Detecting Cobalt Strike beacons in NetFlow data

Vincent van der Eijk, Coen Schuijt
University of Amsterdam
{vincent.vandereijk, coen.schuijt} @os3.nl

Supervisor: dr. ing. Ralph Koning
r.koning@uva.nl

Abstract—In the current era of cyber security, realistic
threat simulation is performed in order to bring the
resilience of organizations to real attacks, to a higher
level. The goal of a Red Team is to simulate attacks in
a realistic manner, whereas the Blue Team tries to keep
out adversaries. When analysing threat actors and their
tool set, Cobalt Strike is prominent and used in the wild for
good and bad. Even Advanced Persistent Threats (APTs)
make use of this software. Within this research we provide
insights in the approach for detecting beaconing traffic
that is generated by Cobalt Strike as part of its attack
infrastructure. We propose a detection algorithm based
on four identifying network related features, which prove
to be able to identify Cobalt Strike TCP beacons with an
accuracy of 99.996 %.

Index Terms—Cobalt Strike, beacon traffic, Command
and Control, botnet analysis, network security, NetFlow.

I. INTRODUCTION

Cybercrime is an emerging business model in nowa-
days society [1]. Independent of motivation, gaining
unauthorized access to computer systems and networks
is happening on a daily basis. There exists a variety
of malicious software (malware), which can be easily
obtained via sources on the internet [2]. One prominent
category of malware consists of those which serve the
purpose to remotely controlling a system — often referred
to as a Remote Access Toolkit (RAT). A combination
of compromised systems (bots) can create a network,
sometimes referred to as botnet (bot network).

Botnet software can be obtained online relatively
easily and used by anyone, even without thorough un-
derstanding of IT [2]. Cobalt Strike is a commercial
software package that provides the functionality to op-
erate such a botnet. This software is known to be used
by both white- and black hat hackers (good and bad),

and the software is highly customizable [3]. It is even
known to be used by Advanced Persistent Threats; highly
skilled, often nation state backed hacking organizations
[4]. Additionally, the software comes with impressive
features that allow it to change its indicators to avoid de-
tection. Because of the interesting capabilities provided
by Cobalt Strike and its widespread use, we focus our
research specifically on the Cobalt Strike software. The
aim of this research is to determine if we can distinguish
obfuscated Cobalt Strike beacons from genuine network
traffic based on identifying features. In this paper we
propose a method to detect the presence of a Cobalt
Strike botnet host (beacon) in network traffic, based on
NetFlow data.

A. Research questions

Our main research question is defined as follows:
How can we distinguish obfuscated Cobalt Strike
beacons from genuine network traffic based on iden-
tifying features?

To answer this question we will look into the following
subquestions:

o Which features can we extract from network traffic

generated by Cobalt Strike beacons?

e Can we detect a Cobalt Strike beacon using a mal-

leable profile with one or more of those features?

With regards to the research questions, the following

hypotheses are defined:

o H1: Identifying features such as timing intervals and
message length can be used to identify malicious
network traffic.

e H2: Protocol flow information (metadata) provides
valuable features for measurement.

In order to verify these hypotheses, we will con-

duct a series of experiments in which we analyse a



collection of datasets; NetFlow data containing Cobalt
Strike network traffic that is generated by malleable
C2 profiles, NetFlow data of genuine network traffic
from external sources, and our own generated data. The
experiments consist of testing several features of our
proposed detection algorithm on these datasets, which
is further explained in Section III.

B. Outline

First, in Section II, we provide additional background
information regarding security operations, as well as
the techniques that are currently used by botnet oper-
ators. Section III describes the methodology to setup
our own botnet infrastructure using Cobalt Strike to
generate botnet traffic in a controlled environment. Next,
Section IV provides our results, including the analysis of
the network traffic and the outcome of our experiments.
A discussion is given in Section V, where we reflect on
the results, as well as any limitations in our research.
The conclusion is included in Section VI, and we finish
with several suggestions for future work in Section VII.

II. BACKGROUND

When describing types of security teams within a
company, a distinction between offensive and defensive
security is often made. This is also referred to as Red
Teaming and Blue Teaming. Red Teaming is an advanced
form of assessment that is used to test the security
of a given IT network [5]. The Blue Team, on the
other hand, tries its best to prevent the network from
being compromised, by taking defensive measures and
responding to detected treats.

In general, the Red Team follows the same approach
as an arbitrary treat actor would take to perform its
malicious operations. This approach often consists of,
but is not limited to, the following phases; 1. Recon-
naissance, 2. Weaponization, 3. Delivery, 4. Exploitation,
5. Installation, 6. Command & Control, and 7. Actions
on Objective [6]. By following these phases and after
successfully compromising the target network, this re-
sults in access to one or multiple compromised host
machine(s) within the target network (achieved within
phases 1-5). These compromised hosts are sometimes
referred to as bots, which can be seen as a zombie
machine that awaits instructions from a botnet server
and performs certain automated operations (as executed
in phase 6-7). A collection of bots is often called a
botnet. When analysing the amount of botnets over
the years, an increase can be observed [7]. We believe
that many of today’s Blue teams still need to cover a gap
to keep up with the Red Teams (and real threat actors)
in regards with botnet traffic detection.

A. State of the art

In today’s era of Red Teaming operations and adver-
sary simulations, Cobalt Strike is a tool that is com-
monly used to setup and maintain connections with a
target infrastructure [8]. Cobalt Strike can be used to
perform Command and Control (C2) operations (e.g.
sending commands and instructions to target machines,
or receiving information from those targets), much like
bots as part of a botnet would do. Current Red Teaming
operations show similarities with botnet traffic in the
way that C2 network traffic is handled. Although Cobalt
Strike is intended to be used from a Red Teaming
perspective, it is also known to be used by threat actors
to manage their botnet infrastructure [3].

Cobalt Strike has a feature to obfuscate its network
traffic, known as Malleable C2 [9]. This feature
gives the Cobalt Strike operator fine grained control
over the obfuscation of network traffic (both request
and response) between the Cobalt Strike C2 server and
target machines (beacons). The Cobalt Strike C2 traffic is
controlled by so-called Malleable C2 profiles,
which can be used to make Cobalt Strike network traffic
look as if it is genuine traffic — for example browsing
amazon.com [10]. Responses can be altered in such a
way that the response seems legitimate, e.g. by including
the magic bytes (a hexadecimal signature indicating the
extension) of an image in a response [9]. Alternatively,
there is an option to use profiles that aim to mimic the
behaviour of well known malware. This is particularly
interesting to hide ones own indicators and make it look
like the real malware was present on the network. For
companies this may be interesting to test how well they
are capable of defending against such threats.

