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Abstract

Cloud computing is gaining widespread adoption, and with it, the trust that has to be placed
in cloud providers is increasing. Intel Software Guard Extensions provide a solution to the
issue of having to place this trust by allowing application developers to run their software in
a trusted enclave on an untrusted Operating System. Adapting software to SGX in many cases
requires significant development effort. Graphene-SGX provides a framework that instead allows
running arbitrary unmodified Linux software in SGX enclaves, with the aim to reduce the required
development effort. However, such software is often written with the notion that the OS is trusted,
and this threat model misalignment with SGX gives rise to possible security issues.

This study explores the implications of running arbitrary applications in Graphene-SGX. We
explore both the security implications and the maturity. Furthermore, we aim to provide insight
into the issues that exist when running applications in Graphene-SGX. We show that security
implications indeed exist; time and date manipulation by an untrusted malicious OS can bypass
security measures of the application in certain cases. Moreover, modification of environment
variables also presents a possible tampering opportunity for the OS in specific applications. We
conclude that Graphene-SGX is currently not at a maturity level that is ready for production
environments. Getting arbitrary applications running in Graphene-SGX is not trivial, as there are
various bugs and undocumented issues that may arise when attempting to do so.



I. INTRODUCTION

In recent years, cloud computing is becoming ever more prevalent. Instead of deploying
and maintaining one’s own hardware, renting Infrastructure as a Service (IaaS) style cloud
services, for example, is becoming an increasingly cost-effective alternative, resulting in
widespread adoption [5, 25]. Widespread use of such services comes with one important
caveat; the application owner no longer has full control over the hardware and Operating
System (OS) used to run their application. Instead, the cloud provider has full control,
and hence, they are responsible for a significant part of the application’s security. This
requires that one must trust the provider to deliver this security and moreover, trust that
they themselves are not malicious. This leads to a trust issue, where the client is forced
to place significant trust in the provider.

Intel attempts to solve this trust issue between client and provider with the introduction
of Intel Software Guard Extensions (SGX). SGX is available in Intel microprocessors
starting from the sixth generation Intel Core series microprocessors based on the Skylake
microarchitecture which launched in 2015 [11]. With SGX, a client can run their software
in a secure container, referred to as an enclave, which protects the code being run within
from the provider controlled Operating System. An enclave can be regarded as a special
memory region that is protected by the CPU and can thus not be accessed with regular
memory operations from the OS. SGX introduces a small set of instructions that allow
for heavily regulated interaction between the OS and enclave. We will further discuss
the architecture of SGX in Section V-A. As a result of SGX, the OS no longer needs
to be trusted; one instead places trust in the CPU hardware and SGX implementation of
Intel [13].

However, multiple attacks have shown that the protection mechanisms that Intel SGX
provides are not foolproof; in several situations, the protections of an SGX enclave can be
broken and information can be leaked [6, 9, 15, 26, 31, 38, 46, 54, 55, 56, 58, 60]. These
attacks will be further outlined in Section V-C.

Running applications in an SGX enclave usually requires modifications to the applica-
tion, and for this purpose, Intel provides an SGX Software Development Kit (SDK). Alter-
natively, multiple tools exist that facilitate running applications in SGX enclaves without
code modifications, such as Graphene-SGX, SGX-LKL, SCONE, and Panoply [52, 42, 2,
49]. This approach reduces development effort and may lead to quicker and easier adoption
of SGX. Graphene-SGX, SGX-LKL, and Panoply work by implementing a Library OS
which provides an abstraction layer between the SGX interface and the application that
is to be run in the enclave. SCONE, on the other hand, uses Docker to implement secure
containers that run in SGX enclaves. Each solution achieves the possibility to run arbitrary
software in SGX enclaves, however, at varying rates of performance and security.

The possibility of running unmodified applications in SGX reduces the development
effort required to run an application in SGX, and hence, is an appealing option. How-
ever, most standard applications are developed with the notion that the Operating System
is trusted, while SGX has a threat model that contradicts this notion. Naively running
unmodified applications in SGX, with added security and isolation as the objective, may
therefore not yield the expected results. It may not be evident to companies or developers
considering SGX for their applications, that this is the case.
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This study investigates the possible implications that arise when running arbitrary ap-
plications in Graphene-SGX. We investigate both the security implications as well as the
maturity of the Graphene-SGX framework. Furthermore, we aim to provide new insights
for developers opting to use Graphene-SGX in the future.

We chose to investigate Intel SGX, as it is one of the more recent implementations
providing software attestation, which ensures the client that it is communicating with
the legitimate, trusted execution environment. Additionally, at the time of writing Intel
processors have a majority market share in server hardware [14]. The choice for Graphene-
SGX was made because it is open source and actively maintained, unlike other tools such
as SCONE or Panoply [52, 2, 49].

Our main contributions are as follows:
• We introduce two novel attacks on applications running inside SGX using Graphene-

SGX and discuss their mitigations. Furthermore, we show that developers should take
special care in implementing applications in Graphene-SGX.

• We evaluate the maturity of Graphene-SGX and give insight to developers on the
existing issues that arise when attempting to run applications in Graphene-SGX.

• We present a summary of existing attacks on SGX which should be taken into account
by developers.

The remainder of this paper is structured as follows: our research questions are stated
in Section II. The ethical implications are then covered in Section III. We next discuss the
related work in Section IV, followed by background on Intel SGX and Graphene-SGX in
Section V. We then cover the experiments and results for possible security implications of
SGX and Graphene-SGX in Section VI. We discuss our findings and give our conclusions
in Section VII. We conclude with suggestions for future work in Section VIII.

II. RESEARCH QUESTIONS

Following from the above introduction, we define our research question as follows:

What are the practical implications of running arbitrary applications in Intel SGX using
Graphene-SGX?

