Static Code Analysis
on Networking Code:

Identifying the capabilities of finding
implementation flaws using Abstract Syntax Trees

RP1 4thof July, 2019

Presenter: Ivar Slotboom, SNE/UVA

Supervisor: Wouter van Dongen, Dongl T

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

Static code analysis

e Find bugs and performance issues.
e Produce areport providing feedback and improvement points.
e Often powered by machine learning.

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

Abstract syntax trees (AST)

e Break down static code into nodes.

e AST outputis astructure on how the code is read by the
interpreter.

e Nodes tree where you can traverse through its child and parent
nodes.

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

39
40
41
42
43
44
45
46
47
48
49
50

Assign(targets=[<_ast.Name object at @x7fb@3dbfccl8>], value=Call(func=Attribute(value
Name(id='s', ctx=Store())
Store()
Call(func=Attribute(value=Name(id="socket', ctx=Load()), attr="socket', ctx=Load()),
Attribute(value=Name(id="socket', ctx=Load()), attr='socket', ctx=Load())
Name(id="socket', ctx=Load())
Load()
Load()
Attribute(value=Name(id="socket', ctx=Load()), attr="AF_INET', ctx=Load())
Name(id="socket', ctx=Load())
Load()
Load()

Research question

Is it possible to create a tool to analyze
static Python code to detect potential
network implementation flaws?

How can network implementation flaws be detected using Abstract Syntax Trees?

What are the limitations of identifying network implementation issues using Abstract
Syntax Trees?

#

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT

Related work

Al Bessey et al.

Static Code Analysis done preferably:
- Minimal manual setup.
- Maximum serious issues.
- Minimum false positives.

- Making an analyzer is an iterative process.

- Best reports come when all context is
available.
- Nocode equalstonoerror.

Tasnim and Rahman

- ASTs do not describe every detail of the
syntax, but enough to identify patterns and
flaws.

Goseva-Popstojanova et al.

- Researched the capabilities of static code
analysis.

- Not very effective in detecting security
vulnerabilities.

- Sees opportunity to be more effective than
manual inspection.

UVA/SNE

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

Methodology

Iterative process to create an analyzer, as well as g
test projects to test the analyzer on. _|_ z

Analyzer: IDE: Visual Studio Code 1.35.1 | -—-------—-—- Y
|
e Uses AST to parse the test project in 5 .
. | —{ Example projects
question. v |
|
e Uses predefined rulesets to spot Analyzer: impscan.py -

implementation flaws. L Client.py + Server.py

4
———&| Output: Report L Client.py + NetLib.py

Test projects:
e Purposefully implement network flaws.
e Simulate real-world scenarios.

All code publically available on GitHub.

Results

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

AST parsing is an effective method

Network implementation flaws are usually | ### Report ###

. . . . 2 Errors: 1

implemented on a higher level. This makes it 3 Socket "s” could be sending infinite amount
. . of bytes because of its latest buffer assignment

easier to discover for the analyzer. i aldlin:

4 Warnings: 1

L. 5 Socket connectivity is not configured for
e [tisimportantthat the rules are well IPv6 connections
defined. o .
. . 42 : ; sys.stdout.write("Say: ")
e [tispossible totraverse the node tree 4z |11 1 sys.stdout.flush()
backwards to find out what happened. § N N otr_send = aText
45 | ; ; str_send = sys.stdin.readline()
46 str_send = str_send.encode('utf-8")
47 |. i s.send(str_send)

Multi-file projects

11
12
13
14
15
16
17
18

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

import sys
import netlib

Eldef OnReceive(aMessage):

sys.stdout.write("\r{}".format(aMessage))
sys.stdout.write("Say: ")
sys.stdout.flush()

netlib.Initialize(True, OnReceive)

Eltry:

T,
Gl

while True:

. sys.stdout.write("Say: ")
sys.stdout.flush()

: str_send = sys.stdin.readline()

: netlib.Send(str _send)

éexcept:

netlib.Exit()

W W0 NV HA WN =

OO VA S WWW NN
N == O NS WN N

AST parsing does not mind merging two files
into one. The analytical results stay the same.

import socket

import sys

from threading import Thread, Lock

import time

import os

<Some variables>
Edef Initialize(aIsClient, aRechallbackFunc):[:]
@def NetlibMain():[..]

