Security Evaluation on Amazon Web Services’
REST API Authentication Protocol Signature
Version 4

Khanh Hoang Huynh
Jason Kerssens

Supervisors: M
Alex Stavroulakis (KPMG)

Aristide Bouix (KPMG) UNIVERSITY OF AMSTERDAM

Introduction

e AWS

o As of 2018, AWS has a dominant share of 47.8% in the cloud service market' (I1aaS, PaaS)

e Signature Version 4
o Protocol used for authentication of HTTP API requests
o Ensures data integrity, verification of the requesting user, and protection against reuse of
signed requests
e Other protocols (different functionalities) do not provide end-to-end integrity
o OAuth 1.0/2.0, SSL/TLS and HTTP Authentication

Thttps://www.ciodive.com/news/iaas-Azure-AWS-Google-Cloud-Alibaba/5597 16/

https://www.ciodive.com/news/iaas-Azure-AWS-Google-Cloud-Alibaba/559716/

Research question

Does the Signature Version 4 protocol, used when sending a request to AWS
REST API endpoints, provide data integrity, verification of the requesting
user, and protection against reuse of signed requests?

e How does Signatures Version 4 Protocol ensure data integrity, verification of
the requesting user, and protection against reuse of signed requests?

e \What kind of attacks are able to undermine data integrity, verification of the
requesting user, or protection against reuse of signed requests?

Signature Version 4

e Signing key is derived from the secret
access key

e HMAC-SHA1 or HMAC-SHA256

e The signature created is a string in

hexadecimal and has a length of 64

1. Creating the canonical request

HTTP method + "\n’
Canonical URI +"\n’
Canonical Query String +"\n'
Canonical Headers + \n’
Signed Headers +"\n'
Hashed Payload

|

2. Creating the string to sign
Algorithm +"\n'

Request Date Time = "\n’
Credential Scope + "\’

Hashed Canonical Request
]

A

3. Creating the signature

Deriving the signing key

' kSecret = secret access key

: kDate = HMAC("AWS4" + kSecret, Date)

: kRegion = HMAC(kDate, Region)

5 kService = HMAC(kRegion, Service)

' SigningKey = HMAC(kService, "aws4_request”)

|

»| Signature = HexEncode(HMAC(SigningKey, StringToSign))

4. Adding the signature to the request

Either added under the Authorization header
or added in the query string as "“X-Amz-Signature’

A 4

Figure 1: Signature Version 4 signing procedure

Experiments

e Signature Version 4 makes use of HMAC-SHA

o Attacks on HMAC-SHA are not feasible

e Replay Attack, Modifying Request, HTTP smuggling, and Timing Attacks
e As we look at Signature Version 4, we ignore SSL/TLS
e Attacks were first performed on our local server

e Attacks were then performed on AWS IAM and S3 services

Used Technologies

e Python

e Escher

e Burp

Python Logo source: https://www.python.ora/
Emarsys Logo (Escher Creator) source: https://www.emarsys.com/

Burp Suite logo source: https://portswigger.net/

https://www.python.org/
https://www.emarsys.com/
https://portswigger.net/

Replay Attack

Protection against reuse of signed requests
Intercept request and resend

For how long?

What kind of requests?

Replayed
HTTP Request

/ /

e

Client MITM/Burp

QOur
machine

HTTP Request

v

Figure 2: The setup of our replay attack

Modifying the request

e Ensurance of data integrity
e Intercept request, modify it, and send it to intended destination
e \What parts of the request can be modified?

Modified
HTTP Request

/ /

e

Client MITM/Burp

QOur
machine

HTTP Request

v

Figure 3: The setup of our modifying the request

HTTP Smuggling

e \Verification of the requesting user
e Discrepancy in front-end server and back-end server
Front-end Back-end
7TRN
&1 L (A mmm | [
PNy .
A2

Figure 4: The request flow of modern website architecture. Source: https:/portswigger.net/

Front-end

Back-end

-~

Figure 5: Example of a HTTP request smuggling attack. Source: htips://portswigger.net/

https://portswigger.net/
https://portswigger.net/

HTTP Smuggling

|

Client

HTTP Request

/

-
>

L]

MITM/Burp

HTTP Smuggling
Request

/

Figure 6: The setup for HTTP smuggling attacks

Our
machine

v

HTTP Smuggled
Request?

