
A performance comparison of the VPN
implementations WireGuard, strongSwan
and OpenVPN in a one Gbit/s environment

By Erik Dekker & Patrick Spaans

Supervisors: Aristide Bouix and Mohammad Al Najar

Introduction

● Organization host internal services for customers and employees.

● These often need to be reached over the internet → VPN

● Well known VPN implementations include strongSwan (IPsec) and OpenVPN

○ Often acknowledged as complex

○ Support obsolete options

2

Introduction

● WireGuard!

● Aims to be simpler, faster and leaner than IPsec [1]

● Better performing than TLS based VPN solutions such as OpenVPN [1]

● Less than 4000 lines of code

[1]: https://www.wireguard.com/ 3

[2]https://medium.com/@novysf/wireguard-server-client-with-roaming-i
p-setup-498d708ebb7c

[3]: www.wireguard.com/talks/lpc2018-wireguard-slides.pdf

Introduction

● Only one cipher suite

● Fast connection setup

● Exists as a kernel and Go implementation

[1]: https://www.wireguard.com/ 4

[2]https://medium.com/@novysf/wireguard-server-client-with-roaming-i
p-setup-498d708ebb7c

Related work

● In 2018, Pudelko created his own VPN solutions. Additionally, he compared this
with IPsec, OpenVPN and WireGuard.

● In 2020, Mackey et al. compared OpenVPN to WireGuard.
● In 2020, Osswald et al. compared IPsec, OpenVPN and WireGuard.

5

Gap with existing literature

● WireGuard was not implemented in the kernel yet.

● GCM ciphers for OpenVPN and IPsec were not analysed.

● Mackey et al. and Osswald et al. did not mention any configuration parameters.

● Latency was not researched before.

6

Main research question

How do the VPN implementations WireGuard-C, WireGuard-Go, strongSwan
and OpenVPN compare in terms of performance in a 1 Gbit/s environment?

7

Research questions

How do the VPN implementations compare in terms of:

● TCP goodput
● UDP goodput
● Latency
● Connection initiation time
● CPU efficiency

8

Main differences

9

strongSwan OpenVPN WireGuard-C WireGuard-Go

Multi-threaded Yes* No Yes Yes

Key exchange IKEv1/IKEv2 SSL/TLS** WG WG

Cipher Configurable Configurable ChaCha20 ChaCha20

Integrity Configurable Configurable Poly1305 Poly1305

User/Kernel space Kernel User Kernel User

Language C C C Go

*The current kernel IPsec is not multithreading capable
**Has it own implementation of TLS

Methodology - lab setup

10

Methodology - VPN configurations

Only researched the recommend cipher suites

11

Methodology - goodput and CPU efficiency
Created a test setup and:

● Used iPerf to measure goodput.

● Used packet sizes of 64, 256, 512, 1024

and maximum bytes. As is recommended

by RFC 2544.

● Calculated the most ideal packet lengths

for each VPN implementation.

● Whilst doing the goodput

measurements, we measured the CPU

initialization with the tool mpstat.

12

Methodology - latency

● For each cipher suite we had send one million ICMP echo requests.

● Interval of 1000 per second.

13

Methodology - connection initiation time

● We calculated the connection initiation time (x1000).

● We wrote a python script that looked for log messages and calculated the time

difference from startup.

● We measured the time difference between the first and last connection initiation

packet.

14

Results

● TCP Goodput and CPU utilization

● UDP Goodput and CPU utilization

● Latency

● Initiation Time

15

Results - TCP & maximum packet size

16

Implementation Mbit/s

Baseline 941

OVPN AES-256-GCM 876

SS AES-256-GCM 906

WG-C CC20Poly1305 901

WG-Go CC20Poly1305 850

Results - TCP & packets of 64 bytes

17

Implementation Mbit/s

Baseline 186

OVPN AES-256-GCM 179

SS AES-256-GCM 178

WG-C CC20Poly1305 156

WG-Go CC20Poly1305 170

Results - UDP & maximum packet size

18

Implementation Mbit/s

Baseline 955

OVPN AES-256-GCM 922

SS AES-256-GCM 921

WG-C CC20Poly1305 917

WG-Go CC20Poly1305 916

Results - UDP & packets of 64 bytes

19

Implementation Mbit/s

Baseline 209

OVPN AES-256-GCM 48

SS AES-256-GCM 117

WG-C CC20Poly1305 109

WG-Go CC20Poly1305 59

Summary - goodput and CPU utilization

● strongSwan AES128 GCM, AES256GCM

and Chacha20Poly1305 consistently

among the best.

● OpenVPN AES128 GCM and AES256

GCM perform quite well, and are only

slightly behind strongSwan in terms of

goodput and utilization.

● WireGuard-C generally performs slightly

worse than the three strongSwan

ciphersuites.

● WireGuard-Go has high CPU usage

without reaching as great of a goodput.

20

Results - latency

21

Results - connection initiation time

22Initiation time shown in milliseconds

Conclusion

23

● In terms of TCP and UDP goodput, strongSwan is the best performing

implementation, WireGuard-C follows closely behind. Overhead is the main limiting

factor with maximum packet sizes.

● strongSwan has the lowest latency values, with WireGuard-C and OpenVPN

performing equally. WireGuard-Go has the worst latency values by a large margin.

● Both WireGuard-C and WireGuard-Go are incredibly fast at initiating a connection.

strongSwan is slightly slower, but not nearly as much as OpenVPN.

● strongSwan is the most efficient implementation in terms of CPU efficiency, while

WireGuard-Go is the most inefficient.

Future work

- 10 Gbit/s environment
- iPerf alternatives such as Moongen
- Concurrent users
- Mobile environment
- ESP offloading
- Multi-threading

24

Questions?

25

