
University of Amsterdam

M.Sc. Security and Network Engineering

Research Project 1

Development of Techniques to Remove Kerberos
Credentials from Windows Systems

Steffan Roobol
steffan.roobol@os3.nl

Nick Offerman
nick.offerman@os3.nl

August 18, 2019

Assessor:
Prof. dr. ir. Cees de Laat
University of Amsterdam

Supervisors:
Dima van de Wouw, M.Sc.

& Arris Huijgen, M.Sc.
Deloitte

Abstract

Since the release of Windows 2000, all Windows Operating Systems (OS) use the Kerberos
protocol to authenticate users to a domain. The Kerberos credentials used for this authentica-
tion are stored in the Local Security Authority Subsystem Service (LSASS) process memory for
Single Sign-On purposes. Subsequently, they can be extracted from the LSASS memory space
using an open-source tool called Mimikatz. Microsoft has released multiple security patches
to prevent the system from storing clear-text passwords in memory or prevent access to the
LSASS process, but only a reboot of the OS can remove the credentials that are already stored
in the LSASS process memory. Unfortunately, some systems, like power generation systems,
telecommunication systems, and other Industrial Control Systems, can’t be rebooted due to high
availability standards. Therefore, we investigated how Kerberos credentials can be removed in
a safe manner from Windows Operating Systems without rebooting the system. To determine
this, we investigated how Mimikatz reads out Kerberos credentials from memory. Then, we re-
searched where the Windows native klist command retrieves and removes Kerberos credentials
from. Finally, we studied how the process of completely removing Kerberos credentials from a
Windows operating system can be automated. We discovered that both Mimikatz and klist

look at different Kerberos credentials: Mimikatz extracts credentials from the LSASS memory,
and klist enumerates Kerberos credentials from a memory location not belonging to LSASS.
In addition to this, we developed a proof of concept tool that removes Kerberos authentication
credentials from Windows 7, without rebooting or crashing the operating system.

Keywords: Kerberos, Windows, LSASS Purge, Credential caching, Mimikatz, Klist

1

1 Introduction
Kerberos is an open-source authentication protocol used by Microsoft in their Windows Operating
System (OS) since the release of Windows 2000 [1]. It is used in the Windows OS to allow a device
and its users to communicate over a network, by providing the device with credentials in the form
of Kerberos tickets. A user authenticates to Kerberos to obtain a Ticket Granting Ticket (TGT) by
logging in with his password, which is converted by Kerberos to an encryption key [2]. With this
TGT, users can obtain session tickets to access network resources without constantly re-entering
their credentials. To provide this Single Sign-On (SSO) feature, all Windows credentials are stored in
memory in the Local Security Authority Subsystem Service (LSASS) process [3]. LSASS is a crucial
process that handles user authentication on Windows systems. Among others, Windows credentials
include both the Kerberos tickets and the encrypted passwords that are used to authenticate to the
Kerberos Domain Controller (KDC). The passwords that are stored in memory are encrypted using
the native Windows function LsaProtectMemory [4].

As the credentials are stored in memory, they can be read out live or from memory dumps by
a tool called Mimikatz on Windows XP, Windows 7, Windows Vista, Windows 8, Windows 8.1
and Windows 10 [5]. Mimikatz is a popular open-source post-exploitation tool that allows users
to extract all credentials stored in the LSASS memory [6]. Mimikatz also automatically converts
the encrypted passwords used for Kerberos back to plain text, using the native Windows function
LsaUnprotectMemory. To protect from attacks on the LSASS process, Operating Systems from
Windows 8.1 and Windows Server 2012 R2 onwards do not store Kerberos credentials in memory
[7]. Windows 10 even introduced Windows Credential Guard, a virtualized container that isolates
the LSASS process from the rest of the OS [8]. Still, Mimikatz stays an effective tool for Windows
8 and below [7].