To answer our main research question we define the following sub-questions:
• What are the workings and limitations of Intel SGX and Graphene-SGX?
• What security implications exist when running applications using Graphene-SGX?
• What is the maturity of Graphene-SGX as a framework for running arbitrary appli-

cations?

III. ETHICAL CONSIDERATIONS

Our research is conducted on a dedicated server that is not used by any other users. We
do not use any shared hardware, and as such, do not run the risk of interfering with or
compromising any third party operations or data.

We believe the impact of our findings will not affect the security of production software
utilizing Graphene. The attacks require software that utilizes time or environment variables
in a security critical manner, moreover, application level mitigations are possible. Lastly,
we believe that the adoption of Graphene for production purposes is minimal.
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IV. RELATED WORK

Costan and Devadas provide a thorough investigation and detailed explanation of the
workings of Intel Software Guard Extensions (SGX) [13]. They do so by taking the
information available in the literature that introduced the concepts used by Intel SGX [1,
19, 36], and Intel’s own documentation [10, 12] and patents [23, 35].

Arnautov et al. developed Secure CONtainer Environment (SCONE), a framework for
running arbitrary user-space software in Docker containers within an Intel SGX enclave,
thereby shielding it from privileged system software [2]. To minimize the Trusted Comput-
ing Base (TCB), SCONE only exposes a secure interface to the standard C library, libc,
inside the secure container. This also ensures that the secure containers can run unmodified
software inside. To increase performance inside the containers, SCONE implements its own
threading implementation as well as asynchronous system calls. Special care is taken in
shielding the I/O interfaces of an application inside a secure container from untrusted
system software.

Tsai et al. developed a Library OS for use with Intel SGX, called Graphene-SGX which
we hereafter refer to as simply Graphene. Graphene allows users to run applications in SGX
enclaves without needing to modify the application or incurring crippling overheads on
execution [52]. In fact, Graphene shows similar performance to the previously mentioned
SCONE but does have a significantly larger sized TCB. This is mainly caused by the
decision to use glibc and provide a more extensive set of features compared to SCONE.
Similar to SCONE, Graphene shields enclave processes from the host OS. However, where
SCONE uses a statically linked libc, Graphene allows for dynamically linked libraries by
verifying the integrity of those dynamic libraries. We discuss the architecture and features
of Graphene in more detail in Section V-B.

Several attacks on Intel SGX have already been published, such as various attacks related
to caching [6, 9, 15, 26, 31, 38, 46, 56], and other attacks [54, 55, 58, 60]. A more
detailed summary of these existing attacks will be given in Section V-C.

V. BACKGROUND

A. Intel SGX architecture
The Intel Software Guard Extensions (SGX) are a set of instructions and mechanisms

for memory access that is present in modern Intel processors [10]. The instructions allow
for applications to create protected containers, more commonly known as enclaves. An
enclave is a region of the memory address space where the processor guarantees integrity
and confidentiality. These guarantees are achieved through prohibiting access to enclave
memory by the OS or any other application, allowing for secure remote computation
on untrusted machines. Such features can be beneficial for customers of cloud providers;
further purposes are covered in Section V-D. We use the Intel documentation and the work
by Costan and Devadas to discuss the architecture of Intel’s SGX and how the integrity
and confidentiality guarantees are achieved [10, 13]

Note that we use the term Operating System (OS) to refer to the software that runs
outside of SGX. This term is used out of convenience; it does not necessarily imply that
what is run outside of SGX is always an OS, as is can also be a hypervisor or any other
system software (i.e. software running in ring 0 or -1).
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1) Memory structures: Intel SGX uses a dedicated memory region called the Processor
Reserved Memory (PRM) which is allocated exclusively for SGX enclaves [13]. The CPU
prohibits anything outside the associated enclave from accessing this region. Consequently,
the OS and other applications are not allowed access. The PRM contains the Enclave Page
Cache (EPC), which is a storage structure that contains the enclaves’ data.

The EPC storage space is partitioned into memory pages of 4KB. Each EPC page can
only be accessed by the enclave that owns it. As EPC pages can only belong to a single
enclave, they cannot be used for inter-enclave communication.

Because Intel provides support for multiple enclaves on the same system, EPC page
ownership has to be recorded. Partly for this purpose, SGX uses an Enclave Page Cache
Map (EPCM), wherein the ownership of each EPC page is stated. Additionally, other
important information such as the validity of the pages and page permissions are recorded
in the EPCM as well [10]. The EPCM can be regarded as a large table where every row
represents a single EPC entry.

Enclave metadata is stored in a SGX Enclave Control Structure (SECS), which is located
on a dedicated EPC page. This data structure contains information related to the enclave’s
identity, such as the enclave signature.

2) Enclave life cycle: Enclaves have a distinct life cycle that can be divided into four
stages: Creation, Loading, Initialization, and Teardown.

• An enclave is created when one of the EPC pages is converted into a SECS. The
code in an enclave cannot be executed until the INIT attribute in the SECS is set to
True; this attribute is set in the initialization phase.

• In the second phase, the code of the enclave is loaded in EPC pages by the OS. It is
only before the enclave is initialized that the OS can access memory of the enclave.

• After the content of the enclave is loaded, the INIT attribute of the SECS is set
to True. Setting this attribute is more complex than it may seem at first glance.
The OS must request a special token from the Intel Launch Enclave (LE). The LE
is a privileged Intel enclave which is part of the SGX implementation. The token
received from the LE can be used together with a special instruction to set the INIT
attribute of the enclave to True. Costan and Devadas speculate that the LE does not
serve a concrete purpose beside the opportunity for Intel to regulate and license SGX
enclaves [13].

