
Ibis Data Serialization in Apache
Spark

February 9, 2020

Students:
Dadepo Aderemi
12160555

Mathijs Visser
12815551

Supervisor (eScience Center):
dhr. dr. Jason Maassen

Supervisor (UvA):
dhr. dr. Adam Belloum

Abstract

With the demand for real-time big data analytics, the efficiency and performance of
big data tools have become increasingly more important. One of these tools is Apache
Spark, and like most other distributed applications, serialization plays an important
role in its performance. Ibis is an alternative serialization algorithm that has been
developed with performance and efficiency in mind. This research shows the imple-
mentation and performance difference of Ibis serialization in Apache Spark. In our
research 15 out of 17 Spark classes, where direct serialization calls are made, were re-
placed with Ibis serialization. This research measured the performance impact of using
Ibis serialization on the RDD level APIs. The performance difference was measured
using three different benchmarks, TeraSort, SparkPi, and memory persistence. Tera-
Sort and memory persistence both heavily utilize serialization and SparkPi focuses on
computational performance.

We concluded the performance difference between Ibis and the default Java and
Kryo serialization differed per benchmark. The benchmarks that heavily utilize seri-
alization have shown that Ibis was 15% to 20% faster than native Java serialization,
and 5% to 10% faster when compared to Kryo serialization. We also measured slight
differences in memory utilization, however, we were not able to conclusively say which
serialization type has a clear advantage in terms of memory utilization. Ibis serial-
ization did not lead to a notable performance difference in computationally-oriented
benchmarks.

page 1 of 30

Research project 1

Contents

1 Introduction 3
1.1 Spark serialization . 3
1.2 Ibis serialization . 3
1.3 Research Questions . 3
1.4 Structure . 3

2 Related work 4

3 Background 5
3.1 Apache Spark . 5

3.1.1 Application execution in Apache Spark 5
3.1.2 Serialization in Apache Spark . 6

3.2 Ibis . 7

4 Approach 8
4.1 Modifying Apache Spark to use Ibis serialization 8

4.1.1 Implementing Serializer abstract class 8
4.1.2 Implementing SerializerInstance abstract class 8
4.1.3 Implementing SerializationStream abstract class 8
4.1.4 Implementing DeserializationStream abstract class 9

4.2 Modifications and incompatibilities . 9
4.2.1 Modification to Spark to select Ibis for serialization 9
4.2.2 Modification to Ibis to support Scala’s Option type 9
4.2.3 Modification to make Ibis work with ByteBuffer 10
4.2.4 Unresolved Incompatibilities with Netty backed Block Transfer Service 10
4.2.5 Unresolved Incompatibilities with persisting to Hadoop filesystem . . 10

4.3 Performance evaluation . 11
4.3.1 TeraSort . 11
4.3.2 Persistence . 12
4.3.3 SparkPi . 12

4.4 Test environment . 12

5 Results 14
5.1 TeraSort . 14
5.2 SparkPi . 16
5.3 Persistence . 18

6 Discussion 20

7 Conclusion 21

8 Future Work 22

9 Appendix 25
9.0.1 Location of direct serialization calls in Apache Spark 25
9.0.2 Apache Spark’s serialization interfaces and Ibis implementations . . . 26

Dadepo Aderemi, Mathijs Visser page 2 of 30

Research project 1

1 Introduction

Apache Spark[1, 2], is widely used in large-scale data processing with features for batch
processing, as well as, real-time streaming. With the ever-increasing demand for real-time
big data analytics, the performance of these applications has become ever important. Seri-
alization plays an important role in the performance of distributed Spark applications[3]. In
this paper, we show the design, implementation and performance comparison of Ibis serial-
ization in Apache Spark. Ibis serialization takes advantage of compile-time code generation,
zero-copy buffer management, and optimized object creation to improve performance.

1.1 Spark serialization

By default, Spark comes with two serialization implementations. Java object serialization[4]
and Kryo serialization[5]. There are many places where serialization takes place within
Spark. By default most serialization is done using Java object serialization. The reason for
using Java object serialization is that Java serialization is more flexible and does not have
any prerequisites. Kryo, on the other hand, requires the application programmer to register
custom classes ahead of time to achieve the best performance.

1.2 Ibis serialization

Ibis[6] is an open-source, distributed computing software project developed at the Vrije
Universiteit Amsterdam. The goal of the Ibis project is to create efficient Java-based grid
computing software. One of the Ibis projects is an efficient serialization implementation that
utilizes compile-time code generation, zero-copy buffer management and optimizes object
creation to improve performance. Ibis serialization is described in further detail in section
3.2.

1.3 Research Questions

We are interested in the performance impact of using Ibis’ serialization techniques in Apache
Spark. Our main research question is defined as:

Can Apache Spark’s performance be improved by taking advantage of Ibis’ serialization tech-
niques?

To answer this question we answer the following sub-questions:

1. What components of Apache Spark can benefit from Ibis’ fast serialization?

2. How can Ibis’ serialization techniques be integrated into Apache Spark?

3. How does the performance of Apache Spark differ when using Java, Kryo and Ibis
serialization?

1.4 Structure

The remainder of this paper is structured as follows. In section 2 we look at related work.
In section 3, we give the necessary background information underpinning the work done in
this research. In section 4 we describe our approach to modifying Spark and measuring the
performance difference between the different versions. In section 5 we show the findings of
our measurements. In section 6 we discuss our findings. The conclusion that can be drawn
from our findings is given in section 7. Finally, in section 8 we give suggestions for future
research that we were not able to perform due to the limited amount of time set for this
research.

Dadepo Aderemi, Mathijs Visser page 3 of 30

Research project 1

2 Related work

In recent years, there have been improvements to Spark using various methods such as Re-
mote Direct Memory Access (RDMA)[7], and zero-copy buffer management in the network
stack as shown by Li et al.[8]. Apache Spark has also shown serialization performance can
be improved by using Kryo [3, 5], a third-party serialization library. Apache Spark origi-
nally only supported Java serialization[2]. In version 2.0.0, Spark adopted Kryo serialization
which has shown to improve serialization performance[3].

Previous work has also been done in improving the performance of other systems by in-
troducing Ibis. As an example, in [9], Maassen et al. demonstrated that an Ibis based
implementation of Java’s RMI can lead to improved throughput of up to a factor of 9. The
research leads to the creation of Ibis RMI which is a test case to validate the efficiency of
the Ibis stack. The Ibis RMI implementation has identical API to the official Java RMI and
is written in pure Java, removing the need for any custom Java compiler. It should be noted
that the Ibis RMI implementation makes use of other parts of the Ibis stack as well and not
just the serialization layer.

In [10], it has been shown that serialization performance in resource-constrained platforms,
like the Java Micro Edition [11] can be improved by applying techniques used in high-
performance computing environments. The research built upon the serialization module in
Ibis. It was able to successfully demonstrate that object marshaling is possible, with decent
performance characteristics, in a resource-constrained environments. This is another exam-
ple of applying Ibis to achieve improved serialization in other systems.

To the best of our knowledge, our work in this research would be the first attempt at inte-
grating portions of the Ibis project into Spark.

Dadepo Aderemi, Mathijs Visser page 4 of 30

Research project 1

3 Background

In this section, we give the background information necessary to understand the rest of the
paper. This section is further divided into two subsections, namely, Spark’s inner workings
and the inner workings of Ibis’ serialization.

