
1

driving your security 
forward

Analyzing embedded 
software technologies on 

RISC-V64 using Ghidra

Presented by: Joris Jonkers Both & Patrick Spaans
Supervisor: Alexandru Geana



2

IntroductionRISC-V64
- Like ARM but open source
- One base image
- Extendable with extensions (e.g. M for 

multiplications)
-



3

IntroductionRISC-V64
- Like ARM but open source
- One base image
- Extendable with extensions (e.g. M for 

multiplications)
-

Security of embedded systems



4

IntroductionRISC-V64
- Like ARM but open source
- One base image
- Extendable with extensions (e.g. M for 

multiplications)
-

Security of embedded systems

Ghidra SRE Framework



5

IntroductionRISC-V64
- Like ARM but open source
- One base image
- Extendable with extensions (e.g. M for 

multiplications)
-

Security of embedded systems

Ghidra SRE Framework

Kendryte K210 SoC
- System on a Chip
- Maix-bit
- AI capable IoT device 



6

Related Work

Ghidra only recently open source

Analyzing security using reverse engineering is not a new concept
- Udupa et al. in 2005
- Zaddach and Costin in 2013



7

RISC-V64

I → base integer instruction set
M → standard integer multiplication & division extension
A → standard atomic instruction extension
F → single-precision floating-point extension
D → standard double-precision floating-point extension
C → standard extension for compressed instructions

Q → standard extension for quad-precision floating-point

Supported extensions

{G



8

RISC-V64

I → base integer instruction set
M → standard integer multiplication & division extension
A → standard atomic instruction extension
F → single-precision floating-point extension
D → standard double-precision floating-point extension
C → standard extension for compressed instructions

Q → standard extension for quad-precision floating-point

So, Risc-V64GC == Risc-V64IMAFDC...

Supported extensions

{G



9

Research Question
In what ways can a disassembly 
and decompile tool be used to 
analyze and enhance the working 
of embedded technologies?



10

Research Subquestions
- What are the possibilities of implementing 

a Ghidra plugin for RISC-V?
- What are the possibilities of using 

reverse-engineering to enable hidden 
features on the Kendryte K210?



11

MethodologyCreating a Ghidra Plugin for 
RISC-V64GC

Reverse engineering the Kendryte 
K210 bootrom

Research into writing to the 
Kendryte K210 OTP in order to 
implement secure boot



12
confidential

Creating a Ghidra Plugin
for RISC-V64GC

- Add support for architectures
- Specifies register layouts and hardware specs
- Must contain all instructions specifications to allow 

successful decompilation



13

Creating a Ghidra Plugin
Plugin structure

.ldefs file 
(language definition)



14

Creating a Ghidra Plugin
Plugin structure

.ldefs file 
(language definition)

.sla file 
(Instruction definitions) Example:



15

Creating a Ghidra Plugin
Plugin structure

.ldefs file 
(language definition)

.sla file 
(Instruction definitions)

.pspec file 
(Processor specification)



16

Creating a Ghidra Plugin
Plugin structure

.ldefs file 
(language definition)

.sla file 
(Instruction definitions)

.pspec file 
(Processor specification)

.cspec file 
(Compiler specification)

...



17

Creating a Ghidra Plugin
Plugin structure

.ldefs file 
(language definition)

.sla file 
(Instruction definitions)

.pspec file 
(Processor specification)

.cspec file 
(Compiler specification)



18

Reverse engineering the Kendryte K210 bootrom
Using the plugin

…



19

Reverse engineering the Kendryte K210 bootrom
Using the plugin

…

Can be: “f3 01 e7 00” or “f3 01”
Neither are in the documentation

…



20

Reverse engineering the Kendryte K210 bootrom
Using an alternative reverse engineering tool

An alternative to Ghidra could be used to find out more about these functions.



21

An alternative to Ghidra could be used to find out more about these functions.

Reverse engineering the Kendryte K210 bootrom
Using an alternative reverse engineering tool

Ghidra Radare2



22

Reverse engineering the Kendryte K210 bootrom
Using the complete bootrom



23

Reverse engineering the Kendryte K210 bootrom
Using the complete bootrom

There are still some unrecognized instructions



24

Reverse engineering the Kendryte K210 bootrom
Debugging

Using J-Link and OpenOCD (on-chip-debugger)



25

Reverse engineering the Kendryte K210 bootrom
Debugging

It turns out that all instructions left were no actual instructions



26

Research into writing to the Kendryte K210 OTP
Implementing secure boot



27

Research into writing to the Kendryte K210 OTP
Implementing secure boot



28

Research into writing to the Kendryte K210 OTP
Implementing secure boot



29

Research into writing to the Kendryte K210 OTP
Implementing secure boot



30

Research into writing to the Kendryte K210 OTP
Implementing secure boot



31

Research into writing to the Kendryte K210 OTP
Implementing secure boot



32

Research into writing to the Kendryte K210 OTP
Trying to write to the OTP

We used the Ghidra plugin to find the OTP write function



33

Research into writing to the Kendryte K210 OTP
Trying to write to the OTP

We used the Ghidra plugin to find the OTP write function

While being the correct function, it is yet unable to write



34

Research into writing to the Kendryte K210 OTP
What is this return value?

In the function, the following is specified:



35

Research into writing to the Kendryte K210 OTP
What is this return value?

In the function, the following is specified:

So what is this _DAT_50420060?



36

ConclusionThe Ghidra Plugin works, and is 
able to completely reverse 
engineer the Kendryte K210 
Bootrom

However, it is not possible to 
enable any features that require 
writing to the OTP if the write 
disabling bit has been set.



37

Future WorkTest the write function on a 
Kendryte K210 chip with an 
unwritten OTP

Use the Ghidra Plugin as a means 
to analyze the security of 
embedded SoC’s

Enable other features of the 
Kendryte K210 using reverse 
engineering

Create a plugin for other RISC-V 
types or extensions