• When the INIT attribute is set, the memory allocated to the enclave can only be
accessed from within the enclave and, therefore, the OS can no longer access the
PRM. From this point onward, the enclave is in operation and will run the desired
software. When the enclave has performed its function, it is destroyed by setting all
EPC pages to invalid in the EPCM. The EPC page containing the SECS is the last
page to be invalidated, thereby completely removing the enclave.

3) Software attestation: To allow a client to verify that they are communicating with
an expected and trusted piece of software inside an enclave, SGX relies on attestation.
Software attestation provides proof to the client that the software in an SGX enclave
of the provider is as expected. This proof consists of a piece of attestation data which
identifies the software through a cryptographic hash, and is cryptographically signed to
produce an attestation signature [13]. The key used to sign the attestation data is known
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only to the hardware doing the attestation; this can be verified using a certificate that is
provided by the hardware manufacturer, i.e. Intel. Due to the complexity of implementing
attestation, SGX makes use of specially privileged enclaves to facilitate this process, such
as computing the attestation data and signing it. The key used for the verification of the
containers is hard-coded into the SGX microcode [13].

The attestation process also plays an important part in provisioning secrets to an enclave
by the remote party. During the attestation process, public keys can be exchanged, with
which a secure channel can then be established [21].

4) SGX versions: Since the initial release of SGX in 2015, updates and new versions
have been released periodically. In 2016, a new version of SGX was released, SGX version
2. This version adds support for dynamic memory management as its major addition [37].

B. Graphene design
Graphene is a port of the Graphene Library OS to add support for Intel SGX and run

unmodified software in secure enclaves [53, 52]. Graphene adds support for multi-process
applications to SGX by implementing the fork and execve system calls. Furthermore,
Inter-Process Communication (IPC) functionality is added, since memory pages cannot
be shared in SGX. Additionally, as part of supporting unmodified applications, Graphene
implements support for dynamic shared libraries.

1) Library OS: Graphene uses a Library OS to run arbitrary applications in Intel SGX.
A Library OS is a type of Operating System that pushes protection mechanisms to the
lowest hardware boundaries [34]. This means that typical Operating System services, such
as networking or disk I/O, are implemented in the form of libraries together with a set
of policies that enforce access control [33]. An application running in Graphene can call
these libraries to get certain OS services, if the policies allow it.

2) Manifests: In order to run an application in Graphene, the user must supply a
manifest which specifies policies such as the resources that are allowed to be used and
what files on disk or network locations should be accessible. The manifest also includes
other SGX specific values such as the number of threads and the starting virtual address
of the enclave [52]. Additionally, trusted files can be specified in the manifest with a hash
digest of the file. When opened, Graphene will verify the integrity of the file and reject it
if it does not match the registered hash in the manifest. The manifest itself is signed to
protect its integrity and prevent the OS from making malicious modifications [52].

3) Enclave runtime environment: An enclave runtime environment consists of a shield-
ing library libshield.so, the application executable and the manifest discussed previ-
ously. Running an enclave starts with the Platform Adaption Layer (PAL), which in turn
calls SGX drivers to initialize the enclave. Next, the enclave goes through the attestation
procedure and, when satisfactory, the included shielding library loads the Library OS and
standard C library [52]. Once the initialization is finished, dynamic libraries are loaded,
and the application is started.

4) Dynamic loading: To support dynamic loading of libraries, Graphene generates a
unique signature for any combination of executable and dynamically linked libraries [52].
These signatures are verified when the library is loaded. When the check is unsuccessful,
the library will not be loaded.
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5) Multi-process support: Support for multi-process applications in SGX enclaves is
achieved by running a separate enclave and instance of the Library OS for each process.
When a process calls fork the new enclave is created and the Library OS, together
with the application, is loaded into it. Next, attestation is performed and, if successful,
the environment can be loaded into the new enclave. The extra work needed to fork
a process running in Graphene incurs an overhead of about 10,000x the processing time
compared to native execution [52].

Message passing is used between the enclaves to facilitate process forking and other
kinds of Inter-Process Communication where needed [52]. Multi-process support is nec-
essary when the goal is to run unmodified applications in Graphene, as it is common for
a process to create child processes as part of their standard behavior.

6) System call interfaces: Inside a Graphene enclave, the Library OS exposes the
standard C library libc to the application. This opens up a possibility for so-called Iago
attacks, which exploit the fact that system calls were not designed with the possibility of a
malicious kernel [8]. The Library OS handles the system call itself whenever possible, or
calls the PAL which, according to the paper, implements 36 functions of the host system’s
Application Binary Interface (ABI) [52]. PAL again translates these 36 calls into 28 that
will be called out to the untrusted OS and may be vulnerable to Iago attacks [52].

Out of these 36 system calls, 28 effectively go out to the untrusted OS. The host OS
behavior for 18 of them can be checked for correctness, 6 cannot harm the enclave even
if maliciously manipulated, 2 allow a Denial of Service (DoS) attack (FUTEX_WAIT and
STREAM_POLL) while 2 more (VERB_STAT and DIR_READ) can potentially be used to
attack the enclave by the OS [52].

In the Graphene source code, it can be seen that a number of included system calls are
directly passed through to the host OS. However, the implementation and security of these
system calls are not discussed in their paper. Furthermore, frequently used system calls in
Linux are implemented through a Virtual Dynamic Shared Object (vDSO) for performance
reasons, but there is no documentation on how Graphene treats such system calls either.

7) Known security implications: Graphene marks all enclave pages with rwx permis-
sions, which means code pages will be writable during execution; this poses a possible
security risk. However, such page permissions are necessary to support arbitrary Linux
Executable and Linkable Format (ELF) executables, which often need writable code pages
during the linking phase. While in SGX, page permissions cannot be altered after the
creation of an enclave. SGX version 2 solves this problem by supporting dynamic changes
in page permissions [52].

