
RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Static Code Analysis
on Networking Code:
Identifying the capabilities of finding
implementation flaws using Abstract Syntax Trees

RP1 4th of July, 2019

Presenter: Ivar Slotboom, SNE/UvA
Supervisor: Wouter van Dongen, DongIT

1

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Static code analysis

● Find bugs and performance issues.

● Produce a report providing feedback and improvement points.

● Often powered by machine learning.

2

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Abstract syntax trees (AST)

● Break down static code into nodes.

● AST output is a structure on how the code is read by the

interpreter.

● Nodes tree where you can traverse through its child and parent

nodes.

3

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

4

Research question

Is it possible to create a tool to analyze

static Python code to detect potential

network implementation flaws?

How can network implementation flaws be detected using Abstract Syntax Trees?

What are the limitations of identifying network implementation issues using Abstract
Syntax Trees?

#

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Related work

Al Bessey et al.

- Static Code Analysis done preferably:

- Minimal manual setup.

- Maximum serious issues.

- Minimum false positives.

- Making an analyzer is an iterative process.

- Best reports come when all context is

available.

- No code equals to no error.

Tasnim and Rahman

- ASTs do not describe every detail of the

syntax, but enough to identify patterns and

flaws.

Goseva-Popstojanova et al.

- Researched the capabilities of static code

analysis.

- Not very effective in detecting security

vulnerabilities.

- Sees opportunity to be more effective than

manual inspection.

6

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Methodology
Iterative process to create an analyzer, as well as

test projects to test the analyzer on.

Analyzer:
● Uses AST to parse the test project in

question.

● Uses predefined rulesets to spot

implementation flaws.

Test projects:
● Purposefully implement network flaws.

● Simulate real-world scenarios.

All code publically available on GitHub.

7

Results

8

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

AST parsing is an effective method

Network implementation flaws are usually

implemented on a higher level. This makes it

easier to discover for the analyzer.

● It is important that the rules are well

defined.

● It is possible to traverse the node tree

backwards to find out what happened.

9

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Multi-file projects AST parsing does not mind merging two files

into one. The analytical results stay the same.

+

10

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

● Causes unique, unpredictable

behaviour.

● Can only be checked on run time.

● May alter context that is required for

analysis.

● Some rules cannot be checked

because of run time requirements, e.g.

socket dtors.

Limitation 1: Threading

11

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Limitation 2: Imports

Imports can be confused due to the nature

of the Python language. How can we

separate installed libraries from files?

1 Use heuristics, check if file exists in

 the directory.

2 Parse installed libraries to match alias.

Either way, context is lost.

12

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Limitation 3: Implementing rule definitions

● Every rule needs to traverse the node tree.

● Larger code bases have millions of lines of code.

● Alias names can be changed when used as arguments in functions.

Overall: Very costly per rule definitions. May not scale well with larger codebases.

13

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Limitation 4: Dead code is still parsed

● “No code = no error”, but dead code could also lead to false reports.

● Could alter context wrongly as code may not always be called.

● Functions can be called based on runtime scenarios.

14

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

15

Conclusion

It is possible to detect network
implementation flaws using an AST,
but limitations make it difficult to make
it scalable and confident.

#

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

How can network implementation flaws be
detected using ASTs?

● Network implementation issues commonly are implemented on a high level.

● Node traversal can give context on the implementation in question.

● ASTs are not hindered by moved code.

● Iterative process as solutions to one bug could allow others to be found.

17

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

What are the limitations of using ASTs to
identify network implementation flaws?

● Static code versus run time code could hinder context during analysis.

● Imports are difficult to identify, which also affects the context of the analysis.

● Rule definitions are difficult to implement.

● Dead code could be altering context, or is hard to analyze itself.

18

RP1 Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, DongIT UvA/SNE

Future work

Machine learning?

● Commonly used in static
code analysis for bugs
and performance issues.

● Could potentially find
patterns and behaviour
in network
implementation flaws.

Solution to dead code?

● How can you identify dead
code in runtime
environments?

● Is it possible to simulate
runtime environments
when analyzing static
code?

Lower level languages?

● Require more detail to
function, e.g. C/C++.

● Usually have projects with
larger code bases.

● Could improve context from
the output of AST, causing
less confusion such as
imports.

19

Thank you for your time.
Questions?

20