3.1 Apache Spark

Spark has three main data structure APIs, that abstract away the underlying data struc-
tures. The oldest and most important API is the Resilient Distributed Dataset (RDD) API.
An RDD is an immutable and distributed collection of objects. The objects stored in RDDs
can, for example, be Java Virtual Machine (JVM) objects. More recent versions of Spark
contain the DataSet and DataFrame abstraction, which is an additional layer on top of the
RDD API. In earlier versions of Spark, the DataFrame was a distinct API, however, in more
recent versions of Spark, this is no longer the case, as the DataFrame API is an alias for a
specialized type of DataSet [12]. DataSets and DataFrames provide a richer API and ben-
efit from the Catalyst optimizer[13], which is a Just-in-time (JIT) compiler for Spark queries.

Spark utilizes two serialization implementations, by default Spark will use Java’s object se-
rialization[3, 4] when storing data to disk. The other serialization implementation is Kryo
[5]. Kryo is only used by default when sending RDDs with primitive types, or arrays thereof,
over the network[3].

The importance of serialization in Spark depends on the application that is being run by
Spark. When an application reads or writes to disk, all objects have to be (de)serialized.
Another use-case where serialization plays a big role is in network communication. Due to
the distributed nature of Spark applications, network communication has to occur every
time a block of data is not directly accessible by a worker node.

3.1.1 Application execution in Apache Spark

Spark provides a fast and general-purpose cluster computing environment. Applications
that run in the Spark environment are a combination of jobs, where a job is the high-level
representation of the work items to be performed.[14] A Spark job is further decomposed
into one or more stages. [15] A stage is a collection of tasks that are separated at shuffling
boundaries. A shuffle boundary implies computation that does not depend on data to be
copied from other nodes. The Spark task is the final atomic unit of computation that is sent
to each node where it operates on the RDDs.[15] This relationship between the different
components of a Spark application is depicted in figure 2.

Dadepo Aderemi, Mathijs Visser page 5 of 30

Research project 1

Figure 1: Composition of a Spark application.

3.1.2 Serialization in Apache Spark

To be able to turn Spark applications into a series of tasks that operate on the RDDs, Spark
provides a general engine based on DAGs (Directed acyclic graph) and data sharing [16].
This involves turning the application logic into a DAG, made up of stages by the DAG
Scheduler. After this, the DAG scheduler determines the optimal location on the cluster to
run the stages and then passes them to the low-level Task Scheduler[14]. The Task Scheduler
is the component that is finally responsible for sending the tasks to the cluster to be run.[17].

Figure 2: Executing a Spark application. [18]

This process of analyzing and executing Spark applications leads to communication between
various components within the Spark framework. These communications use both data
structures internal to Spark and those defined by the Spark application being executed. We
identified the various places where serialization occurs within the Spark code base and we
were able to replace the serialization mechanism with the one provided by Ibis in all, except

Dadepo Aderemi, Mathijs Visser page 6 of 30

Research project 1

two instances. See Appendix A for the list of locations where we found direct serialization
calls within Spark. The incompatibilities that prevented replacement with Ibis serialization
is discussed in section 4.2

3.2 Ibis

As explained in the introduction, Ibis is an open-source distributed computing software
project. Figure 3 gives an overview of the different modules that are part of the Ibis project.
This research however only focuses on the serialization module of Ibis.

Figure 3: TeraSort memory usage during execution. Adapted from [9]

The Ibis serialization module differs from normal Java serialization in several ways. With
native Java serialization, the application programmer implements the empty special
java.io.Serializable interface. When an object that implements this interface is being serial-
ized, Java will not only serialize this object, but also the type, version and any references it
uses. Java serialization will do this at run-time using run-time type inspection, also called
reflection in Java. Ibis serialization optionally moves some of this work to compile-time
by generating methods for each class that implements ibis.io.Serializable. This compilation
step is performed by the ibis compiler Ibisc. Ibisc works on jar archives and will rewrite the
necessary bytes in an already compiled archive. This compilation step is optional, when the
generated methods are not present, Ibis will fall back to type inspection.

Additionally, Ibis optimizes object creation. When using native Java deserialization, objects
are created using the private native Class.newInstance method inside the standard class
library. Van Nieuwpoort et al.[9] have identified that this way of creating objects is relatively
expensive. Ibis serialization optimizes this by creating a generator for each class. This
generator uses the expensive newInstance method only once when a class has first been
encountered. For every subsequent class creation, Ibis will use a lookup table to get the
type information and create the object using the class constructor.

Dadepo Aderemi, Mathijs Visser page 7 of 30

Research project 1

4 Approach

To achieve to goal of integrating Ibis serialization in Spark, and to measure the performance
differences on the RDD APIs, we first started with researching the Spark codebase. The goal
of this research is to identify all Spark components that use serialization. We have used this
information to identify the changes that are necessary to integrate Ibis serialization. The
necessary changes and our approach is explained in section 4.1. After the implementation, we
will use standardized benchmarks to measure the performance difference. The benchmarks
we used, the test environment and used configurations are explained in detail in section 4.3.

4.1 Modifying Apache Spark to use Ibis serialization

The serialization layer in Spark follows the well known, object-oriented heuristic of “pro-
gram to an interface and not an implementation”[19]. This recommendation stipulates that
a software component should not be used directly but via an abstraction. The abstraction
can be provided via an interface or abstract class. This makes it easy to swap out one
component for another. This guideline is followed in the Spark code base and it ensures
that the serialization components are not used directly but via an abstraction layer specified
by abstract classes. The serialization interfaces specified via abstract classes by Spark are
Serializer, SerializerInstance, SerializationStream, and DeserializationStream. See section
9.0.2 in the Appendix, for the listing of these abstract classes.

We created a version of Spark that uses Ibis for serialization [20] by providing an Ibis backed
implementation of these specified abstract classes. We used the io and util modules from the
Ibis code base for this, as these modules contain the serialization logic needed. To provide a
working implementation, a modified version [21] of these modules had to be created. These
modifications and unresolved incompatibilities are further discussed in section 4.2. We then
made the modified ibis modules a dependency of Spark and used them to implement concrete
serialization classes for the abstract ones provided by Spark.

4.1.1 Implementing Serializer abstract class

This abstract class provides the mechanism that ensures that the underlying serialization
happens in a thread-safe manner. It defines the method that is used to create the serialization
object, represented by the SerializerInstance, that performs the actual serialization. The
abstract class and the concrete Ibis implementation can be seen in listing 4 of the Appendix.

4.1.2 Implementing SerializerInstance abstract class

This abstract class represents an instance of a serializer. It defines methods that allow seri-
alization and deserialization to be performed on specific classes from Java’s standard library:
namely ByteBuffer, OutputStream, and InputStream. The abstract class, together with the
concrete Ibis backed implementation can be seen in listing 5 of the Appendix.

The methods defined in the abstract class are designed work on ByteBuffer and they trans-
form the ByteBuffer into either InputStream or OutputStream. Since Ibis serialization ex-
pects the type byte[], a modification was made to translate ByteBuffer to byte[]. This
modification is further discussed in section 4.2.

4.1.3 Implementing SerializationStream abstract class

This abstract class represents a stream for writing serialized objects. It is used by Serializ-
erInstance when performing the actual serialization of data to the output stream. Listing 6
in the Appendix shows the definition of the abstract class and the Ibis implementation.