To truly get rid of data in memory, you can either reboot the system or overwrite the data. Reboot-
ing a device can be a good solution but is not practical for all systems: some systems, like Industrial
Control Systems (ICSs), cannot be rebooted as rebooting the system would severely disrupt its
operation and the services it provides. As users and administrators keep logging onto ICS systems
that hardly ever reboot, their credentials keep building up in memory over time. Therefore, when
such a system is hacked or otherwise compromised, an attacker could use Mimikatz to obtain a
large number of domain credentials. Using these, an attacker could further exploit the domain of
the company, especially when the memory of the machine in question contains credentials to privi-
leged user accounts. In addition to not all systems being able to reboot, overwriting the Kerberos
credentials in the LSASS process needs to be done without corrupting, breaking or restarting the
LSASS process, as this would prevent further authentication to the machine, force it to reboot or
might even crash it [9]. According to the Microsoft documentation, the Windows command klist

purge can be used to delete all Kerberos tickets for a specified logon session [10]. To the best of
our knowledge, there is no previous research that attempts to overwrite the Kerberos credentials in
the LSASS process memory or verify the effectiveness of klist purge with regards to Mimikatz.
Consequently, these credentials remain unaddressed.

Therefore, the main research question of this paper is:

How can Kerberos credentials be completely removed from a Windows Operating System
in a safe manner without rebooting the system?

To answer this question, we investigated the following sub-questions:

1. How does Mimikatz read out Kerberos credentials from memory?

2. Where does the klist command retrieve and remove Kerberos credentials from?

3. How can the process of completely removing Kerberos credentials from a Windows Operating
Systems be automated?

2

2 Related Work
Delpy created an open source hacking tool, Mimikatz, to read out credentials from the LSASS
process [5]. The tool, written in C, can extract plaintext passwords, NTLM hashes, and Kerberos
tickets. It also has modules for performing pass-the-hash or pass-the-ticket attacks and can create
Kerberos tickets. Lastly, the tool contains a module that accurately reads out Kerberos credentials.

Multiple security blog posts from e.g., Medium and Windows OS Hub, address mitigating Mimikatz
attacks [11, 12]. Suggested protection methods include removing debug privileges from the domain.
However, after disabling debug privileges, it is still possible to gain these privileges [13]. Further
protection methods include protecting the LSASS memory using a registry key or Windows Cre-
dential Guard (Windows 10), or preventing the system from caching credentials using a registry
key. Protecting the LSASS memory does not adequately protect against Mimikatz though, as it is
possible to dump the process memory with system level privileges and read from that dump. Pre-
venting credential caching does work against Mimikatz, but it only prevents new logon credentials
from being cached. Prior credentials are still stored in the LSASS memory, so a reboot or overwrite
is still necessary to clear credentials of e.g. system administrators on ICS systems, which make
exploitation by hackers on the domain of the company less likely.

Loftus and Zismer looked at Kerberos credential extraction on Linux/GNU systems [14]. They
tested the MIT Kerberos V5 implementation of the protocol and were successful in stealing Ker-
beros credentials from a GNU/Linux machine and subsequently reusing them from an attacking
device. They retrieved these credentials from the Kerberos credential cache stored in the file system
of the machine and did not investigate the Kerberos memory cache of the machine. Although this
research is not directly applicable to our research because they work with Linux systems and do not
look at the Kerberos memory cache, their test set up provided us with insights on how to perform
our experiments.

3 Methods

Figure 1: Test environment.

Our research focused solely on removing
Kerberos credentials on client-side operat-
ing systems. Figure 1 shows the test en-
vironment used for this research. The ex-
periments were performed on a single phys-
ical machine, containing an Intel Xeon E3-
1200 processor, 16GB RAM, and a 240GB
SSD. The OS of the machine was Linux
Ubuntu version 18.04.2 LTS, with a KVM
hypervisor version 1.5.1 installed on top of
it. A virtual machine (VM) with Win-
dows 2008 Datacenter functioned as a server
to provide Kerberos Authentication, a Key
Distribution Center (KDC), and to serve
as the Domain Controller (DC). Several
Windows OSs were installed on separate
VMs that functioned as client OS for two
users, to simulate a domain where multiple
users could access the same machine. Ta-
ble 1 shows the OSs, including their usage
worldwide (market share) regarding differ-
ent Windows versions used for these experiments. The KDC granted Kerberos tickets to the users,
so the users could authenticate to the DC, which acts as the Kerberos service.
The software analysis of Mimikatz was done by hand, inspecting its source code in Visual Studio
2017. The module we investigated was the sekurlsa module, as this is the part of the program
specifically used to retrieve passwords from the LSASS process. This is done with the command
sekurlsa::logonPasswords, or sekurlsa::kerberos if focusing solely on Kerberos credentials. To

3

Table 1: Operating systems used as clients in our test set-up.