In a realistic assignment, a Red Team tries to remain
undetected and operate in a stealthy manner. In this
research we setup a realistic test environment in order
to simulate Cobalt Strike network traffic as if it is used
by real adversaries. The terminology regarding the tools
and techniques used, is listed below:

1) Command and Control (C2): This refers to traffic
between the target machine (on which the beacon is
installed) and the Cobalt Strike C2 server. In a broader
perspective, this term can be used to describe any traffic
related to sending commands to beacons, as well as
receiving data from them.

2) Redirectors: Rather than communicating with tar-
get machines directly, redirectors can be used to re-
ceive incoming connections and forward (proxy) those
connections to the Cobalt Strike C2 server. The use of
redirectors hides the actual destination of the traffic, and



may point to a genuine domain. The reason for hiding the
Cobalt Strike C2 server is to prevent from being listed
on a blacklist. Furthermore, real treat actors will apply
similar measures in order to hide the origin and therewith
their identity. Additionally, it is easier to tear down only
the redirector after an assignment, rather than the need
the setup a whole new Cobalt Strike infrastructure.

3) Domain redirection: This technique relies on the
use of Content Delivery Networks (CDNs). This provides
an extra layer of obfuscation in addition to redirectors
in such a way that the origin domain is hidden behind
a CDN redirected domain. It works by configuring the
Host header in the HTTP GET request within the
malleable profile, so that points to a malicious CDN
domain (in our case CloudFront [11]). The CDN domain
name resolves to the redirector IP.

4) Malleable profiles: These relate to the set of rules
that define; how HyperText Tranfer Protocol (HTTP)
traffic (GET and POST) is handled, the Uniform Re-
source Identifier (URI) parameters being used, how data
is encoded, stored and transmitted, the HTTP headers
and cookies being used, and so on [10]. Additionally,
the beacon characteristics can be adjusted within the
profile, such as the target User Agent specification,
beacon callback interval, jitter (a percentual deviation
from the callback time), and the key stores being used
for SSL/TLS certificates.

5) Streams and flows: A flow is defined as the uni-
directional network communication from one host to
another [12]. A stream is defined as the bidirectional
set of flows between two hosts.

We apply the techniques as described above to estab-
lish our own Cobalt Strike infrastructure setup, which is
described in more detail in Section III.

B. Related work

At the time of writing, there is no scientific research
known to us that addresses the detection of Cobalt
Strike’s malleable profiles specifically. However, there
is plenty of research that addresses the detection of
malicious network traffic from C2 servers [13, 14, 15,
16, 17].

Kevin P. Dyer et al. developed a programmable net-
work traffic obfuscation system [18]. The research also
provides insights in common types of obfuscation tech-
niques. Furthermore, L. Dixon et al. provides an ex-
tensive overview of network traffic obfuscation, such as
encryption, randomization, mimicry and tunneling [19].
Malleable profiles relate to this research in the way it
mimics other network traffic. Mimicry attempts to evade
detection by masquerading as whitelisted traffic.

C.J. Dietrich et al. developed an approach to detect
botnet C2 channels based on distinct features such as
carrier protocols, message length sequences and encod-
ing differences [13]. Similarly, Wang et al. researched
several methods for detecting obfuscated network traf-
fic, including a machine learning based approach [14].
Furthermore, P. Prasse et al. provide an approach for
detecting malware by analysing HyperText Tranfer Pro-
tocol Secure (HTTPS) traffic [20].

Existing efforts for fingerprinting TLS traffic have
been made, one notable example being JA3(S) [21]. This
approach analyses the cryptographic parameters of the
TLS handshake and creates cryptographic hashes; a JA3
hash for the client and a JA3S hash for the server. These
hashes are used to uniquely identify the client and server.
However, these fingerprints are not completely unique,
and making use of a redirector would prevent the JA3S
hash to correctly identify the Cobalt Strike C2 server.
Additionally, it is possible to modify the cryptographic
parameters in order to avoid fingerprinting.

From an offensive point of view, M. Rigaki et al. used
a Generative Adversarial Network (GAN) to mimic the
behaviour of Facebook Chat in order to let the malicious
traffic look realistic [22]. Our research shows similarities
to this research in the way that malleable profiles work.

A common Indicator of Compromise (IoC) that is used
by researchers is the interval between messages sent
and received by the C2 server, where the assumption
is made that a beacon connects back to its C2 server
periodically in order to obtain commands. This is shown
in research by L. van Duin in [23]. Furthermore, B.
Jerzman researched Cobalt Strike beaconing behaviour,
and also uses beaconing intervals as a means of detection
[24]. Our research relies heavily on the interval between
messages to the C2 server, which is also used to obtain
additional features.

J. Dreijer analysed Cobalt Strike’s use of the HTTPS
beacon, by using payload length and TTL as indica-
tors [25]. Moreover, this research confirms our findings
regarding the RST flags in Cobalt Strike beacon traffic.

C. Scope

The main goal of this research is to be able to detect
the TCP variant of the default Amazon profile, without
making any alterations to it. We can expand on this by
making alterations to the profile and test our algorithm
on other profiles in order to see how it performs. We only
focus on traffic generated by Cobalt Strike’s malleable
profiles; analysis of other C2 architectures, other pay-
loads or other botnet traffic is out of scope. Additionally,
we require that the beacon is not actively used to retrieve
data during the capturing of NetFlow data.
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The approach of our research illustrated in 5 different steps: A) Creating the Cobalt Strike C2 infrastructure in our controlled

environment. B) Setup NetFlow capturing on monitoring interface. C) Generate datasets by running the Cobalt Strike beacon inside the
controlled environment. D) Develop detection algorithm, determine feature from the datasets and configure feature thresholds based on the
training dataset. E) Test the features on the test dataset using the detection algorithm.

Although we perform an analysis of the HTTP version
of this profile, this research mainly focuses on the
HTTPS profile. We expect that Red Teams and threat
actors will opt for this option due to its use of Transport
Layer Security (TLS), making it harder to get detected.
Moreover, the detection algorithm is primarily developed
to be able to detect the Transport Control Protocol
(TCP) network traffic streams. If the detection algorithm
sufficiently performs, it can be extended to also support
other protocols (see Section VII-B).

III. METHODOLOGY

We develop a detection algorithm and test its capabil-
ity of successfully alerting on the presence of network
communications by a Cobalt Strike C2 beacon/server.
We do this by executing the project phases as depicted
in Figure 1.