Dadepo Aderemi, Mathijs Visser page 8 of 30

Research project 1

4.1.4 Implementing DeserializationStream abstract class

This abstract class is the dual of SerializationStream. It represents the stream for read-
ing serialized objects. It is used by SerializerInstance when reading data from the input
stream. Listing 7 in the Appendix shows the definition of the abstract class and the Ibis
implementation.

4.2 Modifications and incompatibilities

Replacing the serialization in Spark with Ibis resulted in incompatibilities that had to be
resolved to have a working Spark setup. Not all of these incompatibilities could be resolved
as part of this research. This lead to the inability to use Ibis serialization in certain parts
of Spark.

This section goes over the modifications that were made in order to have Spark select Ibis as
its sterilizer and also to resolve some of the incompatibilities encountered. We also highlight
those incompatibilities that could not be resolved.

4.2.1 Modification to Spark to select Ibis for serialization

The main changes needed to make Spark pick Ibis for serialization was made in Serializer-
Manager.scala: the component which configures serialization for various Spark components
and in SparkEnv.scala: which is the configuration object that holds all the runtime envi-
ronment objects for a running Spark instance. The other changes made can be seen in our
Github repository [22], which contains the source code of the modified Spark.

4.2.2 Modification to Ibis to support Scala’s Option type

One of the issues that arose when Ibis was introduced as the serialization component in
Spark, was the occurrence of scala.MatchError. This is an error that is thrown when an ob-
ject does not match any pattern of a pattern-matching expression [23]. Introducing Ibis lead
to the scala.MatchError when pattern matching within the BlockStoreShuffleReader.scala
class.

The reason Ibis serialization leads to this exception is due to how new instances are created in
the processes of deserialization. Listing 1 shows the relevant section where the newInstance
method is called when a new object is created during deserialization.

Listing 1: New instance creation during deserialization in Ibis

Object newInstance() {

try {

return newInstance.invoke(objectStreamClass, java.lang.Object[]) null);

} catch (Throwable e) {

return null;

}

}

This creation process would always create a new instance of the object. This does not align
with the requirement that the None value of Scala’s Option type should be a singleton. The
modification that resolved these incompatibilities is reproduced in listing 2.

Dadepo Aderemi, Mathijs Visser page 9 of 30

Research project 1

Listing 2: New instance creation in Ibis

Object newInstance() {

try {

if (objectStreamClass.getName().equalsIgnoreCase("scala.None")) {

return scala.Option.apply(null);

} else {

return newInstance.invoke(objectStreamClass, (java.lang.Object[]) null);

}

} catch (Throwable e) {

return null;

}

}

This ensures that the None value of the Option type is created using Option’s constructor
instead of the newInstance method. This guarantees the required invariant are kept.

4.2.3 Modification to make Ibis work with ByteBuffer

As mentioned in 4.1.2, one of the abstract classes defined in Spark for serializing expects
the ByteBuffer type, while component from Ibis serialization works with byte arrays. This
resulted in the need to have code that converts byte array to ByteBuffer during serialization,
and ByteBuffer to byte array during deserialization. The code for this conversion had to be
introduced as part of being able to use Ibis serialization in Spark and can be seen in listing
3.

Listing 3: Converting ByteBuffer to byte array

private[this] def byteBufferToByteArray(bytes: ByteBuffer):Array[Byte] = {

if (bytes.hasArray) {

bytes.array()

} else {

val bytesArray= Array.fill[Byte](bytes.remaining())(0)

bytes.get(bytesArray, 0, bytesArray.length)

bytesArray

}

}

Care was taken to ensure that a ByteBuffer that is not backed by an accessible byte array is
also handled properly. The code for converting byte array to ByteBuffer was a simple call
to the ByteBuffer.wrap(...) method, which wraps given byte array as ByteBuffer.

4.2.4 Unresolved Incompatibilities with Netty backed Block Transfer Service

Netty is an asynchronous event-driven network application framework for the development
of high-performance protocol servers and clients [24]. Spark’s network stack is implemented
using Netty. After modifying Spark to use Ibis serialization, we observed that the Netty
backed block transfer service throws an exception when a benchmark is run. A snippet of
the stack trace can be seen in the Appendix, in listing 9. Due to time restriction, we were
not able to further investigate this incompatibility and attempt a solution. We include a
possible reason for the incompatibility in section 6.

4.2.5 Unresolved Incompatibilities with persisting to Hadoop filesystem

We observed that retrieving a saved file fails after modifying Spark to use Ibis for serial-
ization. The stack trace of the exception can be seen in the Appendix in listing 8. Due to
time restriction, we were unable to further investigate this incompatibility and attempt a

Dadepo Aderemi, Mathijs Visser page 10 of 30

Research project 1

solution, although we mention possible explanations for this incompatibility in section 6.

4.3 Performance evaluation

In this research, we distinguish between two versions of Ibis serialization, the compiled and
the uncompiled version. As mentioned in the background, Ibis serialization allows to per-
form the type inspection at compile-time, instead of run-time. This does, however, require
the user to perform an additional step in the building process of creating Spark applications.
In this research, we measure the performance of both the compiled version, named Ibisc and
the version without the additional build step, called Ibis.

When measuring the performance difference between the Spark versions it is important to
choose relevant benchmarks. Our benchmarks aim to show the performance of different
Spark components and features. To achieve this we have chosen the following three bench-
marks:

• TeraSort

• SparkPi

• Persistence

These benchmarks and why we chose them are discussed in greater detail in sections 4.3.1
to 4.3.3.

During the benchmarks, we are interested in multiple metrics. We do not only measure
the time it takes to complete the job, but also the amount of memory used in the process.
We measured the memory utilization in 50 benchmark runs using the monitoring scripts as
shown in our Github repository [22]. The memory utilization results show the mean of all
50 benchmark runs.

In order to gain insight into the amount of serialization calls, as well as the calling com-
ponents, we implemented a tracing option in the modified version of Spark. The modified
Spark version checks whether the traceOn environment variable is set, if it is, the application
will provide traces for serialization calls. This information can be very valuable because we
did not manage to replace all components where serialization takes place. This way we pro-
vide insight into how many times each serialization type was used per test using the traceOn
environment variable. The traceOn environment variable was only set once and the result of
this test is not included in the results because enabling tracing impacts performance. That
is why we performed separate benchmarks to measure the number of calls per serialization
type.

When running the benchmarks, there are a lot of different processes running. We aim to
minimize this amount as much as possible, however, some processes, such as those of Hadoop
and Yarn, are required to run Spark jobs. This causes the standard deviation of benchmarks
to be relatively high when measured as a single entity. To reduce the standard deviation and
to make the results more reliable we performed each benchmark 50 times. The presented
results show the mean of those 50 benchmark runs.

4.3.1 TeraSort

TeraSort[25] is a standardized benchmark consisting of three parts, TeraGen, TeraSort, and
TeraValidate. TeraGen is used to generate unsorted data, which can be sorted using the
TeraSort script. TeraValidate can be used afterward, to verify the fully sorted data. In our

Dadepo Aderemi, Mathijs Visser page 11 of 30

Research project 1

experiment, we measured the time it takes for the TeraSort task to run when sorting 1GB of
data. The data was generated once, to ensure the input data for all benchmarks is the same.