C. Security history overview
In recent years, there has been a significant amount of research conducted on Intel

SGX. In order to obtain a clear understanding of the current developments and the research
leading up to this point, we provide a timeline of the most important publications regarding
the security of SGX.

1) September 2013: The programming reference manual for Intel SGX was published
on September 26th, 2013 [18, 10].
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2) May 2015: In May of 2015, Xu et al. published a controlled channel attack on
SGX enclaves [60]. A controlled channel attack is a type of side-channel attack, where the
adversary has control over the platform and hence can mount more powerful attacks. Their
attack relies on the generation of page faults to infer the state of the enclave. It requires
prior analysis of the application running in the enclave to identify the page fault patterns.
These patterns will be used to infer what code is being executed or what variables are
being modified [60].

3) July 2015: The sixth generation of Intel’s processor architecture, called Skylake, was
released in July 2015, which includes support for native SGX [11].

4) May 2016: Weichbrodt et al. investigate ways to exploit synchronization bugs in
applications that run inside enclaves [58]. They noticed a trend to use SGX as a one-size-
fits-all isolation and security solution for complete and off the shelf applications. However,
these applications are often written with an entirely different threat model from that of
SGX. SGX assumes the OS may be malicious, whereas applications often consider the OS
as trusted. To demonstrate the exploitability of such synchronization bugs in SGX, they
developed a tool called AsyncShock.

AsyncShock uses mprotect to instantaneously change the permissions of memory
pages in the page table which is used by the Memory Management Unit (MMU). This
causes a segmentation fault and allows interrupting execution of the enclave with high
precision. A custom handler for segmentation faults catches this interrupt and gives control
to the attacker when the fault is triggered, thus giving the attacker a more reliable way to
exploit synchronization bugs if they exist in the target application.

5) February 2017: Shih et al. introduce mitigations for the controlled channel attack by
Xu et al. [48, 60]. They use the Transactional Synchronization Extensions (TSX), which
allow page faults to be effectively hidden from the OS. This works by the nature of TSX
to abort an operation when a fault occurs, while suppressing the notification of the actual
fault to the OS. Because the controlled channel attack by Xu et al. relies completely on
triggering page faults, this attack is completely mitigated by hiding page faults.

6) August 2017: A side-channel attack was published that uses a technique called branch
shadowing [31]. This attack works by analyzing the source code of the application, after
which the application is run inside an enclave and the Branch Target Buffer (BTB) is used
to reveal what branches are taken by the application. This allows the attacker to infer the
fine-grained control flow of applications within SGX enclaves. With this attack, they were
able to disclose RSA keys handled inside an enclave.

In the same month, another two papers were published regarding side-channel attack
using CPU caches. Moghimi et al. developed a tool called CacheZoom that can track
memory accesses of the SGX enclave through a prime and probe approach targeting the
L1 cache [38]. The study demonstrates the effectiveness of their approach by performing
an AES recovery attack. Furthermore, the study claims that CacheZoom requires fewer
measurements than previous cache side-channel attacks.

Brasser et al. developed a set of novel techniques to perform cache side-channel attacks.
They improve on the present prime and probe methods by introducing techniques to
reduce noise, which is usually one of the critical drawbacks of prime and probe style
attacks. The study also shows that this attack differs from previous cache attacks due to
its straightforward deployment and avoidance of conventional detection methods [6].
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Van Bulck et al. extend on the work of Xu et al. in [60] by developing a method to
track page accesses without triggering page faults [55]. They monitored A(ccessed) and
D(irty) flags on memory pages and measured cache timings to identify whether a page has
been accessed.

7) October 2017: Jang et al. released a Denial of Service (DoS) Rowhammer attack that
targets Intel SGX enclaves [22]. The study developed a method called SGX-Bomb; which
is a piece of software that is run inside an SGX enclave. It performs a Rowhammer attack
in order to introduce bit-flips in the enclave memory. According to the study, when the
CPU detects bit-flips, the whole system will halt. This, therefore, provides a serious DoS
opportunity that could be aimed at cloud providers that offer SGX enclaves as a service.

In the same month as the Rowhammer attack, a framework called SGX-Step was re-
leased [54]. SGX-step is an open-source Linux kernel framework that allows host appli-
cations to perform APIC timer interrupts and track page table entries from user-space.
According to the study, this framework enables several new or improved attacks.

8) January 2018: Van Bulck et al. developed the Foreshadow transient execution attack
which uses an out-of-order execution bug to perform unauthorized memory access [56].
This attack is functional with arbitrary enclave code and does not necessarily require
root level access. The attack is related to the Meltdown attack [32]. It allows for enclave
memory to leak to the CPU cache, which can later be obtained using the same methods
as the Meltdown attack. Foreshadow proved that the security guarantees of Intel’s SGX
could be broken. Later that year, after further investigation, another two Foreshadow related
attacks were published [59].

9) February 2018: Shortly after the disclosure of the Spectre and Meltdown attacks on
Intel CPUs in early 2018, Chen et al. published their attack on SGX, called SgxPectre,
that uses the same principles [9, 29, 32]. Just like the Spectre vulnerability, SgxPectre uses
an exploit leveraging the speculative execution employed by Intel CPUs.

To execute this attack, first, the Branch Target Buffer (BTB) needs to be poisoned to
set up branch prediction to a location where malicious code is stored. This code is crafted
such that it will leak the in-memory secrets through state changes in the cache. Next, the
buffers are flushed to enforce branch prediction look-up in the poisoned BTB and delay
the detection of the invalid branch prediction. Finally, the malicious instructions are run
and, afterwards, the leaked data can be retrieved by observing the state changes.