First, we will setup a network topology as described
in III-A. This process consists of setting up the Cobalt
Strike C2 server, configuring domain redirection, setting
up a redirector and creating a target infrastructure. Next,
we configure a NetFlow collector and exporter on the
virtual network of the target machine in order to capture
NetFlow data, which we elaborate on in Section III-B.
This setup allows us to generate different types of
datasets, consisting of purely benign, as well as mixed
NetFlow data. The datasets that we obtain for our exper-
iments are described in detail in Section III-C. Then we
construct a detection algorithm that is able to distinguish

malicious and benign NetFlow data based on the features
that we extract from our training datasets, as explained
in Section III-D. Finally, the detection algorithm will be
verified against the test datasets to verify its applicability
to new data, as elaborated on in III-E.

A. Network topology

We configure a hypervisor host with two Virtual Ma-
chines (VMs). The first VM is installed with Kali Linux
2020.2 as Operating System (OS). The Kali Linux OS
is often used for setting up Red Teaming infrastructures.
The Cobalt Strike 4.0 application is installed on this VM
as well. The second VM is installed with the Windows
10 OS (Build 1909), which serves as the target machine
that we will use to run Cobalt Strike beacon on.

We use VMWare Workstation Pro 15.5.6 as a hypervi-
sor on an Ubuntu 18.04 host. VMWare offers a high level
of flexibility regarding remote management, and exposes
a Virtual Network Address Translation (NAT) interface
to the host operating system; that we can leverage to
capture NetFlow data on.

The high level network topology of the infrastructure
setup for our testing environment is visualized in Fig-
ure 2. This testing environment allows us to simulate a
real-world environment as used during adversary simula-
tions, which enables us to obtain realistic network traffic.
The following paragraphs will clarify each component of
the network infrastructure as depicted in Figure 2.
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1) Cobalt Strike C2 server: The Cobalt Strike C2
server (depicted 1 in Figure 2) is the main part of
the infrastructure setup, which is used to generate the
payloads and to setup the listeners that the beacons
on the Target will call back to. The VM running the
Cobalt Strike C2 server is configured with its own public
IP address. On the Cobalt Strike C2 server, we issued
certificates with the Let’ s Encrypt certbot. The
use of these certificates avoids HTTPS certificate warn-
ings when one would resolve the redirector IP address
that the beacon connects back to. We configure two
listeners on the Cobalt Strike C2 server. A listener
actively “listens” to incoming requests from beacons and
stages (provides) the payload. The first listener is an
HTTP listener, and the second one an HTTPS listener.
The parameter options for both listeners are included in
Table I.

TABLE 1
CONFIGURATION PARAMETERS AS BEING USED FOR HTTP AND
HTTPS LISTENERS (HTTPS PARAMETERS THAT DIFFER FROM
THEIR HTTP EQUIVALENTS, ARE DENOTED BETWEEN

PARENTHESES)
Parameter HTTP (HTTPS)
Payload Beacon HTTP (Beacon HTTPS)

HTTP(S) Host
HTTP(S) Host (Stager)

Redirector URL

Cloudfront domain name

Profile Default
HTTP(S) Port (C2) 80 (443)
HTTP(S) Port (Bind) <empty>
HTTP(S) Host Header <empty>
HTTP(S) Proxy <empty>

2) Redirectors: In order to prevent the public IP
address of our Cobalt Strike C2 server to be disclosed,
we configure one or multiple redirector servers (depicted
as 2 in Figure 2) that will act as a proxy between
the Cobalt Strike C2 server and our target. This adds
another layer of complexity to our infrastructure. The
utility socat allows us to establish a bidirectional byte

stream between the redirector(s) and our Cobalt Strike
C2 server [26]. By proxying the traffic, we can disclose
multiple public IP addresses (one for each redirector),
that all point to the same Cobalt Strike C2 server. This
way, we can configure our beacon payload in such a way
that it calls back to several redirectors in a round-robin
fashion. Each of the redirectors are configured with two
socat instances for both port 443 (HTTPS) and port
80 (HTTP). The redirectors will forward the traffic to
the Cobalt Strike C2 server on these respective ports.

3) Domain redirection: We apply a technique called
domain redirection (shown as 3 in Figure 2) in order to
allow our target machines to connect to trusted external
domains of Amazon CloudFront [11]. Although Amazon
CloudFront is intended to be used as a CDN, we can
leverage it to perform domain redirection. The reason we
choose Amazon CloudFront is the fact that it provides
fine grained control, and there is no need to change
DNS records. This technique introduces four advantages
for our Cobalt Strike C2 infrastructure; 1) introducing
another layer of complexity that hides the original source
IP address, 2) the network traffic blends in with other
CDN traffic, 3) CloudFront is often whitelisted by fire-
walls, 4) we can easily deploy new domains if others are
compromised and placed on a blacklist.

4) Target: The target environment (depicted as 4 in
Figure 2) is simulated with a virtual Network Address
Translation (NAT) network [27]. This type of network is
commonly used for both home and corporate networks.
The reason for choosing NAT relies on the fact that
the target machine maintains connected to the internet,
and additionally, a correlation between internal host IP
and external IP addresses can be made. Inside the target
environment we have a single workstation that is running
Windows 10 version 1909.

On the Cobalt Strike C2 server we create two
payloads, one for each listener. We opted for the
PowerShell Command payload type, because it is
easy to deploy on the target. We checked (set) the
x64 option, but this is not mandatory for the payload
to work. We deliver the payloads by hosting them



as files via integrated Cobalt Strike web server, and
downloading them within the target machine. In order
to serve both payloads, we used the following Cobalt
Strike settings; the File points to the locally generated
payload, for each payload we specify an URL path at
the Local URI parameter. Furthermore, we configure
the CloudFront domain name as the Local Host and
the Local Port is set to 7443” (also when serving
the HTTP payload). The Mime Type parameter is set
to ”Automatic” and the SSL setting is checked (set).

B. Data capturing

With the systems and configurations in place as de-
scribed in Section III-A, we provide all the required
functionality to operate our Cobalt Strike C2 infrastruc-
ture. In order to get insights in the network traffic be-
tween the Cobalt Strike beacon and the Cobalt Strike C2
server, we setup several monitoring tools. First, we will
configure the nfdump 1.6.16 utility together with
softflowd 0.9.9 to capture and export NetFlow
data on the Virtual NAT interface. We use a sampling rate
of 1, because we do not want the flows to be aggregated.
We specifically capture network traffic on the Virtual
NAT interface, as this interface simulates the edge router
of the network. This would also be the location where an
administrator of the network captures NetFlow data, as
it contains information/statistics about ingress and egress
connections.