In a TeraSort performance evaluation by Li. et al. [26] it has been shown that the shuffling
phase of TeraSort takes 98% of the total execution time when using 4 datanodes inter-
connected with a 100MB/s link. Since data is serialized before being transferred over the
network, this benchmark gives insight into the performance when serializing primitive types.

4.3.2 Persistence

Spark allows data to be persisted to memory or disk across operations. The Spark documen-
tation calls this one of the most important capabilities of Spark[27]. There are four options
when persisting data, namely, useDisk, useMemory, serialized, and replication. In our ex-
periment, we are mostly interested in the third option. This option specifies whether data
should be stored as serialized objects instead of JVM objects. Storing data as a serialized
object is generally more space-efficient.
The benchmark we chose to run creates an array of custom objects which are serialized
and persisted to memory using the MEMORY ONLY SER flag. We chose for memory only
because we want to measure the serialization speed and not be blocked by disk write speeds.
The code for this benchmark can be found in benchmarks/persistence.java in our Github
repository[22].

4.3.3 SparkPi

SparkPi[28] is an example job that is included with the Spark source code. SparkPi estimates
Pi up to 16 decimal places by applying a Monte Carlo method[29]. Monte Carlo methods are
methods that rely on repeated random sampling to determine a numeric value. Although
this benchmark does not use serialization extensively like the other benchmarks, we have
chosen this test to give us insight into the performance difference of compute-intensive Spark
jobs.

A single SparkPi run on our test setup takes around 15 seconds. Due to the short job
duration, we have increased the number of benchmarks we run to 200 for SparkPi. We did
this to make the results more reliable.

4.4 Test environment

Our test environment is managed using Apache Yarn[30]. Yarn is a resource manager and
job scheduler for Spark. Our test setup consists of two servers acting as worker nodes in the
Yarn cluster. One of the servers is designated as Spark application driver and acts as a Yarn
client. The servers are directly connected with a gigabit link to prevent external variables
from influencing the test results.

The file system of the servers is shared using the Hadoop File System (HDFS)[31]. Both
servers are datanodes containing all data used in the tests. All tests were performed using the
software versions as shown in table 1. All installations, except Hadoop and Spark, used the
default settings. The changes made to the configuration were the minimal changes necessary
to run Spark applications on two servers. Both servers used the same configuration, as can
be found in the configuration repository on our Github page [22].

Dadepo Aderemi, Mathijs Visser page 12 of 30

Research project 1

Software Version
Linux Kernel 4.15.0-72-generic
Ubuntu 18.04.3 LTS
Apache Hadoop 3.2.1
Apache Yarn 3.2.1
Apache Spark 2.4.4
OpenJDK Java Runtime Environment 1.8.0 232

Table 1: Software versions

Java version 1.8.0 was used even though it is a version that has passed through the End of
Public Updates process [32]. This is because Spark version 2.4.4 does not work with Java
versions higher than 1.8.0. Support for versions of Java higher than 1.8.0 is only planned
for version 3 of Spark [33].

To prevent previous runs from influencing the test results, our test environment is cleared
using the cleanup scripts shown in our Github repository[22]. The cleanup scripts remove
all Spark and Hadoop staging files and restarts the Hadoop services to prevent the reuse of
objects from influencing the test results.

Dadepo Aderemi, Mathijs Visser page 13 of 30

Research project 1

5 Results

This section describes the results of the experiments, as described in the approach section.
For each test case, we give a performance comparison, as well as a comparison in memory
utilization. We will also provide the number of calls that are being made to different seri-
alization types during a single run of a benchmark. The values shown are the mean of all
50 benchmark runs. More detailed tables will also show the standard deviation (SD) and
the relative standard deviation (RSD). The SD and RSD show the variance and reliability
of the benchmarks.

5.1 TeraSort

Figure 4 shows the time it takes to sort 1GB of data using the TeraSort algorithm with
different serialization techniques. We can see that the time to completion of Java and Kryo
is nearly the same. This is explained by the fact that TeraSort does not use any custom
classes. As explained in the background, Spark will use Kryo serialization during shuffling
whenever there are no custom classes used in the Spark application. We can also see that the
additional compilation step performed in Ibisc, only has a minimal impact on the application
performance.

Figure 4: TeraSort time to completion

Java Kryo Ibis Ibisc
0

10

20

30

40
41.43 41.45

34.65 34.57

T
im

e
in

se
c
o
n
d
s

In table 2, we can see the mean number of milliseconds it takes to complete one test. We can
also see that the results did not vary a lot between individual tests, with an RSD between
2.00% and 2.41%.

Table 2: TeraSort time to completion in milliseconds.
Java Kryo Ibis Ibisc

Mean milliseconds 41436.64 ms 41459.20 ms 34650.12 ms 34574.12 ms
SD 971.35 ms 830.19 ms 800.62 ms 831.93 ms
RSD 2.34% 2.00% 2.31% 2.41%

Dadepo Aderemi, Mathijs Visser page 14 of 30

Research project 1

In table 3 the amount of calls per Spark component are shown. We can see that even though
most components exclusively use Ibis serialization, there is still a significant amount of calls
to native Java serialization. The calls to Java serialization all come from the NettyRpc
component which was not modified. This benchmark did not make use of Kryo serialization
in any component.

Table 3: Amount of serialization calls per component in one TeraSort benchmark run
Component Ibis serialization calls Java serialization calls
ClosureCleaner.scala 4 0
DAGScheduler.scala 6 0
TorrentBroadcast.scala 3 0
TaskSetManager.scala 6 0
TaskResultGetter.scala 6 0
TaskResult.scala 23 0
NettyRpcEnv.scala 0 104
Total 48 104

The memory usage during the execution of the job can be seen in figure 5. We can see that
the memory usage of Java and Kryo is nearly identical, with the peak memory usage slightly
above 40.000 Mbit. Both Ibis and Ibisc peak at 37.500 and 36.000 respectively.

Figure 5: TeraSort memory usage during execution

Dadepo Aderemi, Mathijs Visser page 15 of 30

Research project 1

5.2 SparkPi

The results of the Sparkpi benchmark are shown in figure 6. The results of this benchmark
show that the differences between serialization types, when performing a mostly computa-
tional workload, are very small. Java serialization seems to be slightly faster. A possible
explanation for this could be that Java is the only native serialization method. However, we
can not conclusively say whether this is the case, or if Java serialization is faster because
the differences are only very slight. The difference could also be caused by deviation. The
RSD of the 200 application runs was measured to be between 3.16% and 3.64% depending
on the serialization type.

Figure 6: SparkPi time to completion

Java Kryo Ibis Ibisc
0

5

10

15
13.64 13.83 13.8 13.77

T
im

e
in

se
c
o
n
d
s

More detailed results of the SparkPi benchmark are shown in table 4. As well as more
precise

Table 4: SparkPi time to completion in milliseconds
Java Kryo Ibis Ibisc

Mean 13584 ms 13865 ms 14004 ms 13903 ms
STD 428 ms 465 ms 510 ms 430 ms
RSD 3.16% 3.35% 3.64% 3.09%

In table 5, the amount of serialization calls per component is shown. We can see that the
majority of serialization calls are still being made to Java serialization.

