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Simplicity Theory
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● Cognitive probability in terms of complexity and simplicity, rather than 
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Simplicity Theory
 An example

8

● Fair lottery draw:  1-2-3-4-5-6
● Same chances than any other combination
● Odd from a human point of view

● Same generation cost of other combinations
● Low description cost ("1 to 6")
● Therefore: 

   U(s) = Cw(s) -   Cd(s)



Simplicity Theory
A situation is unexpected, in the eyes of an observer, when it is hard 

to generate (high Cw(s)) and/or easy to describe (low Cd(s)).
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Anomaly Detection
Anomaly detection systems model the normal behavior of a 

target system and report abnormal activities, which are 
analyzed as a possible intrusions.
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Research Questions
1. How can an anomaly detection tool based on Simplicity Theory 

be designed and implemented?

2. How effective said tool can be in detecting anomalies in 
network logs in a system?
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Putting it Into Practice

U(s) = Cw(s) - Cd(s)
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Putting it Into Practice

QUANTIFY COMPLEXITIES

How can generation and description 
complexity be quantified?

The quantification needs to be 
representative and comparable.

U(s) = Cw(s) - Cd(s)



Putting it Into Practice

SET A CONTEXT

Simplicity Theory allows for observer 
point-of-view bias.

Different observer might have 
different concepts of “abnormal”.

U(s) = Cw(s) - Cd(s)

15



Set a Context (1)
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Define object prototypes.

Prototypes, in the conceptual space, are used as baseline to compute generation and description 
complexity of a given state.

Defined in n dimensions, where n is the number of features



Set a Context (2)
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In our case, one of the categorical features...
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Set a Context (2)
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In our case, one of the categorical features...

● Source IP: monitor an IP address traffic for abnormal behaviours. (Compromised machine)
● Destinatination IP:  monitor for unusual traffic to a specific machine. (Server under attack)
● Protocol: monitor for abnormal protocol-specific traffic. (Specific attacks)

...however not necessary

●  Combination of categorical features
● K-Prototypes
● No prototypes (aka one prototype)



Set a Context (3)
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TCP DNS

Source IP

Length Dst. IP

Info Length

Dst. IP

Object prototypes

Dimensions

192.168.0.1 192.168.0.2 192.168.0.3Feature prototypes 10496
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Quantifying Complexities - Generation (1)
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”The length of the shortest program that a given environment must execute to achieve a given state”
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”The length of the shortest program that a given environment must execute to achieve a given state”

Real-life events are often NOT like fair lottery, some events are more likely to happen than others ...

Quantifying Complexities - Generation (1)



26

”The length of the shortest program that a given environment must execute to achieve a given state”

Real-life events are often NOT like fair lottery, some events are more likely to happen than others ...

… a ranking of most frequently occurring feature prototypes has to be created. 

Quantifying Complexities - Generation (1)
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Quantifying Complexities - Generation (2)
CODE COMPLEXITY

1st 0

2nd 0 1

3rd 1 1

4th 00 2

5th 01 2

6th 10 2

7th 11 2

8th 000 3

9th 001 3
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Quantifying Complexities - Generation (2)
CODE COMPLEXITY

192.168.0.1 0

192.168.0.2 0 1

192.168.0.3 1 1

192.168.0.4 00 2

192.168.0.5 01 2

192.168.0.6 10 2

192.168.0.7 11 2

192.168.0.8 000 3

192.168.0.9 001 3
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Quantifying Complexities - Generation (2)

1st

2nd 3rd

4th

8th 9th

5th

0 1

0 1

0 1
… … … 

CODE COMPLEXITY

192.168.0.1 0

192.168.0.2 0 1

192.168.0.3 1 1

192.168.0.4 00 2

192.168.0.5 01 2

192.168.0.6 10 2

192.168.0.7 11 2

192.168.0.8 000 3

192.168.0.9 001 3
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Quantifying Complexities - Description (1)
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Quantifying Complexities - Description (1)

”The shortest possible description of a state that an observer can produce to discriminate it without ambiguity”
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It could be the same as the generation complexity...

… but an observer can also use its own memory to achieve simpler descriptions. 
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Quantifying Complexities - Description (1)

”The shortest possible description of a state that an observer can produce to discriminate it without ambiguity”

It could be the same as the generation complexity...

… but an observer can also use its own memory to achieve simpler descriptions. 

The cheapest option is chosen.
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Quantifying Complexities - Description (2)

At observation time N, the stack pointer 
is here.

MOVES COMPLEXITY

N-1 0 1

N-2 1 1

N-3 2 (10) 2

N-4 3 (11) 2

N-5 4 (100) 3

N-6 5 (101) 3

N-7 6 (110) 3

N-8 7 (111) 3

N-9 8 (1000) 4
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Quantifying Complexities - Numerical (1)

PROBLEM!

Previous methods work for categorical feature prototypes.
Numerical feature prototypes cannot be ranked.
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Quantifying Complexities - Numerical (1)

PROBLEM!

Previous methods work for categorical feature prototypes.
Numerical feature prototypes cannot be ranked.

Idea: numerical feature prototypes could be transformed into categorical ones.
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Quantifying Complexities - Numerical (2)

SOLUTION - Binary Tree

Compute mean and standard deviation over all the possible feature prototypes.
Describe a feature prototype as being n * (m𝝈) away from the mean.
Populate the tree with m𝝈  intervals, starting from the closest to the mean.