Hypervisor

Windows 10 (VM)

eth

Cobalt Strike Team Server (VM)

br0

Fig. 3. Detailed illustration of the hypervisor components and
processes. The figure shows the hypervisor with its primary physical
interface enol. Interfaces vmnet8 and br0 are virtual interfaces to
connect the guest operating systems to a NAT network and a bridged
network respectively. Nfcapd and Softflowd processes run on the
hypervisor to directly export NetFlow data from the interface vmnetS.
The socat process proxies incoming HTTP(S) traffic to the Cobalt
Strike VM.

The reason for capturing NetFlow data relies on
the fact that this provides us with metadata about the
network traffic, rather than the payload data. This is es-
pecially useful when analysing encrypted traffic such as
HTTPS. Additionally, we run Wireshark 3.2.4 on
the target machine to obtain packet captures of the raw
network traffic. The internal hypervisor configuration is
depicted in Figure 3, and provides a detailed overview of
the internals of the hypervisor setup. The hypervisor has
one primary interface called enol, which is the interface
that is exposed to the internet. The socat processes listen
on incoming requests on port 80 and 443, and proxies
them via br0 to the IP address of the ens33 interface
of the Cobalt Strike Team Server VM. The Windows
10 VM has an interface, depicted as eth. Furthermore,
there is a Virtual NAT interface, depicted as vmnet8.
This interface simulates the NAT router as being used in
an office environment, and uses enol to communicate
with the internet. Finally, there is a loopback interface
called 100. The nfcapd daemon — which is part of the
nfdump package — is used as a NetFlow collector, and
listens on 100 for incoming flow data. The softflow
daemon is configured to tap the vmnet8 interface and
sends the generated flow data to the 100 interface over
UDP port 2055.

C. Obtain datasets

The approach can be categorized in the following
sub-categories; packet based analysis and flow based
analysis. As mentioned in Section II-C, we first analyse
the Cobalt Strike HTTP beacon in order to get an under-
standing of the generic behaviour of malleable profiles
used by Cobalt Strike. This analysis is performed on
the packet captures (PCAPS) of the Cobalt Strike HTTP
beacon. As the HTTP protocol doesn’t use encryption,
everything is sent in plain text. This makes analysis via
PCAPS a feasible approach for this protocol.

However, analysis of the Cobalt Strike HTTPS beacon
with PCAPS is less feasible due to the encryption being
used within HTTPS connections. As such, we analyze
the NetFlow data when looking at HTTPS beacon net-
work traffic. The NetFlow data provides us with metadata
rather than information about the payload (the actual
data) being sent. An example of a NetFlow entry is given
in Table II.

We created several datasets in order to develop and
test our algorithm. The packet captures are generated
on a clean Target machine (Windows 10 Developer
Edition, obtained via Microsoft [29]). The NetFlow data
is generated on the Virtual NAT interface (vmnet 8), and



TABLE 11
EXAMPLE OF THE HEADER AND ONE ENTRY IN A NETFLOW LOG FILE
Date first seen Duration | Proto Src IP Addr:Port Dst IP Addr:Port Flags Tos | Packets | Bytes | pps bps Bpp | Flows
2020-07-02 20:39:39.472 0.064 TCP | 172.16.22.129:50223 | 145.100.104.47:443 | .APRSF 0 13 1297 | 203 | 162125 | 99 1

collected on the loopback address (100) on the hyper-
visor. Before the start of each data capture we revert the
Target machine back to its initial snapshot, resulting in
a consistent clean state. We divided the datasets into the
following categories; Benign and Mixed. For all datasets
that we recorded ourselves, we defined the fact that
the beacon is active throughout the entire recording as
a prerequisite. Another prerequisite is the fact that the
beacon is not actively used, e.g. it only calls back in
regular time intervals.

1) Benign: The datasets with ID (3) and (4) are
originally a single dataset that we split into both a
training and a testing dataset [28]. We use the first 2
million flows in the dataset to train the algorithm, which
we label as dataset (3). This is shown in Table III. The
remainder of the dataset is used for testing, which we
label (4). Although this dataset is originally a mixed
dataset it does not contain a Cobalt Strike beacon, which
is the reason that we mark it as benign. This dataset is
the only source of NetFlow data that does not contain
a Cobalt Strike beacon at all. Our algorithm should
therefore not produce any alerts when using this dataset.

2) Mixed: We created several mixed datasets. First
of all, we created two training data sets with ID (1) and
(2). These datasets contain active Cobalt Strike beacons
that periodically call back to the Cobalt Strike C2 server;
(1) over HTTPS and (2) over both HTTP and HTTPS.
Although these datasets mainly contain malicious data,

the fact that background traffic was included could not be
avoided. After the initial executable (stager) is executed

on the target machine, the target machine connects back
to the C2 Server to download and execute the beacon
payload, also known as the stage. During the initial
callback, the connection to the Cobalt Strike C2 Server
is established. When the beacon becomes active, the
infected target machine calls back to the Cobalt Strike C2
Server periodically, based on the interval that is defined
in the malleable profile. It is not mandatory to capture
the initial callback; the (periodic) callback data is the
data we are interested in for this research. The reason
for creating this malicious dataset is mainly to define
and train our algorithm. The final detection algorithm is
tested based on other mixed datasets, which is further
explained in the next paragraph.

Secondly, we created a mixed dataset that contains
realistic office use. This dataset is labeled with ID (5),
and is used for testing the detection algorithm. This
dataset is generated by capturing network traffic at the
moment the HTTPS beacon is active. During this time,
normal workstation activities (web browsing, watching
videos, e-mail, fetching and installing updates, etc.) will
be simulated as well. This results in the beacon traffic
being blended in with the benign traffic. A complete
overview of applications that are used to generate benign
network traffic is provided in Appendix A.