Table 5: Amount of serialization calls per component in one SparkPi benchmark run
Component Ibis serialization calls Java serialization calls
TaskResultGetter.scala 2 0
TaskResult.scala 3 0
ClosureCleaner.scala 3 0
DAGScheduler.scala 2 0
TorrentBroadcast.scala 1 0
TaskSetManager.scala 2 0
NettyRpcEnv.scala 0 134
Total 13 134

Dadepo Aderemi, Mathijs Visser page 16 of 30

Research project 1

The average memory utilization of SparkPi during a single benchmark run is shown in figure
7. It shows, just like the performance benchmark that Java serialization has a very slight
advantage. The non-native serialization methods are all very close to each other, so we
cannot conclusively say which non-native serialization type has a clear advantage.

Figure 7: SparkPi memory usage during execution

Dadepo Aderemi, Mathijs Visser page 17 of 30

Research project 1

5.3 Persistence

The results of the persistence test, as described in the approach section, are shown in figure
8. The results show roughly the same distribution as the TeraSort benchmark. Completing
a single run of the Spark application using Java serialization took roughly 50 seconds to
complete, Kryo 47, while the Ibis versions are both around 42 seconds. Ibis compiled again
shows to be only slightly faster than the uncompiled version.

Figure 8: Persistence time to completion

Java Kryo Ibis Ibisc
0

10

20

30

40

50
50.31

47.01

42.31 41.73

T
im

e
in

se
c
o
n
d
s

In table 6 the amount of milliseconds it takes for one benchmark to complete is shown. The
relative standard deviation (RSD) of Java and Kryo is slightly higher than those of the Ibis
variants, however, we can still see that Ibisc is roughly 10 to 12% faster when compared to
Java serialization. Kryo, just like in the TeraSort benchmark is slightly faster than Java
serialization and slightly slower when compared to Ibis and Ibisc.

Table 6: Persistence benchmark, time to completion in milliseconds.
Java Kryo Ibis Ibisc

Mean 50312 ms 47008 ms 42309 ms 41733 ms
STD 1015.72 ms 936.05 ms 758.75 ms 562.39 ms
RSD 2.02% 1.99% 1.79% 1.35%

The amount of serialization calls used in one run of the persistence benchmark, is shown
in table 7. The persistence benchmark by far makes the most serialization calls. It also
shows that even though most components were replaced with Ibis, the Netty backed block
transfer service still uses Java serialization due to unresolved incompatibilities discussed in
4.2.4. This use of Java serialization accounts for more than twice the serialization calls.

Dadepo Aderemi, Mathijs Visser page 18 of 30

Research project 1

Table 7: Amount of serialization calls per component in one persistence benchmark run
Component Ibis serialization calls Java serialization calls
ClosureCleaner.scala 102 0
DAGScheduler.scala 100 0
TorrentBroadcast.scala 50 0
TaskSetManager.scala 320 0
TaskResultGetter.scala 295 0
TaskResult.scala 679 0
NettyRpcEnv.scala 0 3453
Total 1546 3453

The memory utilization per serialization type can be seen in figure 9. It shows that Kryo
uses the least amount of memory on this benchmark peaking around 35000mbit. Ibisc
has a slightly higher memory peak, at around 36000mbit. Both Java and uncompiled Ibis
serialization use the most amount of memory, both peaking around 37500mbit.

Figure 9: TeraSort memory usage during execution

Dadepo Aderemi, Mathijs Visser page 19 of 30

Research project 1

6 Discussion

This research has shown that the performance of certain Spark benchmarks could be im-
proved by partially replacing Java and Kryo serialization with Ibis serialization. The modi-
fied version of Spark, that used Ibis serialization in most components, completed benchmarks
that heavily rely on serialization faster than the original Spark version. However, the time to
complete a benchmark is not the only indicator of performance. This research also measured
the memory utilization, we can however not conclusive say which serialization type has a
clear advantage in terms of memory utilization. This research has not taken the amount of
CPU-cycles and the number of bytes sent over the network into account.

Because of the positive impact, without the requirement to register classes like Kryo serial-
ization, Ibis serialization could potentially be used as a default serialization method in Spark.
However before this is possible, limitations such as not being able to write to the Hadoop
File System should first be resolved. Our research has only measured the performance on
a limited part of the Spark API, future research is required to determine the effects of the
new serialization methods in different benchmarks and APIs as well.

The release of Spark 1.2 had the network layer replaced with a Netty based one and it
introduced performance and scalability improvements using techniques like Zero-copy I/O
and off-heap network buffer management [34]. We suspect that these techniques, especially
the off-heap network buffer management are responsible for the StreamCorruptedException
we observed when the Ibis serializer is used with the Netty backed block transfer service.

Regarding the incompatibility with retrieving persisted files, we suspect that the root cause
of the exception is due to the implementation of both the writeObject and readObject meth-
ods in SerializableWritable.scala class. These implementations assume Java serialization is
in use and hence they directly make use of defaultWriteObject method and defaultReadOb-
ject of the ObjectOutputStream and ObjectInputStream respectively. The direct use of the
ObjectWritable from Hadoop is also problematic since its deserialization logic is not aware
of the newly introduced Ibis serialization.

This research has made it possible for Ibis serialization to be used in Scala applications. This
opens up even more opportunities to experiment with using Ibis serialization in distributed
applications. Experimenting with Ibis serialization in other distributed (big data) applica-
tions could potentially also show to have a positive impact. Because of the large scale that
big data applications operate in, small improvements in areas such as serialization could
have a large impact on both the total cost and even possibilities.

Dadepo Aderemi, Mathijs Visser page 20 of 30

Research project 1

7 Conclusion

At the beginning of this research, we set out to see whether it was possible to improve Spark’s
performance by introducing Ibis serialization. To do this, we first had to understand the
components of Spark that can benefit the most from Ibis serialization, then how to integrate
Ibis serialization into Spark, and finally observe if there were any performance differences.

Our research has shown that it is possible to integrate Ibis serialization in Spark, as we were
able to do so in 15 out of the 17 classes where we found direct serialization calls. Addition-
ally, in the course of our research, we explored how Spark executes programs. The tracing
functionality we added to the modified version of Spark, allowed us to see the serialization
calls that occur during the execution of a Spark application. We found out that serializa-
tion occurs at components involved in the transformation of a Spark application into tasks.
Serialization also occurs during two classes of network communications. One is the commu-
nication needed to keep the Spark components in a cluster. The other being communication
needed to send tasks to worker nodes where they are executed. Hence Spark will benefit the
most with a better serialization in these identified places.

We were able to use Ibis serialization in the components involved in the transformation of
a Spark application into tasks. This can be seen in the serialization calls per component
tables presented in section 5. We did not use Ibis for serialization in one of the network
communication layers, due to unresolved compatibility we discussed in section 6.

Regarding the performance measurements, Based on the results of the benchmarks, we can
conclude Ibis serialization can reduce the execution time of serialization heavy benchmarks
by 10% to 15%. We can also conclude that Ibis serialization does not have a notable impact
on the performance of the computational benchmark, SparkPi.

The memory utilization of the serialization types depends on the benchmark. Java seri-
alization used the least amount of memory in the benchmark with the least amount of
serialization calls. We cannot conclusively say which serialization method uses the least
amount of memory in serialization heavy workloads.

Dadepo Aderemi, Mathijs Visser page 21 of 30

Research project 1

8 Future Work

Our research has shown that Ibis serialization can have a positive impact on the performance
of certain Spark jobs, however, we have only measured the impact when using two servers.
It would be interesting to perform benchmarks on a larger scale to see if more inter-server
communication has an impact on the performance difference. Furthermore, It would be
interesting to perform more and different benchmarks to see how Ibis serialization performs
in different situations.

