time andOpenVPN thehigh-
est. Furthermore, our results show that WireGuard-Go con-
sistently has the highest CPUutilization and it also achieved
the highest median latency.

1 INTRODUCTION
The division between the traditional untrusted internet and trusted

intranet is becoming less relevant as more organizations host in-

ternal services for their customers and employees [1]. As a con-

sequence, these internal services often need to be reached over

the internet. To ensure data privacy, this data needs to be secured.

One frequently used solution to accomplish this is a Virtual Private

Network (VPN).

Well-knownVPN implementations include strongSwan andOpen-

VPN, which enable two endpoints to create a secure connection

between each other. However, these implementations are often

acknowledged as complex and can be easily misconfigured [2]. In

addition, both implementations are based on standardized proto-

cols. While standardized protocols certainly have their benefits,

standardization takes time and such implementations are often

forced to support obsolete options, such as insecure cryptographic

algorithms [1]. This could lead to cryptanalytic attacks [3] and

software flaws [4].

WireGuard is a new VPN protocol that aims to be simpler, faster,

and leaner than IPsec and better performing than TLS based VPN

solutions such as OpenVPN [5]. WireGuard has got a lot of traction

recently due to being integrated in Linux kernel version 5.6 [6, 7].

Moreover, US senator Ron Wyden recommended WireGuard to the

National Institute of Standards and Technology (NIST) to use it as

the default government VPN solution [8].

In order to research these claims, we want to analyse the perfor-

mance of WireGuard and compare it to existing VPN implemen-

tations. Hence, we will measure the encapsulated UDP and TCP

goodput, latency, connection initiation time, and CPU utilization of

two WireGuard implementations. One WireGuard implementation

is written in C and is included in Linux kernel version 5.6, therefore

we will call this versionWireGuard-C. The other implementation

is written in Go, therefore we will refer to this as WireGuard-Go.
In addition, we will also measure the aforementioned metrics of a

popular IPsec implementation, namely strongSwan. Furthermore,

we will also analyse the open source OpenVPN implementation,

which is called OpenVPN Community. From now on we will refer

to this implementation as OpenVPN.

2 RELATEDWORK
Some research into the performance ofWireGuard has already been

conducted in the past. In 2018, Pudelko published a paper regarding

the performance of VPN gateways [9]. For their research, they cre-

ated their own VPN sandboxMoonWire, which allowed them to eas-

ily alter their VPN configurations. They created and analysed three

different MoonWire configurations, these being based on Open-

VPN, IPsec, and a hybrid approach of the two. The performance of

these configurations on 10 and 40 Gbit/s network connections were

measured and compared to those of existing implementations of

OpenVPN, IPsec and WireGuard. The analysed WireGuard version

was an early version of WireGuard-C. They concluded that none

of these existing VPN implementations were fully able to utilize

the faster network connections, due to being limited by the kernel.

Their own MoonWire implementations bypassed the kernel and

therefore obtained better performance results. WireGuard did not

scale nearly as well as its competitors in fast data environments due

to it spending a large amount of time on locking system resources,

which halts the encryption process. In their results, WireGuard

turned out to be the worst-performing VPN implementation based

on packet processing rates.

Lackorzynski et al. published a paper in 2019, discussing their

research into VPN implementations able to transmit Layer 2 Ether-

net Frames over the Layer 3 IP protocol [10]. In their research, they

analysed which implementation was best-suited for factory envi-

ronments based on performance and security. They compared nu-

merous implementations among which OpenVPN, IPsec, MACsec,

and WireGuard. While MACsec is not a VPN protocol, Lackorzyn-

ski et al. believed it could lead to interesting results. Besides this,

they also analysed the best performing hardware platform for each

protocol, as well as how MACsec could be combined with a Layer

3 VPN implementation. From their research, they concluded that

WireGuard is the VPN solution able to reach the highest throughput

values, with MACsec obtaining the best latency results.

A similar research was conducted by Mackey et al. in 2020. In

this research they compared the performance between the imple-

mentations OpenVPN and WireGuard [11]. They do not specify

whichWireGuard implementation was used in their research. Their
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purpose was to analyse the claims made by WireGuard that an

unoptimized version of WireGuard should outperform OpenVPN.

They conducted this research on virtual machines, both in a cloud

environment and on their own physical hardware, in order to test

both CPU limits and network interface controller capacity. Their

findings show that WireGuard consistently outperforms OpenVPN

in each testing setup. They reason that this is the case due to Wire-

Guards use of multithreading.

Another paper discussing the performance of WireGuard was

published by Osswald et al. in 2020 [12]. For their research, they

connected two virtual servers with a link supporting a traffic speed

of 10 Gbit/s. This setup was used to compare the VPN implementa-

tions of OpenVPN, strongSwan, and a beta version of WireGuard-C.

For each of these implementations network performance for TCP

trafficwasmeasured. Osswald et al. conclude that the three different

implementations all have their own use cases, with WireGuard and

strongSwan both obtaining good performance results in specific

use cases.

As for papers not directly involving the WireGuard protocol,

Kotuliak et al. published their findings in 2011 on the performance

differences between IPsec and TLS based VPN technologies [13].

They concluded that both technologies have their benefits, with

IPsec being slightly faster performance-wise and OpenVPN being

easier to configure. In 2015, Conjaah et al. published a paper in

which they describe the performance differences for OpenVPN

when using a TCP or UDP tunnel [14]. They concluded that for

OpenVPN, a TCP tunnel led to a more stable connection, whereas

a UDP tunnel led to a faster connection at the cost of stability.

3 RESEARCH QUESTIONS
As described earlier, Pudelko, Lackorzynski et al., Mackey et al. and

Osswald et al. already researched the performance of WireGuard.

However, there is room for improvement. Firstly, Mackey et al. only

compared OpenVPN with WireGuard and left the IPsec solutions

untouched, while IPsec solutions are expected to be better perform-

ing [13]. Secondly, OpenVPN supports a multitude of cipher suites.

However, Mackey et al. are unclear as to what cipher suite they in-

vestigated. As Osswald et al. had shown, the choice of cipher suite is

of importance when analysing performance [12]. Thirdly, Osswald

et al., Lackorzynski et al., and Pudelko did research WireGuard-C.

However, WireGuard-C was at that time not integrated into the

kernel. In addition, Mackey et al. and Osswald et al. mention as fu-

ture work that it would be interesting to measure the performance

again when WireGuard is integrated into the Linux kernel, as is

now the case. Fourthly, Osswald et al. and Lackorzynski et al. only

measured TCP throughput and there were no results about other

metrics like UDP throughput. Fifthly, goodput, instead of through-

put, might be more interesting to measure, as this refers to the

usable application data that could be send through the VPN tunnel.

Finally, none of the mentioned authors conducted research into

the AES Galois/Counter Mode (GCM) cipher suite for OpenVPN.

Because of these arguments, we think that it is useful to measure

WireGuard and the other implementations once again. This leads

us to the following main question:

How do the VPN implementations WireGuard-C, WireGuard-Go,
strongSwan and OpenVPN compare in terms of performance when

the maximum link throughput is 1 Gbit/s between two VPN
endpoints?

The main reason we chose to do the measurements in a 1 Gbit/s

environment is that we think that VPNs are primarily utilized over

the internet. At the time of writing, it is rare to see an internet

connection above 1 Gbit/s.

This main question was then divided into multiple sub-questions,

each detailing an aspect related to the performance of the imple-

mentations. The sub-questions are as follows:

• How do the implementations compare in terms of UDP good-

put?

• How do the implementations compare in terms of TCP good-

put?

• How do the implementations compare in terms of latency?

• How do the implementations compare in terms of connection

initiation time?

• How do the implementations compare in terms of CPU effi-

ciency?

Note that by UDP and TCP goodput we mean the UDP and TCP

payload through the VPN tunnel, which, in this case, is additionally

encapsulated by UDP for OpenVPN and WireGuard and Encapsula-

tion Security Payload (ESP) for strongSwan.