Furthermore, the remainder of the datasets all con-
tain mixed network traffic, with at least one Cobalt
Strike beacon present in the dataset. The Cobalt
Strike beacons have a destination IP address of

TABLE III
DESCRIPTION OF DATASETS AND NETFLOW INFORMATION USED FOR TRAINING AND TESTING THE DETECTION ALGORITHM

ID | Function | Content | Description Flows | Unique | Beacons
1 Train Mixed Amazon profile, HTTPS, 5 minute interval, 60% jitter 1047 481 4
2 Train Mixed Amazon profile, HTTP and HTTPS, 1 minute interval, 99% jitter 1652 784 4
3 Train Benign CTU-Malware-Capture-Botnet-43 [28] 2000000 55101 0
4 Test Benign CTU-Malware-Capture-Botnet-43 [28] 4351187 | 120778 0
5 Test Mixed Default Amazon profile, HTTPS beacon 338 176 1
6 Test Mixed Amazon profile, HTTPS beacon, 99% jitter 476 242 1
7 Test Mixed Amazon profile, HTTP and HTTPS beacons, 2 redirectors 862 448 4
8 Test Mixed Amazon profile, HTTP and HTTPS beacons, 2 redirectors, 5 minute interval 2122 941 4
9 Test Mixed Default Amazon profile, HTTPS, mixed with self-generated benign network traffic. 8869 4508 1
10 | Test Mixed Default Gmail profile, HTTP and HTTPS [10] 1952 996 2
11 | Test Mixed Default Pitty Tiger profile, HTTP and HTTPS [10] 1249 645 2
12 | Test Mixed Default Cobalt Strike, HTTP and HTTPS, configuration without malleable profile 393 199 2




either 145.100.104.174, 145.100.104.47, or
136.144.149.0. The last octet of the last IP address
is removed in order to anonymize the original IP address.
Table III provides an overview of all the datasets that
we used for our experiments, along with a description
of the contents of the datasets. The description gives
an indication of the malleable profiles that are present in
each dataset, along with profile specific configurations of
the beacon. The column Flows contains the total amount
of NetFlow records in the dataset. The column Unique
contains the total amount of flows from a given source
IP address to a destination socket, creating a 4-tuple
(source IP, destination IP, destination port, protocol). We
will refer to this 4-tuple as a flow collection. These flow
collections are later used by the detection algorithm in
order to identify a set of flows that are related to each
other as either malicious or benign. The column Beacons
shows the amount of Cobalt Strike beacons that can be
observed in the dataset.

D. Detection algorithm

The algorithm that we develop in order to detect
network traffic between the Cobalt Strike beacon and
the Cobalt Strike C2 server is depicted in Figure 4. The
reason for choosing for a static algorithm rather than
using a machine learning approach, relies on the fact
that we would not be able to address problems to the
algorithm in case it would not perform as desired. With
this approach we have a greater control over the specific
parameters for the detection algorithm [30].

Before processing the data, we export the raw NetFlow
data to ASCII files with the nfcapd tool. These ASCII
files contain the following flow data: date first seen,
duration, protocol, source IP, source port, destination IP,
destination port, flow size in bytes, bits per packet, and
all TCP flags, amongst others. The algorithm first parses
the ASCII files (1 in Figure 4).

The dataset is grouped in a host table, using the
source IP address as the key element. The source IP
address of a flow is added to the host table if it does
not exist yet (2 in Figure 4), and we attach the flow
information to the host object (3 in Figure 4). If the
source IP already exists in the host table, we only append
the flow to the host object (3 in Figure 4). This data
structure allows us to programmatically search, filter, and
apply statistical operations on a large set of hosts that
have one or more flows originating from the IP address
of the host object.

The current features implemented in the model allow
to iterate through all known hosts or to only filter on

hosts with a private IP address. It is also possible to
select just a single host in order to run the detection

algorithm against a specific target that requires further

analysis.
1
O—){ Read NetFlow data
Ol+]

Reached
EOF

3
Attach flow to host ?

A

Create new host
object

Y E>
Filter Flows <€«— config.cfg
Y 5
Apply
Features

Exceeds
Threshold

Alert

Fig. 4. A flow chart illustrating the main steps of the detection
algorithm. 1) The NetFlow data is parsed. 2) A host database is
maintained. 3) Flows are appended to host objects. 4) Flows are
filtered. 5) Features are applied. 6) Alerts are given.

If no options are specified, the detection algorithm
iterates over all known host objects and groups
unique flows based on the 4-tuple: (source
IP, destination IP, destination port,
protocol), which we will call a flow collection. This



means that such a flow collection will contain one or
more flows originating from a host to a remote socket.
We then apply a basic filter where all flow collections
are discarded if n < 10, where n represents the
number of flows for a specific host (4 in Figure 4).
Secondly we apply a filter that discards the flow
collection if the absolute time At < 30, where t
represents the total duration of all flows for that host (4
in Figure 4). This ensures we have sufficient data points
to work with. Besides, we assume that a Cobalt Strike
beacon is unlikely to have a lifespan of less than 30
seconds, or less than 10 callbacks to the Cobalt Strike
C2 server.

After the preliminary filtering, the detection algorithm
iterates over the remaining flow collections, and deter-
mines the standard deviation of the byte size of the
flow collection. Additionally, for each host object, we
count the amount of flows with the ACK, PSH, SYN
and FIN (abbreviated APSF) TCP flags set. Then the
agorithm checks if the thresholds are reached for the
standard deviation of the byte size (> 100 bytes) and the
percentage of flows with the APSF flags set (0.95). If
this is the case, the algorithm calculates the correlation
between the absolute time ¢ and the mean of the start
and end time for each of the flows. This correlation
indicates if there is a consistent time interval between
each separate flow in the collection, and takes the dura-
tion of flows into account. The correlation is determined
using the scipy.stats.linregress package (5
in Figure 4), and provides us the r—-value, which
indicates the correlation of the data (with 0 meaning
no correlation and 1 meaning totally correlated). If the
r—value drops below a the defined threshold of 0. 98,
this means that the NetFlow data has a weak correlation
and is unlikely to contain beacon traffic. No alert is
generated and the algorithm continues with the next host
object. On the other hand, if the r-value exceeds the
threshold, the detection algorithm generates an alert (6 in
Figure 4). This alert gives an indication that the specific

host where the flow originated from potentially contains
a Cobalt Strike beacon. The specific threshold values for

the standard deviation of the byte size, amount of flows
with APSF flags, and the r—value are configured based
on running the algorithm against the test dataset where
the optimal results are achieved. The source code of the
detection algorithm is available on the internal GitLab
server of OS3!.

E. Testing

The first step in testing the capabilities of our algo-
rithm consists of analysing the predictions on the training
datasets with IDs (1-3) from Table III. We configure the
thresholds for each of the parameters based on the results
we gather from the training dataset.

Then, we test our algorithm on completely unknown
datasets, indicated with the IDs (4-12) in Table III.
Our goal is to test (verify) the algorithm on a dataset
of approximately 4.3M flows consisting of benign traffic
with ID (4), five variations of the Amazon profile with
IDs (5-9), and two other profiles such as the Gmail
profile with ID (10) and the default Cobalt Strike
profile with ID (12). The default Cobalt Strike profile
is the standard Cobalt Strike profile that does not use a
malleable profile. Additionally, we test a different kind of
profile, mimicking a realistic threat with the Pitty Tiger
profile with ID (11).