It was not possible to successfully use Ibis serialization in the Netty block transfer service
and with file persistence to Hadoop. Future research could focus on resolving the incompat-
ibilities that prevented the use of Ibis serialization in this section of Spark and measure if
there are any performance differences.

This research has only measured the performance impact of Ibis serialization using the RDD
API. As mentioned in section 3.1, it is one of the available APIs in Spark. It would be in-
teresting for future work to compare the performance of the DataSet API, which by default,
uses a binary file format [35] for serialization with a modified version that uses Ibis serial-
ization.

This research has measured the time to completion, as well as the memory utilization of
the entire Spark application. Future research is necessary to gain insight into other perfor-
mance indicators, such as network and CPU utilization. It could also help to perform the
performance measurements on individual components instead of entire applications.
The Ibis software stack comprises of various components, of which, the serialization layer is
one part. It might also be interesting to see how other components of the Ibis stack can be
introduced into Spark and measure the performance differences such replacements lead to.

Dadepo Aderemi, Mathijs Visser page 22 of 30

Research project 1

References

[1] Apache SparkTM; - Unified Analytics Engine for Big Data. url: https://spark.
apache.org/ (visited on 01/07/2020).

[2] Matei Zaharia et al. “Spark: Cluster computing with working sets.” In: HotCloud
10.10-10 (2010), p. 95.

[3] Tuning - Spark 2.4.4 Documentation. url: https://spark.apache.org/docs/

latest/tuning.html (visited on 01/07/2020).

[4] Serialable (Java Platform SE 8). url: https://docs.oracle.com/javase/8/docs/
api/java/io/Serializable.html (visited on 01/16/2020).

[5] Github - Kryo: Java binary serialization and cloning. url: https://github.com/
EsotericSoftware/kryo (visited on 01/16/2020).

[6] Ibis. url: https://www.cs.vu.nl/ibis/ipl.html (visited on 01/07/2020).

[7] Xiaoyi Lu et al. “High-performance design of apache spark with RDMA and its benefits
on various workloads”. In: 2016 IEEE International Conference on Big Data (Big
Data). IEEE. 2016, pp. 253–262.

[8] Xiaoyi Lu et al. “Accelerating spark with rdma for big data processing: Early experi-
ences”. In: 2014 IEEE 22nd Annual Symposium on High-Performance Interconnects.
IEEE. 2014, pp. 9–16.

[9] Rob V Van Nieuwpoort et al. “Ibis: a flexible and efficient Java-based Grid program-
ming environment”. In: Concurrency and Computation: Practice and Experience 17.7-
8 (2005), pp. 1079–1107.

[10] Nicholas Palmer, Thilo Kielmann, and Henri Bal. “Serialization for ubiquitous systems:
An evaluation of high performance techniques on java micro edition”. In: 2008 The
Second International Conference on Mobile Ubiquitous Computing, Systems, Services
and Technologies. IEEE. 2008, pp. 356–361.

[11] Java Platform, Micro Edition (Java ME). url: https://www.oracle.com/java/
technologies/javameoverview.html (visited on 02/08/2020).

[12] A Tale of Three Apache Spark APIs: RDDs vs DataFrames and Datasets. url: https:
//databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-

rdds-dataframes-and-datasets.html (visited on 02/05/2020).

[13] Catalyst optimizer - Databricks. url: https://databricks.com/glossary/catalyst-
optimizer (visited on 01/16/2020).

[14] DAGScheduler Source Code Documentation. url: https://github.com/apache/

spark/blob/094563384478a402c36415edf04ee7b884a34fc9/core/src/main/scala/

org/apache/spark/scheduler/DAGScheduler.scala#L47 (visited on 01/24/2020).

[15] Task Source Code Documentation. url: https : / / github . com / apache / spark /

blob/e1ea806b3075d279b5f08a29fe4c1ad6d3c4191a/core/src/main/scala/org/

apache/spark/scheduler/Task.scala#L33 (visited on 01/24/2020).

[16] Michael Armbrust et al. “Spark SQL: Relational Data Processing in Spark”. In: Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’15. 2015, 1383–1394.

[17] Task Schedular Code Documentation. url: https://github.com/apache/spark/
blob/7955b3962ac46b89564e0613db7bea98a1478bf2/core/src/main/scala/org/

apache/spark/scheduler/TaskScheduler.scala#L25 (visited on 01/24/2020).

[18] Understand RDD Operations: Transformations and Actions. url: https://trongkhoanguyen.
com/spark/understand-rdd-operations-transformations-and-actions/ (vis-
ited on 01/30/2020).

Dadepo Aderemi, Mathijs Visser page 23 of 30

https://spark.apache.org/
https://spark.apache.org/
https://spark.apache.org/docs/latest/tuning.html
https://spark.apache.org/docs/latest/tuning.html
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo
https://www.cs.vu.nl/ibis/ipl.html
https://www.oracle.com/java/technologies/javameoverview.html
https://www.oracle.com/java/technologies/javameoverview.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks.com/glossary/catalyst-optimizer
https://databricks.com/glossary/catalyst-optimizer
https://github.com/apache/spark/blob/094563384478a402c36415edf04ee7b884a34fc9/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala#L47
https://github.com/apache/spark/blob/094563384478a402c36415edf04ee7b884a34fc9/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala#L47
https://github.com/apache/spark/blob/094563384478a402c36415edf04ee7b884a34fc9/core/src/main/scala/org/apache/spark/scheduler/DAGScheduler.scala#L47
https://github.com/apache/spark/blob/e1ea806b3075d279b5f08a29fe4c1ad6d3c4191a/core/src/main/scala/org/apache/spark/scheduler/Task.scala#L33
https://github.com/apache/spark/blob/e1ea806b3075d279b5f08a29fe4c1ad6d3c4191a/core/src/main/scala/org/apache/spark/scheduler/Task.scala#L33
https://github.com/apache/spark/blob/e1ea806b3075d279b5f08a29fe4c1ad6d3c4191a/core/src/main/scala/org/apache/spark/scheduler/Task.scala#L33
https://github.com/apache/spark/blob/7955b3962ac46b89564e0613db7bea98a1478bf2/core/src/main/scala/org/apache/spark/scheduler/TaskScheduler.scala#L25
https://github.com/apache/spark/blob/7955b3962ac46b89564e0613db7bea98a1478bf2/core/src/main/scala/org/apache/spark/scheduler/TaskScheduler.scala#L25
https://github.com/apache/spark/blob/7955b3962ac46b89564e0613db7bea98a1478bf2/core/src/main/scala/org/apache/spark/scheduler/TaskScheduler.scala#L25
https://trongkhoanguyen.com/spark/understand-rdd-operations-transformations-and-actions/
https://trongkhoanguyen.com/spark/understand-rdd-operations-transformations-and-actions/

Research project 1

[19] R Johnson J Vlissides E Gamma R Helm. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[20] Apache Spark modified to use Ibis serialization. url: https://github.com/sne-os3-
rp1/spark (visited on 01/27/2020).

[21] Modified Ibis serialization. url: https://github.com/sne-os3-rp1/ipl (visited on
01/27/2020).

[22] sne-os3-rp1 - Github. url: https://github.com/sne-os3-rp1 (visited on 01/24/2020).