4 BACKGROUND
This paper measures the performance of four VPN implementations.

To provide an overview of the related technologies, we will first

explain VPNs in general. Then we will go more in-depth into the

specific VPN implementations strongSwan, OpenVPN and Wire-

Guard. In these sections we will cover whether the implementa-

tions support multithreading, what key exchange they use, and

what encryption ciphers and integrity algorithms they support. In

addition, we will cover whether the implementations operate in

user or kernel-space, how they encapsulate packets and in which

language they are written. An overview of this can be seen in Table

1.

4.1 Virtual Private Networks
Through the use of VPN solutions, clients are able to remotely

connect to applications or services without endangering the se-

curity of the private network. When initiating a VPN connection,

a network tunnel is created between two endpoints of the VPN,

Table 1: Main differences between the VPN implementa-
tions. For the item marked with a star: While strongSwan
does support multithreading, Linux kernel version 5.6.17
does not.

strongSwan OpenVPN WireGuard
Multithreaded Yes* No Yes

Key exchange IKEv1/IKEv2 SSL/TLS WG

Cipher Configurable Configurable ChaCha20

Integrity Configurable Configurable Poly1305

User/kernel-space Kernel* User Kernel

Encapsulation ESP UDP + OVPN UDP + WG

Language C C C/Go
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over which all VPN traffic will be transmitted. VPN implementa-

tions can offers data confidentiality as well as integrity through

the use of encryption and hashing, which prevents any captured

packet from being interpreted or altered. In addition, VPNs can

offer message authentication and sender non-repudiation, ensur-

ing that each message is sent from and to the correct source and

destination, with the sender unable to deny sending the message.

Different VPN implementations make use of different encryption

and integrity algorithms, with most implementations supporting

multiple options to allow the user to decide what algorithms will

be used. These options are not always limited to secure algorithms,

with often insecure algorithms still being supported as well. While

the use of these insecure algorithms is not recommended, they are

still supported due to legacy reasons [15].

The main advantage of VPNs is the fact that physical infrastruc-

ture for a private network is no longer needed, with instead the

private network being created on top of a public network through

the use of tunneling. This solution is not only cheaper, but also

more flexible in regards to changes due to the infrastructure being

virtual. This advantage comes at a cost, as the usage of security

measures affects the performance of the VPNs. Take for example

the encryption process. Besides being computationally expensive,

it also prevents transmitted data from being compressed, hindering

the throughput of the network [16].

These days, popular VPN implementations include OpenVPN

and strongSwan, which are a TLS based and an IPsec based VPN im-

plementation respectively. Both of these implementations support

secure algorithms for encryption and integrity, and are widely used

in the field. As of a couple of years ago, the WireGuard protocol

was introduced, which could become a serious contender in the

VPN market.

4.2 StrongSwan
StrongSwan is an IPsec implementation released in 2005 that pro-

vides encryption and authentication to servers and clients [17].

StrongSwan handles the the keying that is required to setup such

a connection. Whereby the Internet Key Exchange (IKE) protocol

is used to establish security associations (SA) between two peers.

The component that handles this keying in strongSwan is called

charon. Charon installs the negotiated SAs into the kernel. The

actual traffic encryption and decryption is handled by the IPsec

stack of the operating system itself [17]. For simplicity, we will also

refer to this as strongSwan in this paper. The traffic that is send

through the tunnel is encapsulated in ESP packets.

At the time of writing, the latest strongSwan version is 5.8.4

and is written in C. This version does support multithreading [18].

However, it is important to note that the native Linux kernel IPsec

implementation does not fully support multithreading. Instead,

IPsec is ran on the same thread as where the hardware interrupt

arrives [19].

Since IPsec is highly scalable, strongSwan supports many cipher

suites and integrity protocols. The recommended cipher suites

being aes128-sha256-modp3072, aes128gcm16-prfsha256-ecp256

and aes256gcm16-prfsha384-ecp384 [20]. For convenience sake,

we will refer to these ciphers as AES-128-CBC, AES-128-GCM and

AES-256-GCM respectively.

StrongSwan does support both IPsec tunnel and transport mode.

The main difference between the two being that transport mode

only encapsulates the original transport layer protocol. Tunnel

mode encapsulates the original IP header and its payload. While

transport mode can be slightlymore efficient, since it has no original

IP header overhead [21], tunnel mode is more versatile. Tunnel

mode can both be used between two endpoints and it can act as

a VPN gateway [21, 22]. In addition, it supports NAT traversal.

Because of the versatility of tunnel mode, we deem this mode more

interesting and therefore chose to research it in our paper.

The keying material that is necessary to setup a SA is handled by

IKE, which uses the Diffie-Hellman (DH) algorithm to exchange the

keying material. IKE also supports perfect forward secrecy (PFS).

IKE exists in two versions, IKEv1 and IKEv2 respectively. Since

IKEv2 is used in this research, we will give a brief description of its

working. IKEv2 always begins with IKE_SA_INIT and IKE_AUTH
exchanges (a request and response message pair), which normally

would consist of four separate messages [23]. The IKE_SA_INIT
exchange has the function to negotiate cryptographic algorithms,

exchange nonces, and to exchange the keying material through the

DH exchange. After the IKE_SA_INIT exchange, parts of the next

exchange, the IKE_AUTH messages, are encrypted and integrity

protected. The IKE_AUTH messages have the function to exchange

identities and certificates, as well as to establish the first child

SA. The child SA is the controlling entity that holds the state of

a IPsec connection. It includes elements such as the encryption

algorithm, its keys, authentication algorithm and sequence numbers.

All messages that are followed by the IKE_AUTH exchange are

protected with the cryptographic algorithms and keys negotiated

in the IKE_SA_INIT exchange.

4.3 OpenVPN
In 2001, the TLS based VPN OpenVPN was released. This VPN im-

plementation makes use of TLS for its key exchange, which allows

it to configure a secure connection between endpoints. Unlike IPsec,

it is easy to configure, mainly due to the fact that no extensive con-

figuration is needed on the client-side. Two versions of OpenVPN

exist, these being the open-source community edition as well as

the OpenVPN Access Server. The latter is based on the community

edition, but offers additional paid features. For this research, only

the community edition was examined [24].

At the time of writing, the latest OpenVPN version is 2.4.9. A

beta version of OpenVPN 3 is also available, but was excluded from

this research due to being unfinished. OpenVPN 2.4.9 does not

support multithreading, which might cause scalability issues when

trying to send packets more frequently [11]. Multithreading will

be supported in OpenVPN 3, which would potentially impact its

performance.

OpenVPN makes use of OpenSSL in order to provide encryption

and integrity, and therefore supports a multitude of cipher suites

and hashing algorithms. Not only secure algorithms are supported,

as legacy algorithms are also provided. By default, when configuring

a OpenVPN server, a 256 bit version of AES, combined with the

GCM mode of operation is used. As AES-GCM is an Authenticated

Encryption with Additional Data (AEAD) cipher, it also provides

integrity, preventing the need of a separate integrity algorithm such
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as SHA. It makes use of the integrity function GHASH, which takes

place simultaneously with the encryption process. In the past, the

default encryption algorithm was instead 256 bit AES with Cipher

Block Chaining (CBC). In the official manual for OpenVPN, GCM as

well as CBC are listed as recommended modes of operation [25]. In

this research, both AES-256 as well as AES-128 will be investigated,

making the four different OpenVPN cipher suites analysed AES-

128-CBC, AES-256-CBC, AES-128-GCM and AES-256-GCM.

An advantage OpenVPN has over the other VPN implementa-

tions researched in this paper is the fact that OpenVPN allows for

both TCP and UDP tunneling. Using a TCP tunnel leads to a a

better stability at the cost of goodput [14]. In this paper, only the

UDP tunneling option is investigated in order to fairly compare the

different VPN implementations.

OpenVPN can perform at both the Network Layer and the Data
Link Layer. Which layer is used depends on whether tun or tap is

configured. The former is used to provide a network tunnel, while

the latter is used in order to bridge two different networks. In our

research, we have chosen to use the tun option, not only due to it

performing in the same layer as the WireGuard protocol, but also

due to it being more commonly used for this use case [24].