The algorithm plots the correlation for hosts that have
a set of flows that show a high correlation between abso-
lute time and mean of start end end time, expressed as the
r—value). Example figures are included in the results
of the algorithm, which are included in Section IV.

IV. RESULTS
For this research we analysed the main characteristics
of Cobalt Strike’s beacon traffic for both regular HTTP
and HTTPS network connections made by the Cobalt
Strike beacon. In Section IV-A we present the features
that identify a Cobalt Strike beacon, together with the
threshold values that we specified to enable to detection

"https://gitlab.os3.nl/veijk/nfanalyzer

TABLE IV

OVERVIEW OF FEATURES INCLUDING DESCRIPTION AND THRESHOLD VALUES
Feature Description Threshold
Time interval Time between two consecutive flows 0.98
Flow duration Mean of start and end time of a flow 0.98
Byte size of flow Total bytes sent within a flow stddev <100 bytes
Amount of APSF flows Amount of flows with APSF flags set 0.95
Amount of RST flows Amount of flows with RST flags set N/A
Amount of DNS Requests | Ratio of DNS requests as part of total flows | N/A




algorithm to filter on these features. Next, we illustrate
the results of the detection algorithm based on figures
that are generated by the detection algorithm itself in
Section IV-B. These figures provide us with additional
understanding of the patterns and behaviour of the Net-
Flow data that we analyse. Finally, we present the results
of the detection algorithm against our test dataset in a
confusion matrix in Section I'V-C.

A. Features

After analysing the packets and flows we were able to
identify six features that show characteristics specific to
a Cobalt Strike beacon. Table IV provides an overview
of these six identified features, along with the threshold
values that are used by the detection algorithm, which
we will elaborate on in this section.

First, we noticed a recurring and consistent time
interval between each callback of the beacon to the
Cobalt Strike C2 server. Second, we observed that the
flow duration of a beacon callback is very short; in
the order of tenths of seconds. These two observations
were combined in order to measure the correlation
between the flow occurrence and the absolute time. For
the correlation coefficient (r—value) between absolute
time ¢ and the occurrence of flows we defined the
optimal threshold, to be 0.98. This value allows us to
discard false positive results that show a weak linear
correlation, while selecting the flows that have a high
linear correlation — a characteristic typical for beaconing
behaviour.

Moreover, we observed that the byte sizes of flows
originating from the Cobalt Strike beacon show sim-
ilarities for each flow. Because of the similar pattern
for each beacon callback, we observe that the byte
sizes for the flows show a narrow distribution. We are
able to identify beaconing behaviour by calculating the
standard deviation of the flows in a flow collection for a
specific host. The standard deviation indicates the spread
of the byte sizes of the flows. During calibration of
the detection algorithm (based on our training dataset),
we empirically discovered that the byte sizes of Cobalt
Strike beaconing flows always have a standard deviation
of less than 100 bytes. Therefore we use this value as
the threshold (upper bound).

Another feature that we observed for the Cobalt Strike
beacon is the high amount of RST flags being set for
the HTTPS beacon, and — in general — the combination
of APSF consistently occurring in every NetFlow record
for the Cobalt Strike beacon communication for both the
HTTP and HTTPS beacons. After analysing the results

for our algorithm based on the training dataset, we found
that flow collections originating from a Cobalt Strike
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beacon show at least 95% of the flows have the APS
and Fin flag set. We used the threshold of 0.95 to
distinguish a set of flows containing beacon traffic from
a set of flows that does not contain this behaviour.

Lastly, we observed a difference in the amount of
DNS queries being made. Benign traffic to the Amazon
domain shows DNS requests in regular intervals; mostly
in order to resolve third party website components. On
the contrary, there are no DNS requests made by the
Cobalt Strike beacon that mimics HTTP or HTTPS
network traffic using the Amazon profile, other than the
initial request to resolve the beacon URI.

B. Detection results

The detection algorithm described in Section II-D
allows us to calculate the probability of a network stream
being Cobalt Strike beacon traffic.

Analysis of the Cobalt Strike beacon traffic for both
HTTP and HTTPS shows us a linear pattern when
plotting the mean of start and end time for each flow
in a series of NetFlow data flows. Figure 5 shows the
mean of start and end time for each flow, sent from the
Target machine (containing a Cobalt Strike beacon) to
the Cobalt Strike C2 server. This figure clearly illustrates
a strong correlation between the absolute time and the
occurrence of the flows that we can observe in the
beaconing behaviour of network traffic. The r-value
in this case is 0.999.

172.16.7.133 - 145.100.104.174:443

500 4

400 -

300 -

time (s)

200 4

100 A

flow #

Fig. 5. The mean of start and end time for each flow between
the target (172.16.7.133) and the C2 server (145.100.104.174). The
detection algorithm will alert on this flow as it has a low deviation

from the linear regression (r=0.999, n=100).

On the other hand, when our detection algorithm
is used against the sets of flows of regular HTTPS



connections with the same analysis method, no alert is
given. When we plot the flows of a regular HTTPS
connection, we can observe that there is a weak cor-
relation between the absolute time and the occurrence
of the flows for the network connections to a specific
host, as shown in Figure 6. The r-value that was
measured for this connection is 0.854, and is lower
than the defined threshold of 0. 98; so no alert will be
given for this connection. Based on this principle the
detection algorithm will iterate over each flow collection
to label it as either benign or malicious and send an alert
accordingly.

147.32.84.59 - 74.125.232.205:443
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Fig. 6. The mean of start and end time for each flow of a regular
HTTPS connection between the target (147.32.84.59) and a remote
server (74.125.232.205). The detection algorithm will not alert on
this flow as it deviates too much from the linear regression. (r=0.891,
n=100)

Figure 7 shows the results for the Amazon profile
with an introduced jitter of 99%, which is the maximum
amount. Even with the highest amount of jitter intro-
duced to the Cobalt Strike beacon, we are still able to
observe a strong linear correlation.