Operating System Edition NT Version Buildnumber Global Usage [15]
Windows 10 Pro 10.0 10240 58.21%
Windows 8.1 Professional 6.3 9600 5.75%
Windows 8 Datacenter 6.2 9200 1.74%
Windows 7 Ultimate SP1 6.1 7601 31.96%

remove the Kerberos credentials from memory, a Mimikatz-like tool was constructed, called ’LSASS
Purge’. To reuse as much of Mimikatz’ code as possible, this tool was developed in C. The goal of
LSASS Purge was to search for the location and size of the memory that holds Kerberos credentials
within the LSASS process, and to overwrite that part of memory with zeroes.

To analyze the behavior of Kerberos credentials in Windows systems, we ran the available creden-
tial enumerating commands provided by Windows and Mimikatz, both before and after removing
Kerberos credentials using either klist purge or LSASS Purge. These enumerating commands are
Windows’ klist and Mimikatz’ kerberos::list and sekurlsa::kerberos. To analyze the klist

command further, we disassembled its executable file using IDA version 7.0.190307, and x64dbg
version 2019-07-02 16-06. To run klist purge for all logon sessions instead of just the current one,
we used a PowerShell script developed by Jared Poeppelman [16].

4 Results

4.1 Mimikatz analysis

Figure 2: Program flowchart of the steps taken
by the sekurlsa::kerberos command on a Win-
dows 7 OS.

Analyzing the Mimikatz source code yielded
the following results. Figure 2 shows the
steps taken by the sekurlsa::kerberos com-
mand to retrieve the credentials stored in the
LSASS process on a Windows 7 OS. When the
sekurlsa::kerberos command is executed, a
handle is opened to the LSASS process us-
ing the native Windows command OpenProcess

with read permissions. To do so, Mimikatz
needs to have debug privileges, which it ac-
quires using the privilege::debug command.
After getting the handle to the LSASS pro-
cess, Mimikatz reads out the Process Environ-
ment Block (PEB) loader data. Then, the pro-
gram searches the remaining LSASS memory for
the piece of memory that holds the credentials.
This piece of memory is subsequently copied to
a local buffer. In the LSASS memory space,
the memory blob holding the credentials is di-
vided per logon session, including both active
and inactive logon sessions. The credentials
from each separate logon session are enumer-
ated by Mimikatz using specific memory offsets
for Kerberos, converted to strings and printed
to the terminal. Mimikatz’ creator, who reverse
engineered the LSASS process, hard-coded the
length of the credential block for Windows XP,
Windows 7, Windows Vista, Windows 8, Win-
dows 8.1 and Windows 10 in Mimikatz’ source code.

A second command we investigated was the kerberos::list command. This command is called
to enumerate all Kerberos tickets in the system belonging to the current logon session. The

4

kerberos::list command uses the native Windows LsaCallAuthenticationPackage function,
to retrieve all tickets for the current logon ID. This behavior mimics the functionality of klist.

4.2 LSASS Kerberos credentials removal

By analyzing Mimikatz, we were able to determine the point where the credentials are read out from
LSASS. We copied this code, writing to the piece of memory instead of reading from it [17]. This
change is shown in Listings 1 and 2 in the Appendix.

Listing 1 shows the code that enables Mimikatz to read from the LSASS process. Its inputs are a
pointer to a source memory address and the length in bytes that needs to be read, and its output
is a destination memory address. The function is called with the memory address within LSASS
where the credential blob starts, and the size of this credential blob. It then calls the Windows func-
tion ReadProcessMemory to copy the credential blob to a local buffer. Listing 2 shows our altered
code: we changed the incoming source memory address to an outgoing destination memory address,
and instead of calling ReadProcessMemory, we called the Windows function WriteProcessMemory,
writing from an empty local memory buffer to the LSASS credential blob.

We tested the tool, LSASS Purge, as described in Section 3. Before running LSASS Purge, we
could use Mimikatz to read out all Kerberos credentials, as seen in Figure 6 in the Appendix.
Figure 3 shows the output of the sekurlsa::kerberos command after running LSASS Purge.

Figure 3: Output of the sekurlsa::kerberos command after running LSASS Purge.

Table 2 shows the results of running LSASS Purge on different Windows OSs. After running LSASS
Purge, we were still able to use Windows’ klist and Mimikatz’ kerberos::list commands to
enumerate Kerberos tickets. In addition to that, we observed that it was no longer possible to
enumerate Kerberos credentials using sekurlsa::kerberos on Windows 7. Attempting to run
LSASS Purge on Windows 8 yielded no results; thus, we were not able to remove the credentials.
Lastly, both before and after running LSASS Purge, sekurlsa::kerberos could not enumerate any
Kerberos credentials.