The most common configuration of OpenVPN involves certifi-

cates. In order to confirm whether these certificates are valid, a

key exchange is performed between the client and server. A brief

overview of this key exchange is as follows. First, the client trans-

mits an initiation request, containing the initial data of the client

and a request to the server. This request contains an indicator indi-

cating that TLS will be utilized. A similar request is then returned

by the server, to which the client will respond with an acknowledge-

ment as well as the start of the TLS handshake. This handshake, as

well as the session key creation, are performed through the use of

OpenSSL. After this process has been completed, this key will be

acknowledged and a tunnel is created [26, 27].

Besides the standard certificate-based OpenVPN configuration,

OpenVPN also supports a peer-to-peer mode where secret keys are

used instead. For this mode, the secret keys need to be pre-shared,

and no handshake takes place during this mode [24].

4.4 WireGuard
The WireGuard protocol has been in the works since 2015, and has

spawned two different implementations, namely a Go and a kernel

implementation. At the time of writing, both versions are still in ac-

tive development, with the kernel implementation having received

its first official release early 2020. Both implementations only sup-

port the use of UDP tunnels. However, an additional WireGuard

header is added during the usage of this tunnel.

WireGuard makes use of a multitude of protocols in order to pro-

vide privacy and integrity. The AEAD cipher ChaCha20 combined

with Poly1305 provide these security measures. It also prevents

the need of hashing the message after already having encrypted

it, this is unlike when an algorithm such as SHA is used. In addi-

tion, the Noise Protocol Framework is used during the handshake

process to further provide anonymity, authentication, and PFS. In

order to derive a key from the handshake process, HMAC-based

Key Derivation Function (HKDF) is used, combined with BLAKE2

to safely hash these handshake messages. Lastly, Curve25519 is

used to generate a public and private key pair, which allows for fast

encryption and decryption of messages. During a session, a new

session key is generated, which is deleted after a session is closed,

thus providing PFS [2].

Both implementations of WireGuard make use of only the afore-

mentioned ciphers, with no room for customization. Due to this, as

well as being written efficiently, the codebase of the kernel imple-

mentation is less than 4000 lines of code in size. Both the lack of

freedom in terms of ciphers and the small codebase lead to improved

security. Unlike customization providing VPN implementations, it is

not possible to accidentally make a configuration mistake that leads

to an insecure implementation. The limited codebase makes the

code easier to audit, which makes security easier to be guaranteed

[28].

Both implementations of WireGuard are only able to configure a

peer to peer connection, and no certificate-based option is involved.

This allows for less calculations to be performed, as there are no

certificates that need to be checked for their validity. In general, the

handshake consists of three separate messages. First, the initiator

sends a message to the responder to initiate a connection, to which

the responder sends a reply. At this point, the initiator has set

up a connection, and is able to transmit data. After the responder

receives its first packet of data, it knows that a connection has been

set up, and now it is able to finish its initiation as well [2].

5 METHODOLOGY
This section outlines our methodology. First we will describe our

lab setup, then we will cover which VPN configurations were anal-

ysed. In addition, we will describe the four different experiments

conducted in our research, these experiments measuring goodput,

latency, initiation time and CPU utilization respectively.

5.1 Lab setup
To perform our experiments, a test environment was created where

all network link speeds were 1 Gbit/s. This environment can be seen

in Figure 1. The two servers were connected to each other through

a HP 6600-48G-4XG Layer 3 switch, with a link speed of 1 Gbit/s,

and a MTU of 1500 bytes. A list of the hardware specifications of

the servers can be found in Appendix A.

Notable features that were enabled were Intel Advanced Encryp-

tion Standard New Instructions (AES-NI), Generic Segmentation Of-

fload (GSO), TCP Segmentation Offload (TSO) and Intel Turbo boost.

Kernel version 5.6.17 was installed on the servers, since this was the

latest stable available kernel version at the time of writing, which

included WireGuard-C. On each of the servers, the different VPN

implementations were configured. These being strongSwan v5.8.4,

Figure 1: The lab setup used in this paper. A VPN server and
client were configured on two different servers, connected
to each other through a network switch.
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Table 2: Encryption and integrity algorithms that were mea-
sured in this research.

VPN Solution Encryption Integrity
strongSwan AES-128-CBC SHA256

AES-128-GCM GHASH

AES-256-GCM GHASH

ChaCha20 Poly1305

OpenVPN AES-128-CBC SHA256

AES-128-GCM GHASH

AES-256-CBC SHA256

AES-256-GCM GHASH

WireGuard-C ChaCha20 Poly1305

WireGuard-Go ChaCha20 Poly1305

OpenVPN v2.4.9, WireGuard-C v1.0.20200513 and WireGuard-Go

v0.0.20200320, which were the latest stable versions at the time of

writing.

5.2 VPN configurations
Both OpenVPN and strongSwan support many cipher suites, au-

thentication mechanisms, key lengths, and integrity algorithms,

from now on referred to as VPN parameters. Since many of these

VPN parameters are outdated or experimental, we only experi-

mented with the recommended VPN parameters. StrongSwan solely

provides a list of recommended VPN cipher suites [20], with Open-

VPN only recommending to use GCM or CBC modes [25]. This

only allowed us to use Camellia, ARIA and AES. Out of these cipher

suites, only AES is approved by NIST [29]. Additionally, since we

expect AES to be more commonly used, and the fact that features

such as the performance improving AES-NI were created, only the

performance of AES was investigated for OpenVPN. AES is also

recommended by strongSwan, and therefore we deem it more fair

to compare the AES cipher for OpenVPN. OpenVPN was tested in

UDP tunnel mode, since earlier research showed that it is better

performing [10, 14].

Both WireGuard implementations only support one set of VPN

parameters, which is ChaCha20Poly1305. This VPN parameter set

is also supported by strongSwan, thus we will also research it for

strongSwan. OpenVPN does not support ChaCha20Poly1305 at the

time of writing. The complete list of VPN parameters explored in

this research can be seen in Table 2.

5.3 Experiments
In our research, three main experiments were performed. Namely,

goodput, latency, and initiation time. In addition, whilst performing

the goodput measurements the CPU utilization was also measured.

The experiments are described in more detail below.

5.3.1 Goodput. For the goodput experiments, we based ourmethod-

ology on RFC 2544 [30]. This means that we did goodput measure-

ments for two transport protocols, these being UDP and TCP (CU-

BIC), for several different packet sizes. The packet sizes being 64,

512, and 1024 bytes. In addition, we also did measurements with the

maximum packet size, which is different for each VPN solution, due

to their varying overhead. To discover the maximum packet size, we

Table 3: Maximumpayload sizes for each VPN parameter set
based on a maximumMTU of 1500.

VPN Solution Encryption UDP payload TCP payload
strongSwan AES-CBC 1410 1386

strongSwan AES-GCM 1418 1394

strongSwan ChaCha20 1418 1394

OpenVPN AES-CBC 1375 1351

OpenVPN AES-GCM 1420 1396

WireGuard ChaCha20 1392 1368

Baseline ChaCha20 1472 1448

did preliminary experiments to discover when the packets were not

fragmented. These maximum packet sizes without fragmentation

are shown in Table 3 and are based on the Ethernet MTU of 1500

bytes.

It is important to note that by packet sizes we mean the size

of an IP packet including the payload and its transport protocol.

Thus, in the case of a 64-byte packet and using UDP as transport

protocol, it exists of a 20 bytes IP header, 8 bytes UDP header and

36 bytes of payload. For TCP this is also 20 bytes for the IP header,

32 bytes for the TCP header and 12 bytes for the payload. It should

be pointed out that iPerf generated a TCP header of 32 bytes during

this research.

IPsec adds 34 bytes of ESP overhead when using a GCM or

ChaCha20Poly1305. As IPsec also encapsulates the original IP and

UDP/TCP header this adds an additional 28 or 52 bytes. Another IP

header of 20 bytes is added. The aforementioned amount of bytes

with the payloads of 1418 and 1394 sums up to 1500 bytes for UDP

and TCP respectively. For CBC mode the same principles apply.