10) March 2018: Evtyushkin et al. show that branch prediction in Intel CPUs can
be used to leak information from other processes without poisoning the Branch Target
Buffer [15]. Their attack, called BranchScope, is a prime and probe style attack. It exploits
the fact that the Branch Prediction Unit (BPU) is shared between processes executing on
the same core and that these co-located processes can leak data between them through the
BPU.

To execute the attack, the Pattern History Table (PHT) entry of interest first has to be
primed by executing some set of branch instructions to get it into a known state. Then, the
victim process should be allowed to execute while waiting for the PHT state to change.
Then changes in the PHT should be observed by probing while also continuing to prime.
These steps allow an attacker to identify what branch direction the victim process has
taken for specific branches.
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In the same month, Kim et al. publish their extension of the work done in [60] and [55]
by introducing the Version IDentification (VID) attack and mitigation [26]. Their attack
is aimed at disclosing what software is running inside an enclave, even if the binary is
encrypted. They show this is feasible by comparing page access patterns which include
information about consecutive page accesses in the same page to a set of known patterns.

11) May 2019: Schwarz et al. show that malware running in an SGX enclave can be
used to successfully attack another enclave running the mbedTLS RSA implementation,
and leak the private key. They do so by employing a prime and probe attack, which relies
on a cache eviction set to do the priming, and a high-resolution timer to distinguish cache
hits from misses for the probing. Although this is not a new attack, their implementation
hides the attack code in an enclave and can target other enclaves.

D. Use cases
Intel SGX has been used for a wide range of applications. The confidentiality, integrity

and isolation from the OS provided by SGX has attracted a large number of applications;
these include a database [43], a key-value store [28], secure system logs [24], Map-Reduce
data processing [45, 40], TLS termination [3] and various middle-boxes [17, 51, 16].

Another proposed use-case for SGX is video game protection mechanisms, both anti-
cheat solutions and Digital Rights Management (DRM) [4]. Similarly, the compilation of
closed-source software can be done inside enclaves to protect intellectual property from
theft [52]. The protections offered by SGX are particularly useful here, as the execution
takes place on the machine of an untrusted user.

Furthermore, there are existing applications that are adapted to run with Intel SGX, such
as Tensorflow, Tor and Zookeeper [30, 27, 7].

VI. PRACTICAL IMPLICATIONS

In this section, we cover the security issues and implementation problems we found
when running arbitrary applications in SGX enclaves with Graphene. We first discuss our
experimental setup, followed by the security implications, and finally, we cover the maturity
of the framework.

A. Experimental setup
Our experiments were conducted on a dedicated server, housing an Intel Core i7-7700

CPU that supports SGX version 1. The Operating System used for our experiments is
Ubuntu 16.04. We used the latest release of Graphene, which was version 0.6 at the time
of writing [39], which we used solely in debug mode, as we did not have access to a key
needed to run in release mode. The Intel SGX Platform Software, SDK and Driver version
used is the most current version from the intel-sgx Github page at time of writing. This
version is equivalent to release version 2.6 which is about to be released in the upcoming
days [20].
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B. Date / time manipulation
In Section V-B, we discussed Iago attacks on Graphene and the mitigations that Tsai

et al. have implemented. They state that only the FILE_STAT and DIR_READ system
calls are exploitable and leave the implementation of mitigations as future work. Moreover,
they state that other system calls can, in the worst case, be used for a DoS attack on the
enclave [52].

We investigated the gettimeofday system call, which is not considered harmful
by the authors of Graphene. This system call is handled through an Operating System
controlled Virtual Dynamic Shared Object (vDSO) [57], as can be seen in the Graphene
source code in Pal/src/host/Linux/db_misc.c. A vDSO is a small shared library
that is automatically mapped in the memory space of every application by the kernel. This
feature was introduced to reduce the performance overhead of context-switches caused by
frequent system calls from user-space code [57]. We believe modifications to the time and
date in the host OS will therefore also be reflected in an enclave when gettimeofday
is called. This presents an opportunity for a malicious OS to influence the code running
in an enclave.

We were able to confirm that time changes in the OS influence the result of the
gettimeofday system call. We used a simple proof of concept C program running in
Graphene that displays the current time to do so. In order to show a more practical scenario,
we ran an Apache web server in SGX using Graphene. The server serves a minimal web
page where rate limiting is applied through a simple PHP script. This script compares the
current time to the time of the previous successful request. Such an approach simulates,
for instance, rate limiting on user login attempts in a more complex web application.

To show how time manipulation can be abused to avoid rate limiting, we first request our
example webpage multiple times within the same minute. This triggers the rate limiting,
which results in a temporary lockout. Next, the server time is bumped ahead by the lockout
time, in this case, one minute. Lastly, the webpage is requested again, and this time, the
server returns the requested web page. This positive response indicates the attack was
successful.

Although the consequences of this example may seem limited, for applications that
rely on time as a security critical feature, this attack has a significant impact. It can, for
instance, allow expired keys or tokens to be reused in applications that use such a scheme.
We discuss the potential impact of these types of attacks below, with Kerberos as an
example of a real-world application.

C. Kerberos
The Kerberos authentication protocol works based on timestamped tickets to allow access

to resources on a network [50]. We first describe the Kerberos architecture and, afterwards,
illustrate how this architecture may be vulnerable when components are run in Graphene.

When a user logs into a Kerberos network, they first contact the Authentication Service
(AS); this is a service that is provided by the Key Distribution Center (KDC). The AS,
as the name suggests, authenticates the user. The KDC however, can be regarded as the
heart of Kerberos; it contains the symmetric keys of all users and offers the services for
authentication. Apart from the AS, the KDC also provides the Ticket Granting Service
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(TGS), which issues the tickets that are used to contact resources throughout the Kerberos
enabled network. When the user has authenticated with the AS, the TGS provides the user
with a so-called Ticket Granting Ticket (TGT).