/

Front-End
Server

Y

Back-End
Server

10

Probing Timing Attack

Verification of the requesting user

Side-channel attack on Signature of HT TP request

Measure execution time of request and response
Correlation between execution time and number of valid bits
Implementation dependent

Modified signature
HTTP Request
Stan

Elapsed
nmﬁ V 3 H 3 L
aaaa’ |= ‘aaaa
. ‘aaaa’ |= ‘aabb’

-

Client | End
Elapsed Response

Time

Figure 7: The setup of our Probing Timing attack

Example:

v

Server

11

Probing Timing Attack Experiment in detalil

Create Legitimate > G?;:'?_Z;}::;{: o 5 Create bit string to
HTTP request request XOR with signature
| XOR signature with Signature of &
bit string to get » legitimate request 5 Send the modified
modified signature swappedwnh request
modified signature

Figure 9: An example of changing one
bit of the correct signature

Figure 8: Flow of how we manipulated the
signature

http://localhost:5000/validate_request?foo=bar&abc=cba&X-EMS-Algorithm=EMS-HMAC-

SHA256&X-EMS-Credentials=EXAMPLEAPIKEY%2F20200202%2Fcredential%2F scope&X-
EMS-Date=20200202T143407Z&X-EMS-Expires=1209600&X-EMS-SignedHeaders=host&X-
EMS-Signature=e5990c4eat5b5e382f4ce5356b03ca5bi5di4c07be06i84224b7ac4d96dfeda2

1110...0010 & 0000...0001 = 1110...0011

http:/localhost:5000/validate_request?foo=bar&abc=cba&X-EMS-Algorithm=EMS-HMAC-

SHA256&X-EMS-Credentials=EXAMPLEAPIKEY%2F20200202%2Fcredential%2F scope&X-
EMS-Date=20200202T143407Z&X-EMS-Expires=1209600&X-EMS-SignedHeaders=host&X-
EMS-Signature=e5990c4eab5b5e382f4ce5356b03ca5bi5di4c07be0684224b7ac4d96dfedad

12

Results (replay attack)

Replaying of requests possible
Default valid for 15 mins for IAM
X-AMZ-Expires option for S3

Prevented by SSL/TLS

13

[Dashboard TTarget TProxy Tlntruder TRepeater TSequencer T Decoder TComparer T Extender TProjectoptions TUser options 1

(73« 74 x {75 x J76 x [77 x [78 {79 « T80 x 81 x |82 » 83 x 84 x ['65 x |86 x {87 x 88 x |89 x Jo0 x [or x [o2 x [93 x Jou x [w5.4]..]

Send Cancel < |y 2|

Request

Raw | Params THeaders THex]

Target: https://iam.amazonaws.com / ®

Response

Raw | Headers | Hex | XML

GET
/?Action=ListUsers&Version=2010-05-08&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credent
ial=AKIAW42NG6ROO6LMLSRB%2F20200202%2Fus-east-1%2Fiam$2Fawsd_request&X-Amz-Date=2020
0202T1828352&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-Signature=37flede98Y
bb59555c43e89££806c0c6412705ca427f6efab3cb1549b94d2d80 HTTP/1.1
Host: iam.amazonaws.com

User-Agent: python-requests/2.22.0

Accept-Encoding: gzip, deflate

Accept: */*

Connection: close

Figure 10: HTTP Request and response

HTTP/1.1 200 OK

x-amzn-RequestId: 80f7ade6-e763-469e-8alf-e3cTabefad’70
Content-Type: text/xml

Content-Length: 545

[pate: sun, 02 Feb 2020 18:29:16 GMT |

Connection: close

<ListUsersResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">
<ListUsersResult>
<IsTruncated>false</IsTruncated>
<Users>
<member>
<Path>/</Path>
<UserName>Test</UserName>
<Arn>arn:aws:iam::474218951776:user/Test</Arn>
<UserId>AIDAWA2NG6RQD6SCFVI43</UserId>
<CreateDate>2020-01-16T22:09:19Z</CreateDate>
</member>
</Users>
</ListUsersResult>
<ResponseMetadata>
<RequestId>80f7ade6-e763-469e-8alf-e3cTabefad70</RequestId>
</ResponseMetadata>
</ListUsersResponse>

T

14

Request Response
J Raw TParams T Headers THex] j Raw THeaders THex TXML]
[GET HTTP/1.1 200 OK

/?Action=ListUsers&Version=2010-05-08&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credent
1al=AKIAW42NG6ROOGLML5RBS2F20200202%2Fus-east-1%2Fiam$2Faws4 request&X-Amz-Date=2020

020271828352&X-Amz-Expires=86400&X-Amz-SignedHeaders=host&X-Amz-Signature=37flede98b
bb59555c43e89££806c0c6412705cad27f6efab3ch1549b94d2d80 HTTP/1.1

HOSt: iam.amazonaws.Com
User-Agent: python-requests/2.22.0
Accept-Encoding: gzip, deflate
Accept: */*