However, the payload should always be a multiple of 16 bytes and

is otherwise padded.

For OpenVPN it is more complicated. The OpenVPN header is

24 bytes when GCM mode is used [31]. In the case of encapsulating

a TCP segment, this means that we should deduct the UDP (8),

OpenVPN (24), IP (20), TCP (32) and another IP (20) header. This

equates to 104 bytes, leaving 1396 bytes for the payload. With

UDP 1420 bytes of payload can be sent, since its has 24 bytes less

overhead when compared to TCP. In CBC mode the OpenVPN

header is a bit different. Another difference is that multiples of 16

bytes are encrypted, otherwise, padding is used to fill it up. In CBC

mode the header consists of an HMAC, Initialization Vector (IV),

packet ID, type and Peer ID [31]. In our case, this header is 57 bytes.

For TCP, when adding up all other overhead (80 bytes) and the

payload of 1351 bytes, this totals to 1486. Since multiples of 16 are

used, and our maximum MTU is 1500 bytes, it cannot have 1502

bytes as its maximum payload but rather 1486 bytes. The same

principles apply for encapsulated UDP traffic, except for 24 bytes

less overhead. Important to note is that by default OpenVPN has a

Maximum Segment Size (MSS) of 1450 configured [32]. We changed

this to the maximum value to allow it to send more bytes in one

TCP segment.

Note the smaller payload sizes of WireGuard compared to IPsec.

This is the result of the default MTU size of 1420 bytes that is

configured on the WireGuard interface. Minus the UDP and IP

header, this leaves 1392 bytes for the payload for UDP and 1368
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for TCP. We experimented with increasing the MTU size to 1440,

since the WireGuard header is 16 bytes and each packet also in-

cludes a 16-byte authentication tag [33], combined with the IP and

UDP header this equates to 60 bytes. This should allow more room

for additional payload. However, this yielded no performance im-

provements. Therefore, we decided to use the default 1420 MTU

instead.

All VPN parameter sets that were analysed are listed in Table

2. The experiments were performed with iPerf v2.0.10, which was

used for the UDP and TCP traffic generation. We also performed

baseline goodput measurements to discover the maximum link

goodput. After this, we measured the UDP and TCP goodput for

all VPN implementations. All measurements had a duration of 60

seconds, as is recommended by RFC 2544 [30], and were repeated

one hundred times.

Important to note is that with the 64-byte packet sizes experi-

ment, iPerf was initiated with two parallel threads. This means that

two iPerf threads were used to generate packets. When we used

iPerf with one thread in this scenario, we observed it became the

bottleneck.

We did not experiment with jumbo frames, as we think most

VPN connections will be created over the internet, and therefore

do not deem it likely that jumbo frames can be utilized in most

scenarios.

5.3.2 Latency. The latency tests were performed by the ping utility

for each implementation. In addition, this experiment was also

conducted without the use of a VPN implementation in order to

obtain a baseline measurement. In total, a million ICMP requests

were sent with an interval of a thousand per second. This was done

for every VPN parameter set as listed in Table 2. The ping output

was in turn saved to a text file for further analysis. Through the

ping utility, the round trip time (RTT) between two endpoints was

obtained.

5.3.3 Connection Initiation time. Each VPN implementation allows

for logging, and from these logs, the status of each connection can

Figure 2: The goodput and CPU utilization results for UDP
with the maximum packet size. The bars indicate the good-
put while the lines showcase the CPU utilization.

be obtained. By measuring the time between the initiation and

the moment the logs mention the initiation to be complete, the

initiation time can be extracted. In addition, the packets required

for the setup were collected with tcpdump. With this information,

the difference between timestamps between the first and last packet

needed to set up a connection was used to calculate the initiation

time in milliseconds.

It should be noted that interactions with this log file are not

instantaneous, as it not only takes time to write the message into

the logs, but reading it also expends time. In order to improve the

accuracy of the initiation times obtained, a test experiment was

conducted. An event was inserted into the log file, and read by

the script, while measuring the time elapsed. By extracting the

mean time needed to interact with the log files from the obtained

initiation times, more accurate results were obtained.

Two different metrics were obtained. First, the total initiation

time, including both the handshake and the preprocessing. Secondly,

the time it takes between the two handshakes. This experiment was

repeated one thousand times for each of the four VPN implemen-

tations, with a break of five seconds after starting or stopping the

VPN connection. This prevents a potential strain on resources from

interfering with the results. For this experiment, we considered

WireGuard-C and WireGuard-Go to be two different implementa-

tions.

For strongSwan, IKEv2was used. Ed25519 elliptic curveDiffie–Hellman

(ECDH) was configured for the key exchange with SHA256 as its

integrity algorithm. WireGuard only has one option for the key

exchange, which is also Ed25519 in combination with BLAKE2 for

the integrity. OpenVPN relies on TLS for its key exchange. We

configured OpenVPN to use TLS version 1.3 with Ed25519 as key

exchange algorithm and SHA256 as its integrity algorithm.

As the WireGuard implementations do not make use of certifi-

cate sharing, and instead make use of a pre-shared key, we deemed

this comparison to be unfair. For this reason, secondary configura-

tions for both OpenVPN and strongSwan were tested, with both

Figure 3: The goodput and CPU utilization results for UDP
with a packet size of 64 bytes. The bars indicate the goodput
while the lines showcase the CPU utilization.
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Figure 4: The goodput and CPU utilization results for TCP
with the maximum packet size. The bars indicate the good-
put while the lines showcase the CPU utilization.

implementations making use of pre-shared keys as well. This al-

lows us to not only compare WireGuard fairly to OpenVPN and

strongSwan, but also allows us to compare the connection initiation

times of these different OpenVPN and strongSwan configurations.

It is important to note that OpenVPN configured with a pre-shared

key does not perform a handshake to initiate the connection. The

certificate for strongSwan was based on Ed25519. OpenVPN does

not support Ed25519 for its certificate authentication. Instead, we

chose another elliptic curve algorithm that is also NIST approved,

namely secp384r1 [34].

5.3.4 CPU utilization. Whilst measuring the goodput, the CPU

utilization was measured with the tool mpstat v11.6.1. This allowed

us to measure kernel- and user-level CPU utilization.

6 RESULTS
In this section, the results of our experiments are described and

illustrated. For the different VPN implementations, the goodput,

CPU utilization, latency and initiation time results are shown.

6.1 Goodput
In the following graphs, the goodput in Mbit/s as well as the CPU

utilization percentage can be seen for each investigated packet

size for both UDP and TCP. Each graph showcases the results for

all investigated VPN implementations and their tested encryption

and integrity algorithms. The implementations are abbreviated in

the graphs as OpenVPN (OVPN), strongSwan (SS), and WireGuard

(WG) while the ChaCha20Poly1305 cipher suite is abbreviated as

CC20Poly1305. In this section, only the results for the maximum

and 64-byte packet sizes are shown. Results for packet sizes of

512 and 1024 bytes were obtained, but due to the lack of insight

that could be gained from them, they can be found in Appendix B

instead.

The goodput and CPU utilization results for UDP traffic with a

maximum packet size can be seen in Figure 2. The highest good-

put was obtained by the baseline, reaching a mean of 956 Mbit/s.

Figure 5: The goodput and CPU utilization results for TCP
with a packet size of 64 bytes. The bars indicate the goodput
while the lines showcase the CPU utilization.

The AES-GCM ciphers of OpenVPN perform similar to the three

best performing strongSwan ciphers, all ranging from 921 to 922

Mbit/s. Both versions ofWireGuard are slightly behind at 916Mbit/s

each. While OpenVPN’s AES-256-CBC cipher obtains the lowest

goodput, it still managed to obtain a goodput of 824 Mbit/s. The

standard deviation values for OpenVPN and strongSwan are all

lower than 0.4 Mbit/s, which is smaller than the difference between

that of OpenVPN and strongSwan. In regards to CPU utilization,

both WireGuard-Go and OpenVPN require more resources than

strongSwan and WireGuard-C. The different OpenVPN ciphers

range from 155 to 206% utilization, whereas WireGuard-Go utilizes

268%. It is interesting to note that the strongSwan’s AES-GCM

ciphers have a lower CPU utilization rate than the baseline. Their

utilization rates are around 42%, with that of the baseline being 48%.