This TGT is a special ticket that enables the user to request other tickets from the
TGS when needed. These other tickets, called session tickets, are used to access resources
throughout the Kerberos enabled network. When a user wants to use a resource on the
network, it sends its TGT to the TGS. The TGS then verifies the TGT and, if valid, returns
a session ticket and key that can be used to contact the desired resource.

Each TGT has an expiration date and time embedded in the ticket that is evaluated when
the ticket’s validity is checked by the TGS. The TGS uses its own view of time for this
check, and hence if the date or time of the TGS is changed, it may incorrectly validate
expired tickets. As such, running the TGS in Graphene on an untrusted Operating System
would possibly expose it to exploits involving the reuse of expired tickets. The consequence
of incorrectly accepting expired tickets could be significant. It could, for instance, allow
ex-employees to access resources on the network after they have left the company.

Apart from the risk of running TGS in SGX using Graphene, we would argue that regular
Kerberos resources are vulnerable to the same attack. To avoid replay attacks of session
tickets, an additional component, called authenticators, are sent along when authenticating
to a Kerberos resource. An authenticator contains a timestamp that is encrypted with the
session key between the user and the desired resource on the network. The resource can
decrypt the authenticator to obtain the timestamp, which is then compared to the current
time to assess whether the use of the ticket is valid. Running a resource in SGX will
therefore also introduce the same exploit and allows the reuse of expired session tickets,
which potentially grants unauthorized access.

D. Environment variable passing
Apart from the use of time-related system calls, the OS can employ additional methods

to influence execution in Graphene enclaves. We decided to investigate the effect of
environment variables on Graphene applications and how an attacker could abuse this.

Many applications use environment variables to set certain execution parameters. The
value and presence of environment variables can, therefore, influence the execution of
applications. This is the case, for instance, with variables such as LD_LIBRARY_PATH
or LD_PRELOAD for GCC. Malicious changes to these variables can cause harmful code to
be included instead of the intended libraries, which can have consequences for the security
of the application.

In Linux, environment variables are by default inherited from the parent process by the
child process [47]. Therefore, if Graphene is started with Bash as its parent process, the
environment variables defined in Bash are inherited by Graphene. However, an enclave
developer can explicitly specify the value of environment variables in the manifest file for
their application. If an environment variable is indeed specified in the manifest, its value
takes precedence, and the parent process’ value, if present, is disregarded. This creates the
opportunity for a parent process, such as Bash, to call Graphene with malicious environment
variables while hoping they are omitted from the manifest.
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TABLE I
THE EFFECT OF ENVIRONMENT VARIABLES SET IN BASH AND MANIFEST

ON THE OUTPUT OF THE GETENV SYSTEM CALL FOR APPLICATIONS RUNNING IN GRAPHENE

No. Bash Manifest getenv

1 MYENV="foo" MYENV="" → ""
2 MYENV="foo" N/A → "foo"
3 N/A MYENV="" → ""
4 N/A N/A → NULL

To test the behavior of environment variables in Graphene, we created the proof of con-
cept C program shown in Appendix A, which prints the content of the MYENV environment
variable. The program is rather uncomplicated; it calls the getenv system call and prints
the result to stdout. We evaluate the four combinations of setting and not setting the
MYENV environment variable, both in the manifest file and in Bash. The results of our
experiments are summarized in Table I above.

• In the first experiment, we set the environment variable MYENV in Bash to the value
foo; while in the manifest file, it is set to the empty string. When getenv is called
for MYENV, an empty string is returned.

• The second experiment is similar to the first experiment, with the exception that
MYENV is not set in the manifest file. We observe that getenv returns the value
foo, which is inherited from the Bash parent process.

• The third experiment removes the definition of MYENV in Bash and sets MYENV to
an empty string in the manifest. As expected, we observe that that getenv returns
an empty string.

• In the last experiment, we neither set MYENV in the manifest file nor in Bash. Here,
getenv returns the value NULL, which is per the specification of getenv when no
environment variable is set.

Our experiments confirm that environment variables not explicitly set to be empty in
the manifest file, are carried over into the application running in Graphene unfiltered.

Apart from the proof of concept, we have performed this attack in practice on a real-
world application by using one of the included applications of Graphene, namely the GNU
Compiler Collection (GCC). Although, as the name suggests, GCC contains a collection
of compilers, we will be limiting ourselves to the C compiler. GCC contains several
environment variables that influence its behavior during compilation. We have chosen to use
the SOURCE_DATE_EPOCH environment variable as an example to influence the recorded
compilation date and time of the output binary [41]. This environment variable could, for
instance, be abused to set a date in the future, thereby possibly triggering automatic updates
if the software includes an auto-update feature based on the compilation date of the binary.

Modifications to SOURCE_DATE_EPOCH will update the GCC preprocessor definition
of the __TIME__ and __DATE__ macro in C source code [41]. Macros are commonly
used in software development and provide an additional layer of indirection that the
programmer can use to their advantage. The macro definitions are resolved during the
preprocessing stage to conform to the C syntax. We have created a small C program that
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prints the content of the __DATE__ macro to standard output. When GCC is compiling
with the SOURCE_DATE_EPOCH variable set to the value zero, we can see that the content
of the __DATE__ definition is resolved to the same value. In our C program, the string
outputs zero as well. Note that zero corresponds to Unix timestamp zero, which corresponds
to the first second of 1970. Without the SOURCE_DATE_EPOCH set, the program outputs
the current Unix timestamp, which corresponds to the first of July 2019 at the time of
writing.