[23] Scala Match error. url: https://www.scala- lang.org/api/current/scala/

MatchError.html (visited on 01/29/2020).

[24] Netty. url: https://netty.io/ (visited on 02/05/2020).

[25] Owen O’Malley. “Terabyte sort on apache hadoop”. In: Yahoo, available online at:
http://sortbenchmark. org/Yahoo-Hadoop. pdf,(May) (2008), pp. 1–3.

[26] Songze Li et al. “Coded terasort”. In: 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE. 2017, pp. 389–398.

[27] RDD Programming - Spark 2.4.4 Documentation. url: https://spark.apache.

org/docs/latest/rdd-programming-guide.html#rdd-persistence (visited on
01/16/2020).

[28] Spark/SparkPi.scala - Github. url: https://github.com/apache/spark/blob/

master/examples/src/main/scala/org/apache/spark/examples/SparkPi.scala

(visited on 01/29/2020).

[29] Nicholas Metropolis and Stanislaw Ulam. “The monte carlo method”. In: Journal of
the American statistical association 44.247 (1949), pp. 335–341.

[30] Apache Hadoop 3.2.1 - Yarn. url: https://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html (visited on 01/16/2020).

[31] Apache Hadoop. url: https://hadoop.apache.org/ (visited on 01/16/2020).

[32] Oracle Java SE Support Roadmap. url: https://www.oracle.com/technetwork/
java/java-se-support-roadmap.html (visited on 02/05/2020).

[33] Build and Run Spark on JDK11. url: https://issues.apache.org/jira/browse/
SPARK-24417 (visited on 02/05/2020).

[34] Michael Armbrust et al. “Scaling spark in the real world: performance and usability”.
eng. In: Proceedings of the VLDB Endowment 8.12 (2015-08-01), pp. 1840,1843. issn:
21508097.

[35] Introducing Apache Spark Datasets. url: https://databricks.com/blog/2016/01/
04/introducing-apache-spark-datasets.html (visited on 02/06/2020).

Dadepo Aderemi, Mathijs Visser page 24 of 30

https://github.com/sne-os3-rp1/spark
https://github.com/sne-os3-rp1/spark
https://github.com/sne-os3-rp1/ipl
https://github.com/sne-os3-rp1
https://www.scala-lang.org/api/current/scala/MatchError.html
https://www.scala-lang.org/api/current/scala/MatchError.html
https://netty.io/
https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence
https://spark.apache.org/docs/latest/rdd-programming-guide.html#rdd-persistence
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPi.scala
https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/SparkPi.scala
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html
https://www.oracle.com/technetwork/java/java-se-support-roadmap.html
https://issues.apache.org/jira/browse/SPARK-24417
https://issues.apache.org/jira/browse/SPARK-24417
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html

Research project 1

9 Appendix

9.0.1 Location of direct serialization calls in Apache Spark

Table 8: Components replaced with Ibis
Source file Description
Task.scala Takes care of serializing and deserializing metrics for exe-

cuting tasks
Accumulable.scala Represents a data type that can be accumulated
RangePartitioner.scala Partition sortable records of RDD by range into roughly

equal ranges
TorrentBroadcast.scala A torrent like implementation of a broadcast variable
FileSystemPersistenceEngine.scala This part of the code takes care of allowing Master to persist

any state that is necessary to recover from a failure
ZooKeeperPersistenceEngine.scala Same as FileSystemPersistenceEngine but when using

Zookeeper
CoarseGrainedExecutorBackend.scala An RPC endpoint that defines what functions to trigger

given a message
Executor.scala The executor that uses a given scheduler to run tasks
BlockStoreShuffleReader.scala Fetches partitions in ranges from a shuffle
DiskBlockObjectWriter.scala A class for writing JVM objects directly to a file on disk
UnsafeShuffleWriter.scala An optimized shuffle manager that powers the tungsten-

sort
expressions.objects.scala Serialization that is part of the Catalyst SQL optimizer
MemoryStore.scala Stores blocks in memory, as Arrays of deserialized Java ob-

jects or as serialized ByteBuffers
ClosureCleaner.scala A cleaner that renders closures serializable if they can be

done so safely
ExternalAppendOnlyMap.scala An append-only map that spills sorted content to disk
ExternalSorter.scala Sorts and potentially merges a number of key-value pairs
TaskSetManager.scala Schedules tasks in a single TaskSet in the TaskScheduler-

Impl

Table 9: Components not replaced with Ibis
Source file Description
Netty backed network subcomponent Netty related components for internal RPC communica-

tions
Hadoop subcomponent for deserializ-
ing/serializing

Hadoop related components in the sql/core module

Dadepo Aderemi, Mathijs Visser page 25 of 30

Research project 1

9.0.2 Apache Spark’s serialization interfaces and Ibis implementations

Listing 4: Serializer and Ibis implementation

abstract class Serializer {

@volatile protected var defaultClassLoader: Option[ClassLoader] = None

def setDefaultClassLoader(classLoader: ClassLoader): Serializer = {

defaultClassLoader = Some(classLoader)

this

}

def newInstance(): SerializerInstance

@Private

private[spark] def supportsRelocationOfSerializedObjects: Boolean = false

}

class IbisSerializer(conf: SparkConf) extends Serializer with Externalizable {

private var counterReset = conf.getInt("spark.serializer.objectStreamReset", 100)

private var extraDebugInfo = conf.getBoolean("spark.serializer.extraDebugInfo",

true)

protected def this() = this(new SparkConf())

override def newInstance(): SerializerInstance = {

val classLoader = defaultClassLoader.getOrElse(Thread.currentThread.

getContextClassLoader)

new IbisSerializerInstance(counterReset, extraDebugInfo, classLoader)

}

override def writeExternal(out: ObjectOutput): Unit = Utils.tryOrIOException {

out.writeInt(counterReset)

out.writeBoolean(extraDebugInfo)

}

override def readExternal(in: ObjectInput): Unit = Utils.tryOrIOException {

counterReset = in.readInt()

extraDebugInfo = in.readBoolean()

}

}

Dadepo Aderemi, Mathijs Visser page 26 of 30

Research project 1

Listing 5: SerializerInstance and Ibis implementation

abstract class SerializerInstance {

def serialize[T: ClassTag](t: T): ByteBuffer

def deserialize[T: ClassTag](bytes: ByteBuffer): T

def deserialize[T: ClassTag](bytes: ByteBuffer, loader: ClassLoader): T

def serializeStream(s: OutputStream): SerializationStream

def deserializeStream(s: InputStream): DeserializationStream

}

private[spark] class IbisSerializerInstance(counterReset: Int,

extraDebugInfo: Boolean,

defaultClassLoader: ClassLoader)

extends SerializerInstance {

override def serialize[T: ClassTag](t: T): ByteBuffer = {

val bos = new ByteArrayOutputStream()

val out = serializeStream(bos)

out.writeObject(t)

out.close()

ByteBuffer.wrap(bos.toByteArray)

}

override def deserialize[T: ClassTag](bytes: ByteBuffer): T = {

val bis = new ByteArrayInputStream(byteBufferToByteArray(bytes))

val in = deserializeStream(bis)

in.readObject()

}

override def deserialize[T: ClassTag](bytes: ByteBuffer, loader: ClassLoader): T={

val bis = new ByteArrayInputStream(byteBufferToByteArray(bytes))

val in = deserializeStream(bis, loader)

in.readObject()