Connection: close

Figure 11: Replayed a HTTP Request and response

ﬂ

x-amzn-RequestId: 3efd0d32-£475-48ef-b813-75a953a7447d
Content-Type: text/xml

Content-Length: 545

|Date: Sun, 02 Feb 2020 18:29:52 GMT

Connection: close

<ListUsersResponse xmlns="https://iam.amazonaws.com/doc/2010-05-08/">
<ListUsersResult>
<IsTruncated>false</IsTruncated>
<Users>
<member>
<Path>/</Path>
<UserName>Test</UserName>
<Arn>arn:aws:iam::474218951776:user/Test</Arn>
<UserId>AIDAWA2NG6RQD6SCFVI43</UserId>
<CreateDate>2020-01-16T22:09:192</CreateDate>
</member>
</Users>
</ListUsersResult>
<ResponselMetadata>
<RequestId>3efd0d32-£475-48ef-b813-75a953a7447d</RequestId>
</ResponseMetadata>
</ListUsersResponse>

15

T

Results (modifying requests)
e Signed parts cannot be changed

e S3 unsigned payload option

e Prevented by SSL/TLS

16

[Dashboard TTarget TProxy Tlntruder TRepeater TSequencer TDecoder TComparer TExtender TProjectoptions TUseroptions]

j Intercept T HTTP history TWebSockets history TOptions]

/ [Request to https://s3.amazonaws.com:443 [52.216.224.243]

{ Forward] [Drop] [Intercept is on l [Action J Comment this item W@

j Raw T Params T Headers T Hex 1

PUT /TestBucket2/Test3 HTTP/1.1

Host: s3.amazonaws.com

User-Agent: python-requests/2.22.0

Accept-Encoding: gzip, deflate

Accept: */*

Connection: close

x-amz-content-sha256: UNSIGNED-PAYLOAD

x-amz-date: 20200202T184947%

x-amz-expires: 600

Authorization: AWS4-HMAC-SHA256 Credential=AKIAW42NG6RQO6LMLS5RB/20200202/us-east-1/s3/awsd request, SignedHeaders=host;x-amz-content-sha256;x-amz-date;x-amz-expires,
Signature=6dd99ec4760e0567663e573b7b33663e055eb9d0303300db85£854d06aed4333
Content-Length: 160

Content-Type: multipart/form-data; boundary=dcce6570a57a1380e593d1adb4d53818

T

--dcce6570a57a1380e593d1adb4d53818
Content-Disposition: form-data; name="file"; filename="test.txt"

0S3 is the best!
—-dccebb/0ab/allgle593d

Figure 12: HTTP request payload to be modified

17

[Dashboard TTarget TProxy Tlntruder TRepeater TSequencer TDecoder TComparer IExtender TProjectoptions TUseroptions 1

j Intercept T HTTP history TWebSockets history T Options 1

/ [Request to https://s3.amazonaws.com:443 [52.216.224.243]

[Forward] [Drop] [Intercept is on] [Action J Comment this item W@

J Raw T Params T Headers T Hex 1

PUT /TestBucket2/Test3 HTTP/1.1

Host: s3.amazonaws.com

User-Agent: python-requests/2.22.0

Accept-Encoding: gzip, deflate

Accept: */*

Connection: close

x-amz-content-sha256: UNSIGNED-PAYLOAD

x-amz-date: 20200202T71849472

x-amz-expires: 600

Authorization: AWS4-HMAC-SHA256 Credential=AKIAW42NG6RQO6LML5RB/20200202/us-east-1/s3/aws4 request, SignedHeaders=host;x-amz-content-sha256;x-amz-date;x-amz-expires,
Signature=6dd99ec4760e0567663e573b7b33663e055eb9d0303300db85£854d06aed4333
Content-Length: 160

Content-Type: multipart/form-data; boundary=dcce6570a57al1380e593dladb4d53818

T

--dcce6570a57a1380e593d1adb4d53818
Content-Disposition: form-gdata; name="file"; filename="test.txt"

—-dcceb570a57al380e593d1

Figure 13: HTTP request payload changed and sent

18

(Dashboard TTarget TProxy Tlntruder TRepeater TSequencer TDecoder TComparer TExtender TProject options TUser options]

(73 x 74 x [75 x [76 x {77 x {78 x {79 x 80 x |81 x [82 x ['83 x J84 x [100 x 101 x [202 5] ..]