Even though our example used SOURCE_DATE_EPOCH, one can imagine that the poten-
tial impact of other environment variables, such as LD_LIBRARY_PATH, LD_PRELOAD
or LD_DEBUG, is more severe. However, we found that common environment variables, in-
cluding LD_LIBRARY_PATH, are present in example manifest files provided by Graphene.
Therefore, developers are more likely to include these variables in their manifest files by
default as well. Thus, using these common variables maliciously may be difficult.

E. Framework maturity
In this section, we discuss the practical implications of Graphene related to the maturity

of the framework. We investigate whether the current state of Graphene is sufficient for
use in production environments. We base this judgement on the implemented system calls,
stability, and ease of use. These are catagories that we believe are useful to provide a clear
picture of Graphene’s maturity and its suitability for production use. However, it must be
noted that this is not a universal method to specify maturity of software but it suits our
needs.

1) System calls: Because Graphene acts as a layer between the application inside SGX
and the operating system, it requires the implementation of a large set of system calls.
The system calls are implemented in two different ways; a total of 145 system calls are
implemented directly in the Library OS, and are defined in shim_syscalls.c. Another
165 system calls are passed through to the operating system directly. We verified that there
is no overlap in system calls between the two categories; this results in a total of 310
implemented system calls.

In Ubuntu 16.04 with Linux kernel 4.18.0-22, a total of 326 system calls are
defined in /usr/include/x86_64-linux-gnu/asm/unistd_64.h. All system
calls defined as pass-through in Graphene, are also present in Linux. In contrast, a few
of the Library OS implemented system calls are not present in Linux. This absence of a
few system calls can be explained by the fact that Library OS contains several internal,
Graphene specific system calls that are not present in Linux.

Additionally, 24 Linux system calls are neither present as pass-through nor implemented
in the Library OS, but are defined in Linux. Of these system calls, six system calls are
designated as unimplemented in Linux. This results in a total of 18 system calls that are
unaccounted for in Graphene, which we list below.

• bpf
• epoll_ctl_old
• epoll_wait_old
• execveat

• finit_module
• getrandom
• kcmp
• kexec_file_load

• membarrier
• memfd_create
• mlock2
• process_vm_readv
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• process_vm_writev
• renameat2

• sched_getattr
• sched_setattr

• seccomp
• userfaultfd

We have not encountered issues with these missing system calls with the applications
that we have tested. We, therefore, expect that these system calls are not as widely used,
which could be the reason for their omission from Graphene.

Because most of the 326 Linux system calls are implemented, this gives the impression
that there should be little system call related issues when running applications in Graphene.
However, we found that not all system calls work as intended. When we deployed SQLite3
in Graphene, for instance, opening an existing database on disk is prohibited by the Library
OS, while said database file is correctly specified in the manifest.

2) Stability: Stability is an important aspect when running software in production
environments, as bugs or downtime can be costly. When running applications in Graphene
such as Python, SQLite3, and Nginx, we encountered some critical errors that prevented
the application from continuing standard operation.

When running a Python Flask web application, the use of sys.urandom in this pack-
age resulted in the error [Errno 14] Bad address. Writing our own implementation
of the urandom function did not fix the issue and instead yielded an assertion error in
Graphene.

As stated before, when running SQLite3, we were unable to open a database file from
disk. Additionally, Nginx had the issue that it would freeze after the first time a user loads
a page, requiring a restart of the enclave before a page could be requested again.

3) Ease of use: Covering the ease of use of software is difficult as it tends to rely
on subjective experience. We cover what applications were successfully run in Graphene
during our research and in what environment this was run. It may very well be that the
success heavily depends on different kernel versions, as Graphene relies on a broad range
of system calls.

We have deployed Graphene in both Ubuntu version 18.04 and 16.04. The documentation
of Graphene recommends Ubuntu 14.04 or 16.04 along with specific kernel versions 3.5,
3.14 or 4.4, as these should be functioning correctly [39]. Despite this recommendation,
we first attempted to run Graphene on the latest long term Ubuntu release, as the best
practice of using the most up to date version of software applies to Operating Systems as
well.

With Ubuntu 18.04 and Linux kernel version 4.18.0-22, we encountered many issues
with Graphene. Attempting to run the Graphene supplied test applications such as Apache,
Python, Nginx, and Lighttpd resulted in only Apache being able to run successfully.
For Nginx and Lighttpd, errors occur already during compilation or right away during
execution. In the case of Python, it seems to depend on what Python modules are used if
an error occurs or not.

Apart from the supplied test applications, we attempted to run MySQL in Graphene
on Ubuntu 18.04 but were not able to get this working. However, we were able to run
SQLite3 successfully, although only without using an existing database.

In 16.04 with kernel 4.15.0, we were able to run Apache, MySQL, Nginx, and Lighttpd
without crashing immediately. We encountered significantly less internal errors in using
Ubuntu 16.04 as opposed to Ubuntu 18.04. However, Nginx, MySQL, and Lighttpd still
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showed issues that kept us from running them in a stable manner. We were able to run
Apache without running into issues with our test web pages.

Another notable aspect of Graphene is that all resources such as CPU threads or files on
disk that are read or written to during execution, need to be known a priori and specified
correctly in the manifest file. Without this, the application will likely not be able to run
correctly. For this reason, developers that attempt to run applications in Graphene need
have extensive knowledge of their application’s needs during execution. Graphene does
not alleviate the amount of effort or level of know-how needed to implement applications
in SGX correctly.

VII. DISCUSSION

In the previous section, we have shown that there are multiple implications when
running arbitrary applications in Graphene. Using practical examples, we showed that clock
manipulation and maliciously setting environment variables by an adversarial OS has the
potential to compromise the security of applications running inside an SGX enclave using
Graphene. Mitigations do exist for these attacks, clock manipulation attacks by the OS
can be neutralized by relying on a trusted (remote) service to supply time over a secure
channel. Similarly, malicious environment variables can be mitigated by explicitly setting
all relevant variables in the manifest, thereby not leaving any opportunities for manipulation
by the OS.