Table 2: Results of retrieving passwords using klist, kerberos::list and
sekurlsa::logonPasswords on Windows 7, 8, 8.1 and 10 before and after running LSASS
Purge. Red results denote a changed observation.

Experiment 7 8 8.1 10
Before LSASS Purge klist Yes Yes Yes Yes

kerberos::list Yes No No No
sekurlsa::kerberos Yes Yes No No

After LSASS Purge klist Yes Yes Yes Yes
kerberos::list Yes No No No
sekurlsa::kerberos No Yes No No

As seen by our experiments, Mimikatz is not able to read out any credentials from LSASS after
running LSASS Purge on Windows 7. We did observe one situation, which we have verified multiple
times, where Mimikatz was still able to read out the credentials; when sekurlsa::kerberos had
been run both before and after LSASS Purge, and Mimikatz had not been closed. In addition to this,
we were able to access the network share without reauthenticating. Lastly, we observed one situation
that forced the Windows 7 OS to reboot by running the PowerShell command Get-WmiObject to
enumerate Win32 LogonSession objects [18, 19]. The reboot happened consistently after we verified
this situation multiple times.

5

4.3 Klist analysis

Figure 4: Results of disassembly analysis of Klist us-
ing IDA.

Table 3 shows the results of ana-
lyzing the klist purge command on
different Windows OSs. Our anal-
ysis shows that even before running
LSASS Purge it is not possible to
list or enumerate Kerberos tickets on
Windows 8.1 and higher using either
kerberos::list or sekurlsa::kerberos.
Furthermore, it shows that running
klist purge stops klist from enumer-
ating Kerberos tickets on all tested
OSs, and Mimikatz’ kerberos::list from
reading out Kerberos tickets on Win-
dows 7 SP1. However, the creden-
tials stored in LSASS can still be ex-
tracted, even after running the klist

purge command. Additionaly, on Win-
dows 8, we were able to list Ker-
beros tickets using klist, but not using
kerberos::list. Lastly, observing the
LSASS memory space before and after run-
ning klist purge, showed no changes ex-
cept for the removal of semaphore vari-
ables.

The klist.exe executable is located in the C:\Windows\System32 directory. By using IDA and
x64dbg, we were able to disassemble the executable, as shown in Figure 4. The executable uses
the Windows function LsaCallAuthenticationPackage in the secur32.dll for all its Kerberos calls.
This function uses an unknown function, which is called from inside the advapi32.dll. From here,
the disassembly only returned an export table and a function declaration, so further investigation
was no longer possible.

Table 3: Results of retrieving passwords using klist, kerberos::list and
sekurlsa::logonPasswords on Windows 7, 8, 8.1 and 10 before and after running klist

purge. Red results denote a changed observation.

Experiment 7 8 8.1 10
Before klist purge klist Yes Yes Yes Yes

kerberos::list Yes No No No
sekurlsa::kerberos Yes Yes No No

After klist purge klist No No No No
kerberos::list No No No No
sekurlsa::kerberos Yes Yes No No

6

4.4 Kerberos credentials removal

Figure 5: Analysis of retrieving Kerberos credentials with
Mimikatz and klist, before and after executing klist purge
and LSASS Purge.

Figure 5 shows the results of our
Kerberos credentials removal, in
which a solid arrow indicates that
the credentials could be retrieved
successfully, and a broken arrow
means they could not be retrieved.
Both klist and kerberos::list

were able to read out creden-
tials after LSASS Purge had been
run, and sekurlsa::kerberos was
able to read out credentials af-
ter klist purge had been run.
Therefore, the commands klist,
klist purge and kerberos::list

do not touch upon the LSASS mem-
ory, and sekurlsa::kerberos and
LSASS Purge have no influence over
the apparent other location storing
Kerberos credentials. This means
there is probably a second location
in Windows Operating Systems where
Kerberos credentials are stored, sep-
arate from the LSASS process. To
remove all Kerberos credentials from
Windows systems, we wrote a script
using Windows PowerShell that runs
both klist purge and LSASS Purge
[17]. Table 4 shows the results of that
script. It is important to note that LSASS Purge could not run correctly on Windows 8, so the
results of sekurlsa::kerberos after running the removal script were the same as before running
it.