Figure 8 shows the relationship between the amount
of jitter we introduce using the malleable profile and
the linear correlation of the NetFlow data. We observe
a minimal decrease in the linear correlation of the data,
even if we increase the amount of jitter to 99%, which is
the maximum value allowed by Cobalt Strike. The time
interval of 5 seconds shown in Figure 8 is the default
value for the Amazon profile, which we sampled for for a
duration of 10 minutes. Note that the Y-axis of the figure
starts at 98%, which is also the threshold that we defined
for the linear correlation as described in Section IV-A.
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172.16.7.133 - 145.100.104.174:443

100
flow #

Fig. 7. Mean of start and end time of each flow for flows between
the target (172.16.7.133) and the C2 server (145.100.104.147) with
an introduction of 99% jitter to the callback interval (the maximum
amount). The detection algorithm will alert on this flow as it has a
low deviation from the linear regression (r=0.994, n=100).

Linear correlation when jitter is applied to the beacon

100.00
99.75 -
99.50 -
S
c 99.254
2
¥
©
2 99.001
o
o
S 98.75
£
-~
98.50 -
98.25
—— Beacon interval of 5 seconds
98.00 T T T T T T
0 20 40 60 80 100

Jitter (%)

Fig. 8. The percentage of linear correlation for different percentages
of jitter applied to the Cobalt Strike beacon using the Amazon profile
(n=100). The threshold for the detection algorithm is set at 98%.
Despite introducing high amounts of jitter, the correlation remains
strong.

C. Confusion matrix

The detection algorithm is tested against the datasets
as listed in Table III, which combines 9 different datasets
that are used for testing the detection algorithm. The
datasets are recorded in different conditions and contain
different malleable profile to test the detection algorithm
against. The results of the detection algorithm after it
was tested against the different datasets is provided in
Table V. These results show how the algorithm is able



to detect 15 out of 17 Cobalt Strike beacons that are
included in our test datasets.

TABLE V
OVERVIEW OF AGGREGATED NETFLOW DATA THAT THE
DETECTION ALGORITHM WAS ABLE TO IDENTIFY CORRECTLY AS
EITHER MALICIOUS OR BENIGN

Actual
Good Bad

Predicted Good | 128910 2
Bad 5 15

Table V displays the predicted values of the detection
algorithm against the actual values of the accumulated
NetFlow data as it is present in the datasets. If the actual
NetFlow data is benign (good) and the predicted value
by the algorithm is also benign, the result is marked
as a True Negative (TN). This indicates we are able to
correctly identify non-malicious traffic as such. When the
detection algorithm wrongly identifies actual benign data
this results in a False Positive (FP). Table V shows that
the detection algorithm incorrectly identifies 5 different
flow collections, resulting in 5 False Positives. If the
actual NetFlow data originates from a Cobalt Strike
beacon, this is labeled as malicious (bad). When the
detection algorithm identifies the malicious NetFlow data
correctly, this results in a True Positive (TP). If the actual
malicious data is incorrectly identified as benign, this
results in a False Negative (FN).

To calculate the performance of our algorithm we ag-
gregated the results for all test datasets with ID (4-12).
Table VI provides an overview of the results for each
separate dataset used for testing the algorithm. We then
calculate the accuracy ACC of our detection method
using the following formula:

_ TP+TN _ 154128911  _
ACC = TP+TN+FP+FN — 1541289114+5+2 99, 995%

TABLE VI
RESULTS OF THE DETECTION ALGORITHM FOR EACH DATASET

ID | Unique | Beacons | FN | FP | TP TN
4 120778 0 0 3 0 | 120775
5 176 1 0 0 1 175
6 242 1 0 0 1 241
7 448 4 0 0 4 444
8 941 4 2 2 2 935
9 4508 1 0 0 1 4507
10 996 2 0 0 2 994
11 645 2 0 0 2 643
12 199 2 0 0 2 197
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V. DISCUSSION

As can be seen in the matrix as provided in Sec-
tion IV-C, the performance of our algorithm is very high
with an achieved accuracy of 99,995%. However, we
have to make some remarks regarding these results as the
accuracy might provide a distorted view due to the large
unevenness in the distribution among actual benign and
malicious samples in our testing dataset. The accuracy
of 99,995% is primarily caused by the high amount of
True Negatives that we are able to identify correctly.
The 2 False Negatives can be clarified in the following
manner; the redirector disconnected during the traffic
capture, causing the behaviour of the beacon to change.
We observed the beacon only sending SYN flags from
that moment onwards. It is harder to clarify the 5 False
Negatives; these streams show a similar behaviour to the
beacon traffic. One of those 5 False Negatives shows
such a high level of similarity with recorded beacon
traffic, that we investigated the destination IP further. Un-
fortunately we can not determine with certainty whether
this was an actual False Negative; this may be due to a
mislabeled benign flow in our dataset.

It should be noted that the two beacons that were
not detected partially contained invalid data because the
redirector failed during the capture of NetFlow data for
the dataset with ID (8). Although this dataset is partially
invalid as it does not meet the preconditions as specified
in Section III-C we still believe the results are valuable to
our research as it indicates certain conditions in which
the detection algorithm is unable to identify a Cobalt
Strike beacon.

We encountered difficulties while obtaining and gen-
erating datasets during this research. First of all, there
are no datasets widely available to our knowledge that
contain truly benign and/or malicious data which is
accurately described and labeled. The datasets with ID
(3) and (4) that we used in our experiments are labeled,
but only on a per-host basis and did not contain any
Cobalt Strike beacons. Secondly, regarding the external
datasets; we cannot be completely sure that flows labeled
as benign are actually benign as the creator of the dataset
could be unaware of any malware infections in the
network. Lastly, to our knowledge there is no dataset
available that contains labeled NetFlow data of a Cobalt
Strike beacon. As such, we are not sure whether the
malicious Cobalt Strike datasets that we created are rep-
resentative for all Cobalt Strike beacon traffic. However,
we followed the Cobalt Strike documentation and its best
practices while setting up the infrastructure, which is
why we make the assumption that our infrastructure and
Cobalt Strike beacons are representative for this research.



The biases we encountered and their mitigation are
included in the list below:

e Selection bias: we tried to avoid selecting
a dataset that is suited towards our algorithm by
means of including external datasets, representing a
realistic environment. However, we are aware of the
fact that we tested our detection algorithm only on
Cobalt Strike beacon samples that were generated
within our own infrastructure.

e Confirmation bias: We tend to look for in-
formation that confirms our perceptions. When en-
countering TCP RST flags for HTTPS beacons, we
researched whether this was unique to our environ-
ment. However, the behaviour could be explained
by an expert in the field and therewith confirmed
our observations.

e Clustering illusion: We tend to see pat-
terns in random data. We observed a seemingly
linear correlation between the absolute time and
the mean of start and end time of flows. After
further analysis of the correlation - in our case
linear regression - we found out that this correlation
is descriptive/unique enough for the behaviour we
want to analyse.

e Choice supportive bias: Choosing for a
certain solution makes you feel confident in that
specific solution even if it has flaws. We encoun-
tered this while testing our detection algorithm
when using the timing interval as the only feature.
After testing the algorithm on another dataset we
found our solution was not that promising as it
seemed. However, combining all different features
that we identified solved this problem.