Send | Cancel < |v 2| Target: https://s3.amazonaws.com / @
Request Response
J Raw TParams THeaders THex 1 J Raw THeaders THex]
GET HTTP/1.1 200 OK

/TestBucket2/Test3?Action=GetObject&Bucket=TestBucket2&Key=Test2&X-Amz-Algorithm=AWS
4-HMAC-SHA256&X-Amz-Credential=AKIAW42NG6RQO6LML5RB$2F20200126%2Fus-east-1%2Fs3%2Faw
sd4_request&X-Amz-Date=20200126T1852112&X-Amz-Expires=604800&X-Amz-SignedHeaders=host
&X-Amz-Signature=9dcab6851ldclc5b219a5ladca7ad88a015703ac15757d73545a3c1a896c99bf9
HTTP/1.1

Host: s3.amazonaws.con|

User-Agent: python-requests/2.22.0

Accept-Encoding: gzip, deflate

Accept: */x

Connection: close

T

T

x-amz-id-2:
/CkWyV7gxNGA+/YYTJ/FjImgAmJa3nKWa5BBFxp4rIngDxn7IFgkPyRZHTW12mpXaPymjFxdH34=
x-amz-request-id: FOF565918D9CIDFD

Date: Sun, 02 Feb 2020 18:51:36 GMT

Last-Modified: Sun, 02 Feb 2020 18:50:53 GMT

ETag: "2259fea9b644875b545b72816c02581a"

Accept-Ranges: bytes

Content-Type: multipart/form-data; boundary=dcce6570a57al1380e593d1ad4b4d53818
Content-Length: 157

Server: AmazonS3

Connection: close

--dcce6570a57a1380e593d1a4b4d53818
Content-Disposition: form-data; name="file"; filename="test.txt"

——dccebo/Uas/al380e593dladbdd53818--

Figure 14: Successfully modified HTTP request and uploaded to AWS

19

Results (HTTP Smuggling)

e Not successful, as AWS responds with HTTP Status Code 500

Request

jRawT Params T Headers T Hex W

Response

j Raw THeaders T Hex]

POST /?Action=ListUsers&Version=2010-05-08 HTTP/1.1

Host: iam.amazonaws.com

User-Agent: python-requests/2.22.0

Accept-Encoding: gzip, deflate

Accept: */x

Connection: close

X-Amz-Date: 2020020371111582

Authorization: AWS4-HMAC-SHA256
Credential=AKIAW42NG6RQO6LML5RB/20200203/us-east-1/iam/awsd request,
SignedHeaders=host;x-amz-date,
Signature=25495£300ab93c6£86d78c9dd4a76e071574d153b2£08273££0016c1£8d91009
Content-Length: 4

Transfer-Encoding: chunked

0

G

7 >

Figure 15: Result of executing the detecting if http smuggling is possible

HTTP/1.1 500 Internal Server Error
Date: Mon, 03 Feb 2020 11:12:41 GMT
Connection: close

Content-Length: 0

20

>

Results (Timing attack)

e Escher
e Correlation found? (between execution time and number of correct bits in signature)

The Average HTTP request time given the incorrect bits of signature
Correlation Coefficient: 0.139 P-Value: 0.026

—— Fitted Line of Averages
¥ Average Elapsed Time
2300
m
©
j
S 2200 1
%)
o t
S
E
g 2100 A A A NN AR A # T e e 1 e e T L |
=
2000

0 50 100 150 200 250

. L . . Number of incorrect bits
Figure 16: The results of seeing if a timing attack would be effective

Results (Timing attack)

The Average HTTP request time given the incorrect bits of sighature
Correlation Coefficient: 0.139 P-Value: 0.026

Fitted Line of Averages
2160 4 e Average Elapsed Time

2150 A
2140 A

2130 A

Time (microseconds)

2120 A

2110 A

2100 A

0 50 100 150 200 250
Number of incorrect bits

Figure 17: Figure 15, but without the standard deviation plotted

22

Conclusion

How does Signature Version 4 ensure protection?

e Data integrity: Signature
e User verification: APl KEY ID, and Secret Access Key
e Reuse of signed portions: Expiration of request

What kind of attacks are possible?

e Replay attack: reuse of signed portions is possible for a limited time

e Modifying requests: signed portions of requests cannot be modified, unsigned
portions can be modified

e HTTP Smuggling: not successful

e Timing attack: correlation found locally

23

Conclusion

Does the Signature Version 4 protocol, used when sending a request to AWS
REST API endpoints, provide data integrity, verification of the requesting
user, and protection against reuse of signed requests?

e Provides data integrity of signed portions

e \Verifies that signed parts were indeed signed by user

e Does not fully provide protection of reuse of signed portions

24

Future work

e Other services
e Timing attack on AWS servers
e Inspect the SSL/TLS from AWS API endpoint

25

Conclusion

Does the Signature Version 4 protocol, used when sending a request to AWS
REST API endpoints, provide data integrity, verification of the requesting
user, and protection against reuse of signed requests?

e Provides data integrity of signed portions

e \Verifies that signed parts were indeed signed by user

e Does not fully provide protection of reuse of signed portions

26