Running either klist, kerberos::list or sekurlsa::kerberos after the PowerShell script, re-
sulted in the credentials being removed from the Windows 7 machine. Again, on Windows 8, we
were not able to run LSASS Purge, but the klist purge was carried out fine. Additionally, as with
our previous results, both before and after attempting to remove them, sekurlsa::kerberos could
not enumerate any Kerberos credentials in Windows 8.1 or Windows 10.

Table 4: Results of retrieving passwords using klist, kerberos::list and
sekurlsa::logonPasswords on Windows 7, 8, 8.1 and 10 before and after running both
klist purge and LSASS Purge. Red results denote a changed observation.

Experiment 7 8 8.1 10
Before removal script klist Yes Yes Yes Yes

kerberos::list Yes No No No
sekurlsa::kerberos Yes Yes No No

After removal script klist No No No No
kerberos::list No No No No
sekurlsa::kerberos No Yes No No

7

5 Discussion
This paper set out to determine whether it is possible to completely remove Kerberos credentials
from Windows systems. Our results show that, for Windows 7 systems, it is indeed possible to do
so, using both native Windows command and a tool based on Mimikatz. In addition to this, our
results show that the klist purge command does not use or alter the Kerberos credentials stored
in the LSASS memory, instead focusing on a different part of the OS.

After analyzing Mimikatz’ source code, we developed a tool called LSASS Purge to overwrite all
credentials stored in the LSASS process. LSASS Purge does not remove just the Kerberos creden-
tials from memory, and therefore, it could have many unintentional side effects. On Windows 7
systems, LSASS Purge is able to remove the credentials without immediately crashing the system.
We did notice that calling a winlogon.exe function to enumerate logon sessions (Get-WmiObject
Win32 LogonSession) caused the OS to reboot itself consistently, which would lead LSASS Purge
to be an unsafe way of removing Kerberos credentials from the memory of a Windows 7 system.
Additionally, on the Windows 7 OS, we observed that Mimikatz was still able to read out Kerberos
credentials from LSASS if Mimikatz had been run and not closed before executing our tool. This
was to be expected, as Mimikatz saves the LSASS credentials it reads out to a local buffer. If
the executable is not terminated, any subsequent readings are done from that local buffer as well.
Furthermore, we noticed that by running klist purge, the LSASS memory space did not change
except for the disappearance of some semaphore variables. As semaphores are not actual content
but merely set in place to prevent race conditions, this further solidifies our results that klist

purge does not remove Kerberos credentials from LSASS, but from another location in the OS.

A limitation of our research is that we were not able to run LSASS Purge on Windows 8. We
expect that LSASS Purge could work on Windows 8, as Mimikatz is able to read out credentials
on that OS without any problems. Besides, our tool did not generate any output, such as error
messages, which were put in place to detect problems at run time. These observations lead us to
believe the problem lies with the configuration of the executable, as it might not have been compiled
or ran against the right Windows SDK. Otherwise, we would have gotten feedback from the tool
as to what went wrong during its execution. Furthermore, we were not able to test LSASS Purge
on Windows 8.1 and Windows 10. As LSASS Purge is based on Mimikatz, and Mimikatz is not
able to read out credentials in these OSs, we are not able to test if we truly overwrote the Kerberos
credentials [7]. Another limitation of this study could be the use of Windows 2008 Server as server
OS, as this is a much older version than the currently available Windows 2019 Server, the latter
of which could be more secure and robust. However, as all our experiments were performed on the
client Operating Systems, we do not think this affected our outcomes.

By analyzing the behavior of Windows’ klist command and Mimikatz’ sekurlsa::kerberos and
kerberos::list commands both before and after running either klist purge or LSASS Purge, we
showed that both Kerberos enumerating commands retrieve their input from different locations. No-
tably, on Windows 8, we were able to enumerate tickets using klist, but not using kerberos::list.
This could be due to the LsaCallAuthenticationPackage call in Mimikatz. From Windows 8 and
higher, to perform a Kerberos ticket request using this function, an executable needs to be in the
Trusted Computer Base, which Mimikatz is not [20]. During our analysis of the klist.exe ex-
ecutable, we were able to trace its calls back to both secur32.dll and advapi32.dll, but no
further. Our results could have been limited by the tooling, but can also be explained by potential
obfuscation of the source code of Windows system executables.