In regard to the parameters we used in the preliminary
filtering, this heavily depends on the provided dataset.
We found out that a minimum of 10 flows (similar
to [24]) and a minimum total flow duration of 300
seconds were necessary to provide enough sample points
to measure correlation.

Furthermore, a correlation coefficient of 0.98 or
higher was used to detect Cobalt Strike beacons. This
parameter seems to be uniform Cobalt Strike beacon
traffic; due to testing the detection algorithm on external
datasets, other profiles and different jitter values. Even
when introducing high amounts of jitter with a beacon
interval of 5 seconds, we observed a strong correlation.
We expect that these results are the same for beacons
with a longer interval, as long as sufficient data points
are available (e.g. the duration of the capture needs to
be longer).

We can reason about the RST behaviour of the HTTPS
beacon as well. When we dived deeper in the packet
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captures, we found out that the sequence numbers for
the stream only changed once (after the initial callback).
These repetitive sequence numbers for consecutive flows
could give an indication of the fact that the network
socket on the server side is reused. If the beacon uses
a new handle for each callback on the same socket, this
causes the server to drop the previous handle and reset
the connection.

VI. CONCLUSION

Based on the results provided in Section IV we are
able to answer our research question. However, we would
like to address our secondary research questions first.

Which features can we extract from network traffic
generated by Cobalt Strike beacons? We discovered six
features of Cobalt Strike’s C2 network traffic, including;
time intervals between C2 server communication, the
specific TCP flags Ack, Psh, Syn, and Fin that are
sent by the client, the consistent byte sizes of flows, flows
with a short duration in the order of tenths of seconds,
the lack of DNS requests for HTTP(S) beacon network
traffic, and the TCP RST flags sent by the beacon.

Can we detect a Cobalt Strike beacon using a mal-
leable profile with one or more of those features?

When combining the four features: timing intervals
of Cobalt Strike C2 network traffic, flow duration, the
specific TCP flags sent by the client, and the consistent
byte size of flows we are able to detect Cobalt Strike
beacons with a high accuracy.

Based on the results provided in Section IV we are
able to answer our main research question: How can
we distinguish obfuscated Cobalt Strike payloads from
genuine network traffic based on identifying features?

The features that we identified in the network commu-
nication of a Cobalt Strike C2 server allow us to extract
and identify potentially malicious network communica-
tions. We are able to achieve this due to the high amount
of linearity that is present in the behaviour of an infected
machine, even if techniques are applied to reduce the
linear behaviour by introducing jitter in the callback
period or by load-balancing the network traffic to the
Cobalt Strike C2 server over multiple hosts. Because this
linear behaviour is unusual for regular network traffic we
are able to identify malicious C2 network traffic with a
high accuracy.

Herewith we are also able to prove our hypotheses; H1
Identifying features such as timing intervals and message
length can be used to identify malicious network traffic,
and H2: protocol flow information (metadata) provides
valuable features for measurement. Both timing intervals
and duration (H1), as well as protocol flow information
(byte sizes, flags set, byte length of flow).



VII. FUTURE WORK

Within this section we provide some insights in future
works. In Section VII-A we give advise regarding testing
other profiles. In Section VII-B we elaborate on the
other protocols that could be researched. Section VII-C
proposes an upgrade to the current detection algorithm
regarding programmability, and Section VII-D shows
possible optimizations for expanding the algorithm to
perform real-time alerting.

A. Profile expansion

At the moment we constructed a detection algorithm
that is able to detect beacon traffic, as generated with
the Amazon profile. Future research could focus on
expanding the detection algorithm for use with other
profiles; both the normal profiles (mimicking legitimate
internet services) as well as threat profiles (mimicking
threats being used in the wild).

B. Protocol expansion

Similar to the expansion of the profiles the detection
algorithm is able to detect, future work could focus on
being able to detect other protocols being used for the
Cobalt Strike C2 channel. The current algorithm is able
to detect TCP beacons, however, since Cobalt Strike
also supports other listener protocols (e.g. SMB, UDP)
it is interesting to see if those protocols generate similar
network traffic, and whether and how the detection
algorithm would be able to detect these kind of protocols.

C. Modularity

As an extension to the points mentioned in Sec-
tion VII-A and Section VII-B, it is feasible to intro-
duce additional modularity and programmability to the
detection algorithm. For example, to give the option to
provide a configuration file with certain parameters set
per profile and protocol to detect, as these may vary per
protocol. These parameters could include the r-value, p-
value and range for the standard error (min-max). Testing
ideal parameters could be a research on its own.

D. (Near) real-time detection

The current detection algorithm allows us to alert on
potential Cobalt Strike beacon traffic based on historical
NetFlow data. This means the algorithm is limited to
detect the presence of a Cobalt Strike beacon server in
a reactive manner, without the possibility of real-time
detection.
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E. Researching other use-cases

It would be interesting to further research different
beacon behaviour. For example, our detection algorithm
could be tested against a Cobalt Strike beacon that is
actively used. Additionally, it would be interesting to
see how the algorithm performs when a Cobalt Strike
operators selects a callback time in the order of hours
for a beacon that otherwise calls back every couple of
seconds. Moreover, it would be interesting to know if
the algorithm performs well if a Cobalt Strike operator
changes the sleep times often; introducing fluctuations
in callback — independent from the jitter parameter.

F. Researching Machine learning approaches

In this research we show that our algorithm is able
to achieve a high accuracy of 99.998% in regards to the
datasets being used. It would be interesting to see how
the results would differ if a machine learning approach is
taken. Another promising approach for detecting anoma-
lies in time series is by using a tool called stumpy;
which works by creating matrices of time stamped data
and calculated the Euclidean distance over sub-sequences
with the data using a sliding window [31].
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APPENDIX A
BENIGN DATASET GENERATION

The following list shows the programs executed in order to create the mixed dataset (in chronological order).

(Beacon active)

Start Firefox

Play Youtube video

Browse the web
3.1 https://www.tweakers.net
3.2 https://www.reddit.com
3.3 https://www.github.com
Download Chrome
4.1 Install Chrome

Update Windows
5.1 Feature Update version 2004
Open outlook
6.1 Register email
6.2 Send email
6.3 Receive email
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