}

override def serializeStream(s: OutputStream): SerializationStream = {

new IbisSerializationStream(s, counterReset, extraDebugInfo)

}

override def deserializeStream(s: InputStream): DeserializationStream = {

new IbisDeserializationStream(s, defaultClassLoader)

}

def deserializeStream(s: InputStream, loader: ClassLoader): DeserializationStream

= {

new IbisDeserializationStream(s, loader)

}

private[this] def byteBufferToByteArray(bytes: ByteBuffer):Array[Byte] = {

if (bytes.hasArray) {

bytes.array()

} else {

val bytesArray= Array.fill[Byte](bytes.remaining())(0)

bytes.get(bytesArray, 0, bytesArray.length)

bytesArray

}

}

}

Dadepo Aderemi, Mathijs Visser page 27 of 30

Research project 1

Listing 6: SerializationStream and Ibis implementation

abstract class SerializationStream extends Closeable {

def writeObject[T: ClassTag](t: T): SerializationStream

def writeKey[T: ClassTag](key: T): SerializationStream = writeObject(key)

def writeValue[T: ClassTag](value: T): SerializationStream = writeObject(value)

def flush(): Unit

override def close(): Unit

def writeAll[T: ClassTag](iter: Iterator[T]): SerializationStream = {

while (iter.hasNext) {

writeObject(iter.next())

}

this

}

}

private[spark] class IbisSerializationStream(out: OutputStream,

counterReset: Int,

extraDebugInfo: Boolean) extends

SerializationStream {

private val objOut = new IbisSerializationOutputStream(

new BufferedArrayOutputStream(out)

)

private var counter = 0

override def writeObject[T: ClassTag](t: T): SerializationStream = {

try {

objOut.writeObject(t)

flush()

} catch {

case e: NotSerializableException if extraDebugInfo =>

throw SerializationDebugger.improveException(t, e)

}

counter += 1

if (counterReset > 0 && counter >= counterReset) {

objOut.reset()

counter = 0

}

this

}

def flush(): Unit = { objOut.flush() }

def close(): Unit = {

objOut.realClose()

}

}

Dadepo Aderemi, Mathijs Visser page 28 of 30

Research project 1

Listing 7: DeserializationStream and Ibis implementation

abstract class DeserializationStream extends Closeable {

def readObject[T: ClassTag](): T

def readKey[T: ClassTag](): T = readObject[T]()

def readValue[T: ClassTag](): T = readObject[T]()

override def close(): Unit

def asIterator: Iterator[Any] = new NextIterator[Any] {

override protected def getNext() = {

try {

readObject[Any]()

} catch {

case eof: EOFException =>

finished = true

null

}

}

override protected def close() {

DeserializationStream.this.close()

}

}

def asKeyValueIterator: Iterator[(Any, Any)] = new NextIterator[(Any, Any)] {

override protected def getNext() = {

try {

(readKey[Any](), readValue[Any]())

} catch {

case eof: EOFException =>

finished = true

null

}

}

override protected def close() {

DeserializationStream.this.close()

}

}

}

private val objIn = new IbisSerializationInputStream(new BufferedArrayInputStream(

in)) {

def resolveClass(desc: ObjectStreamClass): Class[_] =

try {

Class.forName(desc.getName, false, loader)

} catch {

case e: ClassNotFoundException =>

JavaDeserializationStream.primitiveMappings.getOrElse(desc.getName, throw e

)

}

}

override def readObject[T: ClassTag](): T = {

SLogger.log("ibis","read")

objIn.readObject().asInstanceOf[T]

}

override def close(): Unit = {

objIn.close()

}

}

Dadepo Aderemi, Mathijs Visser page 29 of 30

Research project 1

Listing 8: File persistence stack trace

WARN scheduler.TaskSetManager: Lost task 0.0 in stage 1.0 (TID 1, localhost,

executor driver): java.io.IOException: ibis.io.SerializationError: require byte

[]: org.apache.hadoop.mapred.FileSplit4file:/Us

at org.apache.spark.util.Utils$.tryOrIOException(Utils.scala:1333)

at org.apache.spark.SerializableWritable.readObject(SerializableWritable.

scala:41)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java

:62)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(

DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:498)

at ibis.io.AlternativeTypeInfo.invokeReadObject(AlternativeTypeInfo.java:532)

at ibis.io.IbisSerializationInputStream.alternativeReadObject(

IbisSerializationInputStream.java:1402)

at ibis.io.AlternativeTypeInfo$SerializableReader.readObject(

AlternativeTypeInfo.java:245)

at ibis.io.IbisSerializationInputStream.doReadObject(

IbisSerializationInputStream.java:1716)

at ibis.io.IbisSerializationInputStream.readFieldObject(

IbisSerializationInputStream.java:1205)

Listing 9: File persistence stack trace

Caused by: java.lang.RuntimeException: java.io.StreamCorruptedException: invalid

stream header: 00005300

at java.io.ObjectInputStream.readStreamHeader(ObjectInputStream.java:862)

at java.io.ObjectInputStream.<init>(ObjectInputStream.java:354)

at org.apache.spark.serializer.JavaDeserializationStream$$anon$1.<init>(

JavaSerializer.scala:64)

at org.apache.spark.serializer.JavaDeserializationStream.<init>(

JavaSerializer.scala:64)

at org.apache.spark.serializer.JavaSerializerInstance.deserializeStream(

JavaSerializer.scala:126)

at org.apache.spark.serializer.JavaSerializerInstance.deserialize(

JavaSerializer.scala:111)

at org.apache.spark.rpc.netty.

NettyRpcEnv$$anonfun$deserialize$1$$anonfun$apply$1.apply(NettyRpcEnv.

scala:271)

...

at org.apache.spark.network.server.TransportRequestHandler.processRpcRequest(

TransportRequestHandler.java:180)

at org.apache.spark.network.server.TransportRequestHandler.handle(

TransportRequestHandler.java:103)

at org.apache.spark.network.server.TransportChannelHandler.channelRead(

TransportChannelHandler.java:118)

at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(

AbstractChannelHandlerContext.java:362)

at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(

AbstractChannelHandlerContext.java:348)

at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(

AbstractChannelHandlerContext.java:340)

at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.

java:286)

Dadepo Aderemi, Mathijs Visser page 30 of 30

	Introduction
	Spark serialization
	Ibis serialization
	Research Questions
	Structure

	Related work
	Background
	Apache Spark
	Application execution in Apache Spark
	Serialization in Apache Spark

	Ibis

	Approach
	Modifying Apache Spark to use Ibis serialization
	Implementing Serializer abstract class
	Implementing SerializerInstance abstract class
	Implementing SerializationStream abstract class
	Implementing DeserializationStream abstract class

	Modifications and incompatibilities
	Modification to Spark to select Ibis for serialization
	Modification to Ibis to support Scala's Option type
	Modification to make Ibis work with ByteBuffer
	Unresolved Incompatibilities with Netty backed Block Transfer Service
	Unresolved Incompatibilities with persisting to Hadoop filesystem

	Performance evaluation
	TeraSort
	Persistence
	SparkPi

	Test environment

	Results
	TeraSort
	SparkPi
	Persistence

	Discussion
	Conclusion
	Future Work
	Appendix
	Location of direct serialization calls in Apache Spark
	Apache Spark's serialization interfaces and Ibis implementations

