
Zero Trust Network Security Model in
containerized environment

Research
Project 1

Research project by:
Catherine de Weever
Marios Andreou

Supervisor:
Jeroen Scheerder

The Problem

(1)

● Deploy Container Images with
Malicious Code.

● Deploy Benign Container Images and
Download Malicious Payloads at Run
Time.

● Deploy Malicious Payloads on the
Host.

● Obtain Sensitive Information from the
Docker Log.

2

Zero Trust

●Security Model

●Treat traffic, even inside as hostile

●Never trust, always verify

●Strategic approach

3

Research Question

How to implement Zero Trust for "east/west" traffic between
microservices in containerized environment?

●How to regulate the "east/west" traffic flow?

●How to implement confidentiality at transit data?

4

Methodology

●Get to know the current setup of ON2IT

●Find out what is missing

●Literature study to find solutions

●Implement a proof of concept for viability

5

Related Work

●Casimer DeCusatis et al.
○transport-level approach (first packet authentication)
○ protection only on layer 3/4

●Fatima Hussain et al.
○API gateway/proxy-based approach (secure API service mesh)
○ Istio and Kubernetes

●Zirak Zaheer et al.
○microservice identities (eZtrust)
○extended Berkeley Packet Filter (eBPF)
○Proof of concept only for visibility 6

ON2IT current solution

●Zero Trust approach

●Containers are segmented using Istio (sidecar)

●Data encrypted in transit using Istio

●No deep traffic visibility

7

Background: Istio

●Micro-segmentation
○Envoy Sidecar proxy

●Encryption
○mutual TLS

Sidecar proxy deployment

8

Background

●Cilium

○Berkeley Packet Filter (BPF)

○Security visibility and Enforcement

●Hubble

○Requires Cilium and extended Berkeley Packet Filter (eBPF)

○Deep visibility into the communication

○TCP connections, DNS queries, HTTP requests, etc.

9

Setup

●Google Cloud Platform
○Google Kubernetes

Engine
■ 1 cluster
■ 4 nodes

○Cilium
■Berkeley Packet

Filter
○ Istio

■Envoy Proxy
■Built on top of Cilium

○Hubble
■Built on top of Istio 10

Demo Application

● A demo application
deployed for the purpose
of having a realistic
environment.

● Monitor traffic between
“Product Page” proxy and
“Review v1” proxy.

11

Proof of Concept(1)

●Hubble enables deep
visibility for the following
metrics:

○DNS
○Drop
○TCP
○Port-Distribution
○ICMP
○HTTP

12

Proof of Concept(2)

●Encryption

●Micro-segmentation
○Reviews-v1 IP → 10.56.1.112

13

Discussion(1)

Zero Trust Operational Controls present:

● Istio:
○SSL encryption for “east-west” and “north-south” traffic
○Centrally managed
○Micro-Segmentation
○RBAC Based Controls (deprecated) → Authorization Policy
○Restricted inbound and outbound access

14

Discussion(2)

Zero Trust Operational Controls present:

●Cilium:
○Enhances network security rules/policies

●Hubble:
○Data classification
○Traffic-inspection
○Behavioral analytics

15

Conclusion(1)

●Regulate traffic:
○Micro-segmentation provided by Istio
○Traffic visibility provided by Hubble in combination with Cilium

and eBPF

●Confidentiality at transit data:
○Encryption provided by Istio

16

Conclusion(2)

How to implement Zero Trust for "east/west" traffic between
microservices in containerized environment?

Appropriate Zero Trust Controls:
●Encryption in Transit
●Centrally managed
●Micro-Segments
●Data classification
●Traffic-inspection
●Authorization Policies 17

Future Work

●Data leakage detection (DLP controls)

●Content-Inspection of packets

●Behavioral analytics

●Automation
○Logging

18

Questions

19

References

1) https://www.theinquirer.net/inquirer/news/3074793/docker-hub-breach

1) https://unit42.paloaltonetworks.com/attackers-tactics-and-techniques-in-unsecured-docker-daemons-
revealed/

20

https://www.theinquirer.net/inquirer/news/3074793/docker-hub-breach
https://unit42.paloaltonetworks.com/attackers-tactics-and-techniques-in-unsecured-docker-daemons-revealed/