The utilization rate is measured as the amount of utilization on each

core of the processor, from which the total is combined into one

metric. As our client-side server was equipped with a quad-core

processor, each core having two threads, the maximum utilization

rate possible would be 800%. Besides the sum of the CPU utilization,

the kernel and user-space utilization can also be seen. OpenVPN

and WireGuard-Go, the implementations not implemented in the

kernel, have a higher user-space utilization compared to the kernel-

based implementations. The value of All does not simply contain

the kernel- and user-space utilization percentages, but also a hand-

ful of other utilization factors such as hardware interrupts, which

were excluded from this graph.

Next up, we have the goodput and CPU utilization results for

UDP with the packet size of 64 bytes, as shown in Figure 3. The

baseline greatly outperforms the VPN implementations in this con-

text, with it reaching a mean of 209 Mbit/s. The next best results

are obtained by strongSwan’s AES-GCM ciphers, which both ob-

tained a mean goodput of 116 Mbit/s. OpenVPN performs the worst

out of all implementations, its best performing algorithm being

AES-256-GCM. This cipher suite only manages to obtain a mean

goodput value of 48 Mbit/s. In regards to CPU utilization, OpenVPN
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Figure 6: A percentile graph of the resulting latencies for the
different VPN implementations. The latencies listed here
consist of the RTT between the VPN client and server.

and strongSwan remain consistent between cipher suites. Open-

VPN achieves a mean utilization rate of 308%, whereas strongSwan

achieves 206%. WireGuard-Go managed to obtain a goodput of 59

Mbit/s, but in return had a utilization rate of 556%.

In Figure 4 the results can be seen for the maximum packet size

when transmitting TCP traffic. The baseline outperforms the VPN

implementations with a goodput of 941 Mbit/s. Out of the VPN

implementations, strongSwan is the best-performing, with its AES-

GCM and ChaCha20Poly1305 cipher suites all obtaining goodput

results rounded down to 906 Mbit/s. WireGuard-C follows behind

with a goodput of 901 Mbit/s. OpenVPN’s CBC mode leads to the

lowest goodput results, with AES-CBC-128 and 256 obtaining mean

goodput values of 528 and 510 Mbit/s respectively. Regarding CPU

utilization, OpenVPN reaches consistent mean utilization values of

around 103%, whereas the three best performing VPNs in regards

to goodput here all have low mean utilization values, utilizing

around 70-80% of the CPU. WireGuard-Go obtains the highest CPU

utilization rate, utilizing 230% of the CPU.

Lastly, the results for TCP with a packet size of 64 bytes can be

seen in Figure 5. The results here are similar between different im-

plementations, with both goodput and CPU utilization not differing

as much as in other graphs. The baseline reaches a mean goodput

of 186 Mbit/s. All four OpenVPN ciphers follow suit with mean

goodput values between 176 and 182 Mbit/s. StrongSwan’s AES-

GCM and ChaCha20Poly1305 ciphers have goodput results ranging

between 178 and 183 Mbit/s. WireGuard-C falls behind here, with

a goodput rate of 156 Mbit/s. Regarding utilization, the baseline

sits at 205%, which is similar to strongSwan’s 210%. OpenVPN is

a bit more CPU intensive with mean utilization values ranging

between 238% and 252%. WireGuard-Go requires once again the

most resources with 311% utilization, from which it gains a goodput

of 170 Mbit/s.

6.2 Latency
The results of the latency experiment can be seen in Figure 6. In this

percentile graph, the median can be seen, as well as the latencies

Table 4: The initiation time for the different VPN imple-
mentations. The results for each implementation are split
into the total amount of time elapsed as well as the time be-
tween the first and last message of the handshake. Besides
the mean, the 50 and 99 percentile values are also shown.

VPN implementation Mean 50% 99%
OpenVPN certificates (Total) 1153.7 1151.8 1285.5

OpenVPN certificates (Handshake) 1144.9 1144.9 1279.1

OpenVPN pre-shared key (Total) 954.9 954.3 968.4

OpenVPN pre-shared key (Handshake) — — —

strongSwan certificates (Total) 33.6 33.7 35.5

strongSwan certificates(Handshake) 4.6 4.6 5.1

strongSwan pre-shared key (Total) 31.8 31.9 34.2

strongSwan pre-shared key (Handshake) 3.4 3.4 3.9

WireGuard-C (Total) 6.9 7.8 8.0

WireGuard-C (Handshake) 0.7 0.7 1.1

WireGuard-Go (Total) 10.6 10.6 10.9

WireGuard-Go (Handshake) 1.0 1.0 1.1

at higher percentile values. The graph showcases that for most

strongSwan data-points obtained, the latency was consistent, as

indicated by the nearly straight line. For the different strongSwan

cipher suites tested, both AES-GCM cipher suites had a median

latency of 0.21 milliseconds, with ChaCha20Poly1305 and CBC both

having latencies of 0.22. Higher latency values were obtained by

OpenVPN. OpenVPN’s best-performing cipher suite is AES-256-

GCM, with a median latency of 0.38 milliseconds. AES-128-GCM,

AES-128-CBC and AES-256-CBC obtained median latencies of 0.40,

0.40 and 0.41 respectively. WireGuard-C performs similarly to the

CBC ciphers, with a median latency of 0.42 milliseconds. A median

of 0.73 milliseconds was obtained by WireGuard-Go.

When observing the results themselves, it can be seen that the

latencies for all implementations except for WireGuard-Go remain

stable 99% of the time. While there certainly are a few lower values

at first, and a slow rise in latencies can be seen, the latency values

at 99% do not differ too greatly from those at the 50% mark. After

the 99% mark, while strongSwan’s results remain stable until the

very end with only a very minor increase, a larger increase can be

seen in the other implementations. The latencies for OpenVPN and

WireGuard-C clearly start to increase from the 99% mark onward,

showcasing that while they remain stable most of the time, in a

few exceptional cases a larger latency can be seen. WireGuard-Go

already begins with a higher latency value, which steadily increases

over time. BothWireGuard-C andWireGuard-Go suffer from a peak

in latencies at the 99.99% mark, indicating that in a few cases, the

latency becomes even worse. From these results, it can be seen that

the most consistent latencies are obtained by strongSwan, with

WireGuard-C and especially WireGuard-Go being less consistent.

6.3 Initiation time
The connection initiation times for the different VPN implemen-

tations can be seen in Table 4, with each VPN implementation

separated into two rows, named Total and Handshake. The row
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indicating the total shows the elapsed time in ms from the initia-

tion of the VPN until a initiation complete message could be seen

in the log. Whereas the row indicating the handshake shows the

time elapsed by performing the handshake, measured by taking the

elapsed time between the first and last packet sent for the initiation.

It can be seen that both of the initiation tests for OpenVPN

require more time to initiate a connection than the other VPN im-

plementations. Even without the use of certificates, the initiation

time is nearly thirty times higher compared to strongSwan. While

lower initiation time values were obtained by both strongSwan

experiments, it is outperformed by each of the WireGuard imple-

mentations. For all implementations except for OpenVPN, only a

small amount of time was spent on the handshake itself. OpenVPN

configured with a pre-shared key does not perform a handshake,

and therefore no handshake time could be obtained.

The results for the total initiation time were tweaked in order to

accommodate for the interactions with the logging file itself. The

time required to write the initialization complete message to the

log as well as the time taken by the script to read this message

has been subtracted from the total results. The mean time for this

action to be performed was 1.9 milliseconds.

7 DISCUSSION
In this section our results are discussed. We will first discuss the

goodput, latency, CPU efficiency, and connection initiation time

results respectively. In addition, we discuss how our results compare

to earlier work. We conclude this section with the limitations this

research had.