Since Windows 10, Windows Credential Manager stores credentials that are protected by Windows
Defender Credential Guard [21]. Stored credentials can’t be decrypted, because Virtualization-Based
Security (VBS) provides isolation between the secure kernel and the OS. This isolation is further
enforced by use of a Trusted Platform Module (TPM) [21]. This implementation of the LSASS
process could explain why both Mimikatz and LSASS Purge can not gain the necessary privileges
to access the credentials in the LSASS process in Windows 10 systems.

8

Our analysis of the klist purge command and its execution stack reached a point where we could
not investigate any further. Therefore, our approach to removing Kerberos credentials from a
Windows OS is based on the Mimikatz tool alone. As to our knowledge, there have not been any
attempts to clear the LSASS memory of its stored Kerberos credentials. In addition, prior efforts by
Microsoft to protect the credentials stored in the LSASS memory have only focused on preventing
access to the credentials, or on preventing the storage of those credentials in the LSASS process.
Such an approach can only be effective as long as an OS is allowed to reboot for clearing the
credentials already cached in the LSASS memory, or after an update of the OS [22, 23]. If there
is a more robust approach to removing Kerberos credentials already stored in Windows memory,
such as Windows function calls, that approach would be preferred to LSASS Purge. However, as
of now, LSASS Purge can serve as a proof concept and can be used as a stepping stone for future
development.

6 Conclusion
This paper set out to research whether it is possible to completely remove Kerberos credentials
from a Windows OS in a safe manner without rebooting the system. It did so by investigating
the native Windows executable klist and the open source post-exploitation tool Mimikatz. This
showed that the Kerberos credentials are stored in two separate memory locations. Furthermore, as
a proof of concept, our research produced a tool called LSASS Purge that can be used to overwrite
all credentials in the LSASS memory on a Windows 7 OS, including the Kerberos credentials. This
tool was able to do so without immediately rebooting or crashing the OS. Using PowerShell to call
the GetWmiObject function to enumerate Win32 LogonSession objects did force the system to
reboot consistently. Using both LSASS Purge and the native Windows command klist purge on
a Windows 7 OS, we were able to remove the Kerberos credentials from the LSASS memory and let
klist purge remove the Kerberos credentials from the other memory location.

Based on our results, it can be concluded that on a Windows 7 operating system, using both
klist purge and LSASS Purge, all Kerberos credentials can be removed from the system without
immediately crashing it, forcing it to reboot, or disrupting further authentication.

7 Future Work
As our investigation of the klist command stopped at the call to advapi32.dll, future work could
try to discover where the Kerberos credentials are actually stored. This could solidify and expand
the understanding of the klist executable, as well as the functions it calls in the process of enu-
merating or removing Kerberos tickets.

LSASS Purge removes all credentials from memory in a Windows 7 system in an unsafe manner.
Removing all credentials could have many unexpected and unwanted side effects, such as forcing
a reboot after enumerating Win32 LogonSession objects. Therefore, future research could focus
on fine-tuning LSASS Purge to more specifically wipe the memory regions containing the Kerberos
credential material, to avoid breaking the structures of the data so it won’t affect the OS’ stability.
Additionally, in our research, LSASS Purge has only been tested properly on Windows 7. Therefore,
future research could focus on reproducing and verifying our results in different Windows Operating
Systems. Both earlier versions like Windows XP and Vista as later versions like Windows 8, 8.1
and 10 could be tested to broaden the compatibility of LSASS Purge.

References

[1] Maples W. Kerberos and Windows 2000. url: http://techgenix.com/kerberosandwindows2000/
(visited on 03/06/2019).

[2] Microsoft. Authentication Service Exchange - Windows applications. url: https://docs.
microsoft.com/en-us/windows/desktop/secauthn/authentication-service-exchange

(visited on 03/06/2019).

[3] Microsoft. Cached and stored credentials technical overview — Microsoft Docs. url: https:
//docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-

2012-r2-and-2012/hh994565(v%5C%3Dws.11)?WT.mc_id=twitter (visited on 03/06/2019).

