
Security Evaluation on Amazon Web Services’
REST API Authentication Protocol Signature

Version 4
Khanh Hoang Huynh

Jason Kerssens

Supervisors:
Alex Stavroulakis (KPMG)
Aristide Bouix (KPMG)

Introduction
● AWS

○ As of 2018, AWS has a dominant share of 47.8% in the cloud service market1 (IaaS, PaaS)

● Signature Version 4
○ Protocol used for authentication of HTTP API requests
○ Ensures data integrity, verification of the requesting user, and protection against reuse of

signed requests

● Other protocols (different functionalities) do not provide end-to-end integrity
○ OAuth 1.0/2.0, SSL/TLS and HTTP Authentication

21https://www.ciodive.com/news/iaas-Azure-AWS-Google-Cloud-Alibaba/559716/

https://www.ciodive.com/news/iaas-Azure-AWS-Google-Cloud-Alibaba/559716/

Research question
Does the Signature Version 4 protocol, used when sending a request to AWS
REST API endpoints, provide data integrity, verification of the requesting
user, and protection against reuse of signed requests?

● How does Signatures Version 4 Protocol ensure data integrity, verification of
the requesting user, and protection against reuse of signed requests?

● What kind of attacks are able to undermine data integrity, verification of the
requesting user, or protection against reuse of signed requests?

3

Signature Version 4
● Signing key is derived from the secret

access key

● HMAC-SHA1 or HMAC-SHA256

● The signature created is a string in

hexadecimal and has a length of 64

4
Figure 1: Signature Version 4 signing procedure

Experiments
● Signature Version 4 makes use of HMAC-SHA

○ Attacks on HMAC-SHA are not feasible

● Replay Attack, Modifying Request, HTTP smuggling, and Timing Attacks

● As we look at Signature Version 4, we ignore SSL/TLS

● Attacks were first performed on our local server

● Attacks were then performed on AWS IAM and S3 services

5

Used Technologies
● Python

● Escher

● Burp

6

Python Logo source: https://www.python.org/
Emarsys Logo (Escher Creator) source: https://www.emarsys.com/
Burp Suite logo source: https://portswigger.net/

https://www.python.org/
https://www.emarsys.com/
https://portswigger.net/

Replay Attack
● Protection against reuse of signed requests
● Intercept request and resend
● For how long?
● What kind of requests?

7Figure 2: The setup of our replay attack

Modifying the request
● Ensurance of data integrity
● Intercept request, modify it, and send it to intended destination
● What parts of the request can be modified?

8Figure 3: The setup of our modifying the request

HTTP Smuggling
● Verification of the requesting user
● Discrepancy in front-end server and back-end server

9

Figure 4: The request flow of modern website architecture. Source: https://portswigger.net/

Figure 5: Example of a HTTP request smuggling attack. Source: https://portswigger.net/

https://portswigger.net/
https://portswigger.net/

HTTP Smuggling

10Figure 6: The setup for HTTP smuggling attacks

Probing Timing Attack
● Verification of the requesting user
● Side-channel attack on Signature of HTTP request
● Measure execution time of request and response
● Correlation between execution time and number of valid bits
● Implementation dependent

11Figure 7: The setup of our Probing Timing attack

Example:

‘aaaa’ != ‘aaaa’
‘aaaa’ != ‘aabb’

Probing Timing Attack Experiment in detail

Figure 9: An example of changing one
bit of the correct signature

12

Figure 8: Flow of how we manipulated the
signature

Results (replay attack)
● Replaying of requests possible

● Default valid for 15 mins for IAM

● X-AMZ-Expires option for S3

● Prevented by SSL/TLS

13

14Figure 10: HTTP Request and response

15
Figure 11: Replayed a HTTP Request and response

Results (modifying requests)
● Signed parts cannot be changed

● S3 unsigned payload option

● Prevented by SSL/TLS

16

17

Figure 12: HTTP request payload to be modified

18

Figure 13: HTTP request payload changed and sent

19

Figure 14: Successfully modified HTTP request and uploaded to AWS

Results (HTTP Smuggling)
● Not successful, as AWS responds with HTTP Status Code 500

20Figure 15: Result of executing the detecting if http smuggling is possible

Results (Timing attack)
● Escher
● Correlation found? (between execution time and number of correct bits in signature)

21Figure 16: The results of seeing if a timing attack would be effective

Results (Timing attack)

22Figure 17: Figure 15, but without the standard deviation plotted

Conclusion
How does Signature Version 4 ensure protection?

● Data integrity: Signature
● User verification: API KEY ID, and Secret Access Key
● Reuse of signed portions: Expiration of request

What kind of attacks are possible?

● Replay attack: reuse of signed portions is possible for a limited time
● Modifying requests: signed portions of requests cannot be modified, unsigned

portions can be modified
● HTTP Smuggling: not successful
● Timing attack: correlation found locally 23

Conclusion
Does the Signature Version 4 protocol, used when sending a request to AWS
REST API endpoints, provide data integrity, verification of the requesting
user, and protection against reuse of signed requests?

● Provides data integrity of signed portions

● Verifies that signed parts were indeed signed by user

● Does not fully provide protection of reuse of signed portions

24

Future work
● Other services

● Timing attack on AWS servers

● Inspect the SSL/TLS from AWS API endpoint

25

Conclusion
Does the Signature Version 4 protocol, used when sending a request to AWS
REST API endpoints, provide data integrity, verification of the requesting
user, and protection against reuse of signed requests?

● Provides data integrity of signed portions

● Verifies that signed parts were indeed signed by user

● Does not fully provide protection of reuse of signed portions

26