7.1 Goodput
In general, the AES-GCM ciphers for OpenVPN and strongSwan

performed well in terms of goodput, with strongSwan’s AES-GCM

ciphers being among the best performing cipher suites in every

goodput experiment. These results can be contributed to two differ-

ent causes. Firstly, in our test environment the feature AES-NI was

enabled. This feature was designed to improve the performance of

AES encryption and would, therefore, have a positive effect on our

results. Secondly, GCM mode has an advantage over CBC mode

in the fact that it has integrity built-in. For the CBC ciphers, an

additional SHA256 hash was performed to provide integrity, which

requires additional computations and decreases its goodput.

Pudelko claimed in his paper that disabling the SHA256 hashing,

which is required for CBC based ciphers in order to provide integrity,

reduces the computing cost by around 40%. The reason for this is

that SHA256 functions as a second pass of the data with its hashing

not happening simultaneously with the encryption process [9].

GCM mode has integrity built-in and can, therefore, provide for

integrity in a single pass, which leads to an increase in performance.

This allows it to outperform its CBC counterpart.

For both UDP and TCP, regardless of the packet size, WireGuard-

C was never the implementation with the highest goodput. While

its performance was certainly not lacking, it could never match the

mean goodput values observed for strongSwan’s AES-GCM ciphers.

In the context of maximum packet size, this is partly explained

due to the differences in payload. As WireGuard-C suffers from the

largest amount of overhead, it is unable to send payloads as large

as both strongSwan and OpenVPN. The gap between WireGuard-C

and strongSwan’s AES-GCM cipher suites for maximum packet

size would not have been nearly as large were the payloads to be

equal, causing the overhead of WireGuard-C to be a bottleneck at

these packet sizes.

When comparing the maximum packet size goodput results

for TCP with those of UDP, one can observe that OpenVPN and

WireGuard-Go perform slightly worse in a TCP environment as

compared to strongSwan. A probable explanation for this is related

to packet loss. By analyzing our iPerf output files for the UDP ex-

periments, we observe that strongSwan and WireGuard-C have a

very low amount of packet loss. This is not the case for OpenVPN

and WireGuard-Go. While for the first two implementations the

packet loss can be rounded down to 0%, the latter two suffer from

at least a 10% packet loss rate in every individual iPerf test. While

the packet loss rates for TCP are unavailable to us, it is likely that

these protocols suffer from a higher packet loss rate for TCP as

well. While the amount of packet loss is irrelevant for UDP, this is

not the case for TCP. Lost packets will cause TCP CUBIC to enter

the fast recovery state, at which point the congestion window is

temporarily decreased [35]. This decrease happening more often for

OpenVPN and WireGuard-Go might explain why lower goodput

rates are observed.

When considering smaller packet sizes, a clear contrast between

UDP and TCP can be seen. Whereas for UDP a very low mean

goodput was obtained when using a small packet size, this is not

the case with TCP.Where the VPN implementations perform almost

as well as the baseline for TCP, the baseline is able to obtain almost

double the goodput for UDP compared to the best of the VPN

implementations. This is caused by the fact that TCP makes use

of Nagle’s algorithm. This algorithm allows for the aggregation of

TCP packets in order to limit the number of small packets being

transmitted over the wire [36]. While every single 64-byte packet

is transmitted for UDP, for TCP the use of Nagle’s algorithm allows

it to instead aggregate these into bigger packets, which reduces the

strain on the resources. In this case, the kernel has to perform fewer

header related functions, such as route look-ups. In addition, more

goodput can be sent over the link, as fewer headers are required.

This allows TCP to outperform UDP in this scenario.

It is interesting to note that for TCP with packets of 64 bytes,

WireGuard-C is being outperformed by WireGuard-Go. Prior work

by Pudelko et al. stated that bottlenecks caused by locking system

resources hindered WireGuard-Go when a large amount of packets

is being sent, as is the case with 64 bytes packets [9]. While this

explains why bothWireGuard-C andWireGuard-Go do not perform

nearly as well compared to strongSwan at smaller packet sizes, it

does not explain why WireGuard-Go outperforms WireGuard-C in

terms of goodput. As we are unable to find a logical explanation for

this observation, future research is required to identify as to why

this is the case.

When considering the CPU utilization, it can be observed that

in general the kernel-space based implementations strongSwan

and WireGuard-C have a lower user-space utilization compared

to OpenVPN and WireGuard-Go. It can also be seen that while

the user-space utilization for the kernel-based implementations is

rather low during the maximum packet size experiments, it is a

lot higher during the 64-byte packet experiments. This is caused
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by the tool iPerf, which is used to generate packets. Due to the

larger amount of packets needed to be generated by having a small

packet size, more resources are needed by iPerf. Since iPerf runs in

user-space, the user-space utilization is therefore much higher [37].

In our lab setup, a singular VPN tunnel was used for every exper-

iment. As this tunnel was instantiated on a 1 Gbit/s link, the CPUs

of our servers were more than able to almost completely utilize this

link. Were these experiments to be repeated in a 10 Gbit/s environ-

ment, with multiple concurrent VPN tunnels, WireGuard-C would

likely see improved goodput results. Out of all the VPN implemen-

tations, WireGuard is the only implementation to fully support

multithreading. While strongSwan supports multithreading, the

underlying IPsec Linux kernel stack does not, which would lead to

bottlenecks when multithreading would be utilized for strongSwan.

While strongSwan is able to achieve a high goodput in our exper-

iments, it does so with a single core of the CPU. When multiple

cores could be utilized, which would be the case when a worse

CPU would be used to fill a 1 Gbit/s link or when a 10 Gbit/s link

were to used established, WireGuard-C could likely outperform

strongSwan. This was also shown by Osswald et al [12].

7.2 Latency
The lackluster latency for WireGuard-C is an interesting finding.

Due to both WireGuard-C and strongSwan being implemented in

the kernel, a similar latency between the two implementations was

expected. OpenVPN needs to perform additional computations in

order to manage a VPN connection in the user-space, yet obtains

similar latency results as WireGuard-C. However, WireGuard-C

does outperform its user-space counterpart WireGuard-Go, the dif-

ference of which could be attributed due to WireGuard-C operating

in kernel-space. As WireGuard-C has a higher CPU utilization rate

than strongSwan while reaching almost the the same goodput rate,

one can imply that more CPU cycles are needed per packet. If this

were to be the case, it could explain the observed differences in

latencies for the two different implementations, as these additional

cycles could extend the latency. AES-NI could be a factor that low-

ers the latency values of strongSwan, as it optimizes the amount

of AES related CPU instructions and thus lowering CPU cycles

per packet. However, the ChaCha20Poly1305 cipher of strongSwan

achieved better latency results than its WireGuard-C counterpart.

Therefore, we do not expect AES-NI to be the sole reason for these

differences.

7.3 Connection Initiation Time
On the topic of connection initiation time, both WireGuard imple-

mentations clearly outperform the other two VPN implementations.

It is especially interesting to note that WireGuard-Go, while being

outperformed by WireGuard-C, is performing much better than

strongSwan. This does match the claims that the WireGuard proto-

col ensures fast connection establishment [2]. A probable reason

for this is the fact that WireGuard handshake requires less mes-

sages and makes use of the Blake2 algorithm, which Aumasson et

al. shows to outperform SHA256 [38].

The WireGuard protocol only supports initiating a connection

through the use of pre-shared keys, unlikeOpenVPN and strongSwan.

Pre-shared keys are easier to use, but according to IBM this comes

at the cost of security [39]. The disadvantage of using pre-shared

keys is the lack of PFS, which may be desirable. For the WireGuard

protocol, additional measures have been taken to provide for PFS

[2]. Since both options for OpenVPN and strongSwan have their

advantages and disadvantages, both were analysed. For both Open-

VPN and strongSwan, using pre-shared keys instead of certificates

had a positive influence on the initiation time, indicating that be-

sides being easier to use, a slight speedup could also be gained from

implementing pre-shared keys.