Intel SGX does not claim to protect against any variant of side-channel attacks, which
Iago attacks such as clock manipulation or malicious environment variables can be charac-
terized as; hence, we do not fault SGX for being susceptible to such attacks. Graphene, on
the other hand, does claim that they have mitigated the threat of Iago attacks through system
calls by implementing checks on host behavior, except for FILE_STAT and DIR_READ.
As we have shown, there are opportunities to exploit other system calls, but they are
heavily application dependent and can be mitigated.

However, the necessity for such mitigations is not apparent; we expect developers may
not be fully aware of the potential vulnerabilities that still exist when running their software
in Graphene and SGX. Hence, we do not fault Graphene for the absence of mitigations,
but we do believe Graphene should better inform developers of the possibility for attacks.
Additionally, SGX has a rich vulnerability history. Although these vulnerabilities are
patched with incremental security updates, this history may be prove to be a good indication
for the future. If so, developers should be cautious with the use of Intel SGX for highly
sensitive applications on untrusted hardware. For such applications, the use of exclusively
owned hardware may be preferable.

Based on our preliminary results with a limited set of applications, we believe that
Graphene is not at a maturity level that is ready for production purposes. We did not
perform exhaustive testing on the broad range of functionality provided by Graphene,
but with the applications we tested, significant effort was required to get the applications
running. In other cases, applications were not able to run correctly at all due to issues in
the internals of Graphene.

Graphene was developed mainly as a research tool, and hence, we cannot expect the level
of stability we would expect from a commercial piece of software. However, this is not
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obvious from the documentation, and therefore, developers may have different expectations
when first opting to use Graphene. Another important thing to note is that our experiments
were conducted while running SGX in debug mode, as we did not have an Intel approved
key needed to run in release mode. To the best of our knowledge, running in debug mode
has no significant influence on the results of our performed experiments. However, we
cannot decisively state this, as we have not done comparative testing in release mode.

In this study, we did not look at the performance implications of running applications
in Graphene and SGX. This aspect has already been extensively covered in the original
Graphene-SGX paper [52], and hence we refer to that paper for performance related-
implications.

A. Conclusion
As becomes clear from our findings, there are significant implications when naively

running arbitrary software in Graphene, both in terms of security and usability. A malicious
Operating System can compromise enclave security in specific scenarios if no mitigations
are implemented in the application itself. Furthermore, running an application in Graphene
requires significant effort and know-how by the user. We deem Graphene to not be at a
maturity level where it can be used for production purposes, as still numerous bugs and
other issues exist. Graphene in our opinion does not provide a secure and stable framework
to run applications. We do, however, believe that it provides a decent open-source tool to
conduct further research on SGX. We, therefore, advise any developers opting to run their
applications in Graphene to take particular care when doing so, while also taking note of
the security history of SGX.

VIII. FUTURE WORK

This study showed how the reliance on the OS for the current time could prove to
have security consequences in specific applications. A similar issue may be present with
applications requiring randomness, for which they usually rely on the OS. For instance,
OpenSSL uses randomness from /dev/urandom to create an initial seed for random
number generation on UNIX-like operating systems [44]. Because the OS controls the
random number generation, it could compromise the randomness and thereby cause weak
key generation. Therefore, we think that investigation into in random number generation
in Graphene, and the effect on applications running in Graphene would be valuable.

In this study, we did not investigate other tools that allow unmodified applications to
run in SGX enclaves, such as SCONE and Panoply [30, 49]. Exploring such tools and
comparing their security and maturity to that of Graphene would be valuable, as developers
can then choose the tool most suitable to their needs. Additionally, insight into how other
tools implement certain functionality or security measures may prove useful for the field
as a whole, as it can be used to improve all similar tools.

ACRONYMS

ABI Application Binary Interface. 6
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AS Authentication Service. 11
BPU Branch Prediction Unit. 9
BTB Branch Target Buffer. 8, 9
DoS Denial of Service. 6, 8, 10
DRM Digital Rights Management. 9
ELF Executable and Linkable Format. 7
EPC Enclave Page Cache. 4, 5
EPCMEnclave Page Cache Map. 4, 5
GCC GNU Compiler Collection. 12, 13
GNU GNU’s Not Unix. 13, 17
IaaS Infrastructure as a Service. 1
IPC Inter-Process Communication. 5, 6
KDC Key Distribution Center. 11
LE Launch Enclave. 4
MMU Memory Management Unit. 7
OS Operating System. 1, 3–7, 9–12, 14–17
PAL Platform Adaption Layer. 6
PHT Pattern History Table. 9
PRM Processor Reserved Memory. 4, 5
SDK Software Development Kit. 1
SECS SGX Enclave Control Structure. 4, 5
SGX Software Guard Extensions. 1–12, 14–18
TCB Trusted Computing Base. 3
TGS Ticket Granting Service. 11
TGT Ticket Granting Ticket. 11
TSX Transactional Synchronization Extensions. 7
vDSO Virtual Dynamic Shared Object. 6, 10
VID Version IDentification. 9
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APPENDIX A
ENVIRONMENT VARIABLE C SOURCE CODE

# i n c l u d e < s t d i o . h>
# i n c l u d e < s t d l i b . h>

i n t main ( i n t argc , char ∗∗ a rgv ) {
char∗ s = g e t e n v ( ”MYENV” ) ;
i f ( s != NULL)

p r i n t f ( ”%s \n ” , s ) ;
e l s e

p r i n t f ( ”MYENV does n o t e x i s t \n ” ) ;
re turn 0 ;

}
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