Quantifying Complexities - Numerical (3)
Mean

-m𝝈 +m𝝈

-2m𝝈 +2m𝝈

-3m𝝈

-4m𝝈

+3m𝝈

+4m𝝈

39

1 10000 01 00 0 11 111

0 0 1 23 2 2 1 2 3

CODES

COMPLEXITIES



Quantifying Complexities - Numerical (4)
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0𝝈

-m𝝈 +m𝝈

-2m𝝈

-5m𝝈 -6m𝝈

-3m𝝈

0 1

0 1

0 1
… … … 
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Quantifying Complexities - Numerical (5)

SOLUTION - Memory Stack

Compute mean and standard deviation over all the possible feature prototypes.
Describe an observation as being n * (m𝝈) away from a previous observation.
Complexity is given by the depth of the previous observation and its distance from the current observation.



42

Quantifying Complexities - Numerical (6)
MOVES COMPLEXITY

(N-1, d_1) 0 1+log(d-d_1)

(N-2, d_2) 1 1+log(d-d_2)

(N-3, d_3) 2 (10) 2+log(d-d_3)

(N-4, d_4) 3 (11) 2+log(d-d_4)

(N-5, d_5) 4 (100) 3+log(d-d_5)

(N-6, d_6) 5 (101) 3+log(d-d_6)

(N-7, d_7) 6 (110) 3+log(d-d_7)

(N-8, d_8) 7 (111) 3+log(d-d_8)

(N-9, d_9) 8 (1000) 4+log(d-d_9)

At observation time (N, d) the stack 
pointer is here.
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Dataset transformation
DARPA 1999 IDS dataset
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Dataset transformation
DARPA 1999 IDS dataset

45

Create templates for each protocol
Calculate Levenshtein distance



Dataset transformation
DARPA 1999 IDS dataset

1,0.000000,Cisco_38:46:33,Cisco_38:46:33,LOOP,60,2
2,0.096519,172.16.112.20,192.168.1.10,DNS,78,26
3,0.101814,192.168.1.10,172.16.112.20,DNS,134,8
4,0.106695,172.16.112.194,196.37.75.158,TCP,60,28
5,0.111396,196.37.75.158,172.16.112.194,TCP,60,37
6,0.111587,172.16.112.194,196.37.75.158,TCP,60,24
7,0.275928,192.168.1.10,172.16.112.20,DNS,87,35
8,0.276578,172.16.112.20,192.168.1.10,DNS,176,72
9,0.278723,192.168.1.10,172.16.112.20,DNS,79,27
10,0.279158,172.16.112.20,192.168.1.10,DNS,144,49+ Converted to CSV

+ Info field templated and 
Levenshtein distance calculated

46



Log line:  "5,  0.111396,   196.37.75.158,  172.16.112.194,  TCP,  60,  37"

● 196.37.75.158          Source IP

● 172.16.112.194        Destination IP
  

● TCP                             Protocol
   

● 60                                Length of the packet
  

● 37                                Information - Levenshtein string distance from the template

Features definition

47
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Implementation (1)

● Object protocol are based on Protocols (same could have been done with any other feature)
● Source IP and Destination IP are categorical values
● Length and Info are numerical values
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Implementation (1)

● Object protocol are based on Protocols (same could have been done with any other feature)
● Source IP and Destination IP are categorical values
● Length and Info are numerical values

Implementation caveats…

● When a new feature prototype appears (i.e. a new IP address for a protocol), it is added as a leaf to the binary 
tree. 

● When a new object prototype appears (i.e. a new protocol), no action is taken, other than generating a message.
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Implementation (2)

Feature prototypes definitions are generated separately for categorical and numerical dimensions.

● Numerical feature prototype definitions contain the mean and the standard deviation for a given dimension.
● Categorical feature prototype definitions contain the ranking of the feature prototypes for a given dimension.

CATEGORICAL NU
M

ER
IC

AL
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● Training done over weeks 1 and 3.
● Testing done on week 4.
● Testing carried out only on inside captures.

Testing and Results (1)
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Testing and Results (1)

● Training done over weeks 1 and 3.
● Testing done on week 4.
● Testing carried out only on inside captures.

● 96.4% attacks detected (accuracy)
● 80.6% true positives (= 0.81 precision)
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Testing and Results (2)
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Testing and Results (2)

● From 09:39 to 11:15

● From 16:32 to 18:24

● From 18:27 to 19:50

● From 20:03 to 21:34

58



Testing and Results (2)

Many attacks 
+
portsweep 

Smurf DDos
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Conclusions (1)
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network logs in a system?



Conclusions (2)
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● “Anomalous Payload-based Network Intrusion Detection”, Ke Wang, Salvatore J. Stolfo
● “Robust Support Vector Machines for Anomaly Detection in Computer Security”, Wenjie Hu et al.
● “Hierarchical Kohonenen Net for Anomaly Detection in Network Security”, Suseela T. Sarasamm et al.

Usual false positives rates between <1% and 3%
Accuracy usually between 90% and 94%



Conclusions (3)
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● Hard to tell what is actually a false positive. (Anomaly does not equate to attack)
● Evolving normality.
● No domain specific knowledge, poor feature selection.



Conclusions (3)

64

● Hard to tell what is actually a false positive. (Anomaly does not equate to attack)
● Evolving normality.
● No domain specific knowledge, poor feature selection.

Plenty of room for improvements!



QUESTIONS ?
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