While very low initiation times were obtained from both the

WireGuard implementations and strongSwan, the same cannot be

said about OpenVPN. Even while using the faster to initiate pre-

shared key configuration, the resulting initiation time still had a

mean of nearly a second, more than thirty times as large as its

strongSwan counterpart. Through analysing the packets transmit-

ted during the handshake for both certificate-based and pre-shared

key based OpenVPN, a long gap in between packets can be seen.

As this gap is nearly one second in length, most of the initiation

time is spent here. The gap is slightly longer when certificates are

used, which could be explained due to the fact that the certificates

are being approved during this time frame. It can be concluded that

OpenVPN’s initiation is not as efficient as those of the other VPN

implementations.

7.4 CPU efficiency
The last of the results to be discussed is the CPU efficiency. When

observing each of the goodput and CPU utilization graphs, it im-

mediately becomes clear that WireGuard-Go is always the imple-

mentation that utilizes the most of the CPU. This happens for two

different reasons. First, WireGuard-Go takes place in user-space,

and in order to transmit traffic over a VPN implementation from the

user-space, additional computations are required in order to per-

form the kernel processes required. For this same reason, OpenVPN

also suffers from a high CPU utilization. The other reason is the

fact that WireGuard-Go is written in a different language than the

other implementations, namely Go. Compared to Go, C is a lower-

level programming language, which makes it more efficient at the

cost of programming complexity. For this reason, WireGuard-Go

requires even more CPU resources than OpenVPN, as it requires

more processing time as well as computing power to obtain the

same mean goodput values [40].

As for the CPU utilization of the other implementations, one can

clearly see the limits as to what amount of CPU resources can be

utilized by OpenVPN and strongSwan. For the more expensive to

compute packet size of 64 bytes, higher utilization percentages can

be observed. For UDP, one can clearly see that similar utilization

percentages are obtained between different cipher suites of Open-

VPN and strongSwan, something which was not as apparent for

the maximum packet size.

7.5 Comparison with existing papers
In the paper by Lackorzynski et al., they concluded that the Wire-

Guard protocol was the best-suited protocol for use in a factory

environment due to it obtaining the highest throughput values [10].

While their findings differ from ours, it can be attributed to the fact

that their research involved 10 Gbit/s links. Since no mention of
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AES-NI was made in the paper, these reasons might explain why

their results differ from ours. The latter was also the case for the

paper by Mackey et al. as no mention was made of AES-NI either

[11].

The paper by Osswald et al. clearly showcases the difference

when using AES-NI compared to not using it, with the same ciphers

obtaining more than thrice as low throughput value when AES-NI

is disabled [12]. Therefore, it is to little surprise that the differences

between VPN implementations were not nearly as significant as in

the papers of Lackorzynski et al. and Mackey et al., as WireGuard

is not outperforming its competition nearly as much when AES-NI

is enabled. In addition, none of these papers consider the GCM

mode ciphers. In this research these ciphers are the best performing

ciphers, and it is therefore not too odd that WireGuard, which in

prior work has always seemed to be better performing, is being

outperformed.

7.6 Limitations
This research had several limitations. Firstly, iPerf was used in this

research. While being used in earlier work that also specifically

researched VPN implementations [11, 41, 42, 43], iPerf is kernel dri-

ver based and there are faster alternatives based on the Data Plane

Development Kit (DPDK) [44]. Examples of these are MoonGen,

pktgen and WARP. Pudelko also mentions that MoonGen is better

performing than iPerf [9]. However, all these aforementioned tools

require DPDK support. In our case, the NIC driver did not support

DPDK which is why we could not use it in our environment [45].

Secondly, we only looked at the client-side for the CPU utiliza-

tion. While we do not expect much difference between the server

and client in this regard, it might be interesting to look at the

server-side CPU utilization.

Thirdly, we did not specifically optimize our physical servers

for multithreaded packet forwarding. Instead, we relied on the

kernel for this aspect. Kernel optimizations like Receive Side Scaling

(RSS), Receive Packet Steering (RPS), Receive Flow Steering (RFS),

and Transmit Packet Steering (TPS) could improve parallelism and

performance for multiprocessor systems [46]. We looked at these

options and did preliminary experiments with it, although it did

not result in any better results. However, we are unsure if this was

due to a configuration error or that these were legitimate results, as

we would expect better results. Thus, we think this should receive

more attention in further research.

8 CONCLUSION
The goal of this research was to measure the performance differ-

ences between the VPN implementations strongSwan, OpenVPN,

WireGuard kernel implementation (WireGuard-C), and the Wire-

Guard Go implementation (WireGuard-Go) in a 1 Gbit/s environ-

ment. In order to measure this we created a lab setup in which we

connected two physical servers to each other through a 1 Gbit/s

switch. Here we configured OpenVPN and strongSwan with the

AES-CBC and AES-GCM mode cipher suites. In addition, we also

configured strongSwan with a ChaCha20Poly1305 cipher suite. For

WireGuard-C and WireGuard-Go ChaCha20Poly1305 was config-

ured as well, due to it being the only available cipher suite. In this

environment, we measured the difference in UDP and TCP goodput,

latency, connection initiation time, and CPU utilization. The good-

put measurements were conducted with iPerf, where we performed

measurements with the packet sizes of 64, 512, 1024 bytes, and

the maximum packet size. The latency experiments were done by

sending one million ICMP echo requests through the VPN tunnels

with an interval of a thousand per second. The connection initiation

time was measured with a Python script, while the CPU utilization

was measured with mpstat.

In our environment, when using maximum packet sizes, Open-

VPN and strongSwan perform the best in terms of UDP goodput.

Themean value of the OpenVPNAES-GCM ciphers were 922Mbit/s,

while strongSwan’s AES-GCM implementations had a mean of 921

Mbit/s. As the standard deviation may allow their positions to

change, we conclude that these implementations with these cipher

suites perform equally well in this scenario. Next up is WireGuard-

C, which achieved a mean goodput of 917 Mbit/s, with WireGuard-

Go following with 916 Mbit/s. The AES-CBC ciphers perform worse

than their AES-GCM counterparts on every occasion except for

TCP with a packet size of 64 bytes, where they perform equally

well.

When a packet size of 64 bytes is used with UDP being its trans-

port layer protocol, strongSwan with an AES-GCM cipher performs

the best with 117 Mbit/s. After this follows WireGuard-C with 109

Mbit/s. Hereafter comes strongSwan with its ChaCha20Poly1305

cipher suite and finally WireGuard-Go and all OpenVPN configura-

tions.

When TCP with maximum packet sizes are used, strongSwan

with an AES-GCM cipher achieves the highest goodput with 906

Mbit/s. Hereafter WireGuard-C achieves the highest goodput with

a mean of 901 Mbit/s. After this comes WireGuard-Go. OpenVPN

in AES-CBC mode achieved the least TCP goodput.

TheAES-GCMcipher suites of OpenVPN and strongSwan achieve

the highest goodput with TCP when iPerf is generating packet sizes

of 64 bytes, with a mean goodput of 179 and 178 Mbit/s respectively.

The CBC modes of OpenVPN and the ChaCha20Poly1305 cipher

suite of strongSwan both perform better than the WireGuard im-

plementations. With WireGuard-Go performing at a goodput rate

of 170 Mbit/s and WireGuard-C at 156 Mbit/s.

In terms of latency, all of the tested strongSwan ciphers per-

form better than OpenVPN and WireGuard, with median values

of 0.22 ms for CBC and ChaCha20Poly1305 and 0.21 ms for the

AES-GCM ciphers. For OpenVPN, both the AES-CBC (0.40 ms)

and AES-GCM (0.39 ms) ciphers of OpenVPN show less latency

than WireGuard-C (0.42 ms). WireGuard-Go achieved the highest

latency with a median value 0.73 ms. At the 99th percentile mark,

while the strongSwan ciphers have a similar latency to the median,

all other implementations see an increase in latency values.

When looking at connection initiation time, WireGuard-C per-

forms the best with a mean time to initiate a connection of 6.9 ms.