9

http://techgenix.com/kerberosandwindows2000/
https://docs.microsoft.com/en-us/windows/desktop/secauthn/authentication-service-exchange
https://docs.microsoft.com/en-us/windows/desktop/secauthn/authentication-service-exchange
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh994565(v%5C%3Dws.11)?WT.mc_id=twitter
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh994565(v%5C%3Dws.11)?WT.mc_id=twitter
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/hh994565(v%5C%3Dws.11)?WT.mc_id=twitter

[4] Massachusetts Institute of Technology. Encryption types - MIT Kerberos Documentation. url:
https://web.mit.edu/kerberos/krb5- devel/doc/admin/enctypes.html (visited on
03/06/2019).

[5] Delpy B. Mimikatz - a little tool to play with Windows security. url: https://github.com/
gentilkiwi/mimikatz (visited on 03/06/2019).

[6] Metcalf S. Mimikatz - Active Directory Security. url: https://adsecurity.org/?page_id=
1821 (visited on 03/06/2019).

[7] AD Security. Mimikatz and Active Directory Kerberos Attacks. url: https://adsecurity.
org/?p=556 (visited on 09/07/2019).

[8] Microsoft. Protect derived domain credentials with Windows Defender Credential Guard. url:
https : / / docs . microsoft . com / en - us / windows / security / identity - protection /

credential-guard/credential-guard (visited on 19/07/2019).

[9] HowToGeek. Local Security Authentication Server. url: https://www.howtogeek.com/

79792/local-security-authentication-server/ (visited on 07/06/2019).

[10] Microsoft. klist — Microsoft Docs. url: https://docs.microsoft.com/en-us/windows-
server/administration/windows-commands/klist (visited on 03/06/2019).

[11] Medium. Preventing Mimikatz Attacks. url: https://medium.com/blue-team/preventing-
mimikatz-attacks-ed283e7ebdd5 (visited on 09/07/2019).

[12] Windows OS Hub. Defending Windows Domain Against Mimikatz Attacks. url: http://

woshub.com/defending-windows-domain-against-mimikatz-attacks/ (visited on 11/07/2019).

[13] Windows OS Hub. How to Obtain SeDebugPrivilege when Debug Program Policy is Enabled.
url: http://woshub.com/obtain-sedebugprivilege-debug-program-policy-enabled/
(visited on 11/07/2019).

[14] Loftus R and Zismer A. “Kerberos Credential Thievery (GNU/Linux)”. In: M.Sc. thesis,
University of Amsterdam (2017).

[15] Statcounter. Desktop Windows Version Market Share Worldwide. url: http://gs.statcounter.
com/windows- version- market- share/desktop/worldwide/#monthly- 201601- 201907

(visited on 15/07/2019).

[16] Poeppelman J. Purge the Kerberos client ticket cache for all sessions (Powershell one-liner).
url: https://gallery.technet.microsoft.com/scriptcenter/Purge-the-Kerberos-
client-b56987bf (visited on 05/06/2019).

[17] Offerman N and Roobol S. Gitlab repository for LSASS Purge tool. url: https://gitlab.
os3.nl/sroobol/lsass-purge-tool (visited on 13/07/2019).

[18] Microsoft. Win32LogonSessionclass. url: https://docs.microsoft.com/en-us/windows/
win32/cimwin32prov/win32-logonsession (visited on 18/08/2019).

[19] Microsoft. IWbemServices::GetObject method. url: https://docs.microsoft.com/en-

us/windows/win32/api/wbemcli/nf- wbemcli- iwbemservices- getobject (visited on
18/08/2019).

[20] Microsoft. LsaApCallPackageUntrusted function. url: https://docs.microsoft.com/en-
us / windows / win32 / api / ntsecpkg / nc - ntsecpkg - lsa _ ap _ call _ package (visited on
11/07/2019).

[21] Microsoft. Windows Defender Credential Guard: Requirements. url: https://docs.microsoft.
com/en-us/windows/security/identity-protection/credential-guard/credential-

guard-requirements (visited on 18/08/2019).

[22] How To Geek. Why does Windows Wants To Reboot So Often? url: https://www.howtogeek.
com/182817/htg-explains-why-does-windows-want-to-reboot-so-often/ (visited on
09/07/2019).

[23] Microsoft. Microsoft Security Advisory 2871997. url: https://docs.microsoft.com/en-
us/security-updates/SecurityAdvisories/2016/2871997 (visited on 09/07/2019).