Behind WireGuard-C comes WireGuard-Go with a mean of 10.6 ms.

The initiation times for OpenVPN and strongSwan where analysed

both with and without certificate authentication. With certificate

authentication strongSwan has a mean of 33.6 ms, while without

certificate authentication the mean is 31.8 ms. For OpenVPN this is

1152.7 and 954.9 ms respectively.

In terms of CPU efficiency, the AES-GCM ciphers of strongSwan

show the least amount of CPU utilization for all TCP and UDP

11



measurements. WireGuard-C shows that it has a lower CPU uti-

lization than OpenVPN in regards to the UDP and TCP maximum

packet size experiments. The same applies for the experiment with

TCP and sending 64-byte packets. In the experiment with UDP

and sending 64-byte packets, OpenVPN shows less CPU utiliza-

tion. However, it also transmits less than half of the packets that

WireGuard-C sends. WireGuard-Go shows the highest CPU utiliza-

tion in all experiments.

In our research, strongSwanwith anAES-GCM cipher configured

is the best performing VPN implementation in terms of goodput,

latency, and CPU utilization. OpenVPN achieved an equal good-

put rate compared to strongSwan when UDP with a maximum

packet size was used. However, it does perform worse in the UDP

64-byte packet size experiment. WireGuard-C achieved the fastest

connection initiation time and it also achieved better goodput re-

sults than WireGuard-Go in all but one experiment. In addition,

WireGuard-Go had the worst latency and CPU utilization results.

9 FUTUREWORK
This work could be expanded upon in several ways. Firstly, as

mentioned earlier in the limitations section, it is interesting to see

whether RSS, RPS, RFS and TPS make a difference in the amount

of packets that can be transmitted. As these technologies are made

for multiprocessor systems, it is especially interesting to see if the

goodput of WireGuard increases with the smaller packet sizes.

Secondly, we performed the measurements in a clean and reliable

environment. However, it would be interesting to analyse how the

VPN solutions perform when they are exposed to more realistic

scenarios. One example of this would be to research how the imple-

mentations perform over a wireless medium or test outside of a lab

environment. In addition, VPNs are not only available on servers or

desktops, as there are mobile versions available as well. WireGuard,

OpenVPN and strongSwan all have Android versions and it would

be interesting to see how these compare in terms of performance.

Thirdly, we only performed measurements with a single tunnel

between a server and client. There are scenarios were a central

VPN server is used as a gateway and thus many connections to this

server can be made. It would be interesting to see how the solutions

compare when multiple concurrent connections are in use.

Fourthly, Pudelko and Osswald et al. have already conducted

research on WireGuard in 10+ Gbit/s environments. However, as

WireGuard recently has been integrated into the Linux kernel, it

might be worthwhile to research this once again.

Lastly, more research into performance increasing IPsec options

can also be performed. For instance, it might be worthwhile to look

into ESP offloading, which can offload IPsec computations [47].

However, a lack of documentation on this topic can be observed.

There are also libraries that can spread the crypto load of IPsec

over multiple threads, such as pcrypt. However, documentation of

Libreswan, an alternative to strongSwan, claims that this library

is unstable [48]. In addition, the OpenVPN community is working

on OpenVPN version 3. This version should include multithread-

ing capabilities, yet at the time of writing only a beta version is

available.
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APPENDIX
A HARDWARE AND SOFTWARE USED
In Table 5, the hardware and software used in our lab setup are

listed.

Table 5: The hardware and software used in our lab setup.

VPN Client

Server hardware Dell PowerEdge R230

Processor Intel Xeon E3-1240L v5 @ 2.10GHz

Memory 16 GiB

NIC NetXtreme BCM5720

SSD Crucial CT240BX200SSD1

OS Ubuntu 18.04

Kernel 5.6.17-050617-generic

VPN Server

Server hardware PowerEdge R240

Processor Intel Xeon E-2124 CPU @ 3.30GHz

Memory 16GiB

NIC NetXtreme BCM5720

SSD Samsung 860

OS Ubuntu 18.04

Kernel 5.6.17-050617-generic
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B RESULTS FOR 512 AND 1024 BYTE
PACKETS

In this appendix, the goodput and CPU utilization results for packet

sizes of 512 and 1024 bytes can be found. They were excluded from

the paper due to a lack of interesting results that could be concluded

from them, but are still listed in this appendix for reference.

In Figure 7, the results for UDP traffic with a packet size of 512

are observable. Similar to most goodput experiments, the three well

performing strongSwan ciphers, namely the AES-GCM ciphers and

ChaCha20Poly1305, are the best performing with a goodput of 797

Mbit/s for former 796 for the latter. Closely behind are both Wire-

Guard implementations, withWireGuard-C having a mean goodput

of 793 Mbit/s and WireGuard-Go 792 Mbit/s. OpenVPN falls quite a

bit behind, with its AES-128-GCM cipher having a goodput of 639

Mbit/s while its 256 bit counterpart has a goodput of 635 Mbit/s.

OpenVPN’s AES-128-CBC cipher is the worst performing cipher,

with a goodput of 462 Mbit/s. The CPU utilization is for pair of

implementation and cipher higher than that of maximum packet

size, due to more packets needed to be generated and transmitted.

Figure 7: The goodput and CPU utilization results for UDP
with a packet size of 512 bytes. The bars indicate the goodput
while the lines showcase the CPU utilization.

The results of its TCP counterpart can be seen in Figure 8. The

results have not seen much of a decrease compared to that of bigger

packet sizes, which can be attributed due to the fact that TCP makes

use of Nagle’s algorithm, as explained in the Section 7.1. The best

performing ciphers and algorithms are once again the three well-

performing strongSwan ciphers, all having a goodput of 906 Mbit/s.

WireGuard-C is closely outperformed, with a goodput of 899 Mbit/s.

While OpenVPN’s AES-GCM ciphers perform well with a goodput

of 875 Mbit/s, it is outclassed by WireGuard-Go. WireGuard-Go

has obtained a mean goodput of 892 Mbit/s, which is not that much

lower than that of WireGuard-C.

The results for UDP trafficwith a packet size of 1024 are similar to

those of themaximumpacket size, and can be seen in Figure 9. Open-

VPN’s AES-GCM ciphers and the three well performing strongSwan

ciphers all perform about equally well int his scenario, all with

means around 890 Mbit/s. Both WireGuard-C and WireGuard-Go

Figure 8: The goodput and CPU utilization results for TCP
with a packet size of 512 bytes. The bars indicate the goodput
while the lines showcase the CPU utilization.

are not far behind, with both having a goodput of 887 Mbit/s. The

worst performing cipher suites, namely OpenVPN’s AES-CBC ci-

phers as well as strongSwan’s AES-CBC cipher, all perform worse

than their maximum packet size counterpart, with the former two

having a goodput decrease of more than 150 Mbit/s, and the latter

having a decrease of nearly 100 Mbit/s. The other ciphers have

not decreased more than 30 Mbit/s between the two experiments,

making the contrast clearly visible.

Figure 9: The goodput and CPU utilization results for UDP
with a packet size of 1024 bytes. The bars indicate the good-
put while the lines showcase the CPU utilization.

For the same packet size of 1024, the results of the TCP traffic can

be seen in Figure 10. As with its UDP counterpart, the results are

similar to that of the maximum packet size. Out of the different VPN

implementations, the three well performing strongSwan ciphers

again obtain the highest goodput values, all having a goodput of

906 Mbit/s. WireGuard-C follows closely behind with a goodput of

900 Mbit/s. In this scenario, OpenVPN’s AES-GCM ciphers perform
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differently from each other, with AES-128-GCM obtaining a good-

put of 894 Mbit/s whereas its 256 bit counterpart obtained a mean

goodput of 871 Mbit/s. For every implementation except OpenVPN,

the CPU utilization rate has increased, with OpenVPN’s utilization

percentage having slightly decreased.

Figure 10: The goodput and CPU utilization results for TCP
with a packet size of 1024 bytes. The bars indicate the good-
put while the lines showcase the CPU utilization.
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