10

https://web.mit.edu/kerberos/krb5-devel/doc/admin/enctypes.html
https://github.com/gentilkiwi/mimikatz
https://github.com/gentilkiwi/mimikatz
https://adsecurity.org/?page_id=1821
https://adsecurity.org/?page_id=1821
https://adsecurity.org/?p=556
https://adsecurity.org/?p=556
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard
https://www.howtogeek.com/79792/local-security-authentication-server/
https://www.howtogeek.com/79792/local-security-authentication-server/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/klist
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/klist
https://medium.com/blue-team/preventing-mimikatz-attacks-ed283e7ebdd5
https://medium.com/blue-team/preventing-mimikatz-attacks-ed283e7ebdd5
http://woshub.com/defending-windows-domain-against-mimikatz-attacks/
http://woshub.com/defending-windows-domain-against-mimikatz-attacks/
http://woshub.com/obtain-sedebugprivilege-debug-program-policy-enabled/
http://gs.statcounter.com/windows-version-market-share/desktop/worldwide/#monthly-201601-201907
http://gs.statcounter.com/windows-version-market-share/desktop/worldwide/#monthly-201601-201907
https://gallery.technet.microsoft.com/scriptcenter/Purge-the-Kerberos-client-b56987bf
https://gallery.technet.microsoft.com/scriptcenter/Purge-the-Kerberos-client-b56987bf
https://gitlab.os3.nl/sroobol/lsass-purge-tool
https://gitlab.os3.nl/sroobol/lsass-purge-tool
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-logonsession
https://docs.microsoft.com/en-us/windows/win32/cimwin32prov/win32-logonsession
https://docs.microsoft.com/en-us/windows/win32/api/wbemcli/nf-wbemcli-iwbemservices-getobject
https://docs.microsoft.com/en-us/windows/win32/api/wbemcli/nf-wbemcli-iwbemservices-getobject
https://docs.microsoft.com/en-us/windows/win32/api/ntsecpkg/nc-ntsecpkg-lsa_ap_call_package
https://docs.microsoft.com/en-us/windows/win32/api/ntsecpkg/nc-ntsecpkg-lsa_ap_call_package
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-requirements
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-requirements
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-requirements
https://www.howtogeek.com/182817/htg-explains-why-does-windows-want-to-reboot-so-often/
https://www.howtogeek.com/182817/htg-explains-why-does-windows-want-to-reboot-so-often/
https://docs.microsoft.com/en-us/security-updates/SecurityAdvisories/2016/2871997
https://docs.microsoft.com/en-us/security-updates/SecurityAdvisories/2016/2871997

Appendix

1 BOOL kull m memory copy (OUT PKULLMMEMORYADDRESS Dest inat ion ,
2 IN PKULLMMEMORYADDRESS Source , IN SIZE T Length)
3 {
4 BOOL s ta tu s = FALSE;
5 KULLMMEMORYADDRESS aBuf f e r = {NULL, &KULLMMEMORYGLOBALOWNHANDLE} ;
6

7 s t a tu s = ReadProcessMemory (Source−>hMemory−>pHandleProcess−>hProcess ,
8 Source−>address , Dest inat ion−>address , Source−>Address , Length ,
9 NULL) ;

10

11 r e turn s t a tu s ;
12 }
13

Listing 1: Snippet of Mimikatz’ original code.

1 BOOL memory remove (OUT PLSASS MEMORY ADDRESS Dest inat ion , IN SIZE T Length)
2 {
3 BOOL s ta tu s = FALSE;
4

5 // I n i t i a l i z e s a bu f f e r the s i z e o f the p i e c e o f memory o f the c r e d e n t i a l s
6 LSASS MEMORY ADDRESS bu f f e r ;
7 bu f f e r . address = Loca lA l l oc (LPTR, Length) ;
8

9 //Writes the bu f f e r to the c r e d e n t i a l memory
10 s t a tu s = WriteProcessMemory (Dest inat ion−>hMemory−>pHandleProcess−>hProcess ,
11 Dest inat ion−>address , bu f f e r . address , Length , NULL) ;
12

13 // Frees the bu f f e r and re tu rn s the output o f WriteProcessMemory
14 LocalFree (bu f f e r . address) ;
15 r e turn s t a tu s ;
16 }
17

Listing 2: Snippet of LSASS Purge’s changed code.

11

Figure 6: Full output of the sekurlsa::kerberos command from Mimikatz.

12

	Introduction
	Related Work
	Methods
	Results
	Mimikatz analysis
	LSASS Kerberos credentials removal
	Klist analysis
	Kerberos credentials removal

	Discussion
	Conclusion
	Future Work
	Appendix