Funcs
FHdef Connect():[:]

Edef Exit(aSocket = None):[:]
[FHdef Send(aMessage):[:]

FHdef Receive(aRechallbackFunc):[:]

10

Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, Dong|T UVA/SNE

: = = . n 1 # Semi—Python pseudo code — assume imports and
Limitation 1: Threadingi, e e

def ThreadFuncl () :
global stringToSend
while (True):
time . sleep (3)
stringToSend = "NewTextAssignment”

e Causesunique, unpredictable
behaviour.

e Canonly be checked onrun time.

e May alter context that is required for
analysis.

e Some rules cannot be checked
because of run time requirements, e.g.
socket dtors.

e N s W N

def ThreadFunc2 () :
global stringToSend
while (True):
stringToSend += 71234567890!”

T3 R =B

tl = Thread(target=ThreadFuncl)
t2 = Thread(target=ThreadFunc?2)

v

3 a

tl.start ()
t2.start ()

N o= =
S ¢

time.sleep(5) # Let the threads run for a while
socket.send (stringToSend) # How big is this string?

NN
N =

11

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

Limitation 2: Imports

Imports can be confused due to the nature # Import using existing library

1
2 import sys # imports the installed sys librar
of the Python language. How can we B XST: y P y y
separate installed libraries from files? + # Import(names=[<_ast.alias object at 0
x0000020C212CFACS8 >))
s # alias (name="sys ’, asname=None
1 Use heuristics, check if file exists in g (4)
: 7 # Import using file in the same directory
thedlreCtory' g8 import netlib # imports the netlib.py in the same
2 Parseinstalled libraries to match alias. directory
9 # AST:
10 # Import (names=[<_ast.alias object at 0
Either way, context is lost. x0000020C212CFB70 >])
n # alias (name="netlib ’>, asname=None)

12

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

Limitation 3: Implementing rule definitions

e Everyrule needs to traverse the node tree.
e Larger code bases have millions of lines of code.
e Alias names can be changed when used as arguments in functions.

Overall: Very costly per rule definitions. May not scale well with larger codebases.

13

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

Limitation 4: Dead code is still parsed

e “Nocode =noerror”, but dead code could also lead to false reports.
e Could alter context wrongly as code may not always be called.
e Functions can be called based on runtime scenarios.

14

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

5| def DeadCode(aStuff):

6 vbsock = socket.socket(socket.AF INET6, socket.SOCK STREAM)
7 vésock.send(aStuff)
8

342 FunctionDef(name='DeadCode', args=arguments(args=[],
343 arguments(args=[], vararg=None, kwonlyargs=[], kw de
344 Assign(targets=[< ast.Name object at 0x7fb41d733a20>
345 Name(id='vé6sock', ctx=Store())

346 Store()

347 Call(func=Attribute(value=Name(id='socket', ctx=Load
348 Attribute(value=Name(id='socket', ctx=Load()), attr=
349 Name(id='socket', ctx=Load())

Sockets are implementea for both IPv4 and IPv6.

Report

15

Conclusion

It is possible to detect network
Implementation flaws using an AST,

but limitations make it difficult to make
it scalable and confident.

#

Presenter: Ivar Slotboom Supervisor: Wouter van Dongen, Dong|T UVA/SNE

How can network implementation flaws be
detected using ASTs?

Network implementation issues commonly are implemented on a high level.
Node traversal can give context on the implementation in question.

ASTs are not hindered by moved code.

Iterative process as solutions to one bug could allow others to be found.

17

Presenter: Ilvar Slotboom Supervisor: Wouter van Dongen, DongIT UVA/SNE

What are the limitations of using ASTs to
identify network implementation flaws?

Static code versus run time code could hinder context during analysis.
Imports are difficult to identify, which also affects the context of the analysis.
Rule definitions are difficult to implement.

Dead code could be altering context, or is hard to analyze itself.

18

Presenter: Ivar Slotboom

Future work

Machine learning?

Commonly used in static
code analysis for bugs
and performance issues.
Could potentially find
patterns and behaviour
in network
implementation flaws.

Supervisor: Wouter van Dongen, DongIT UVA/SNE

Solution to dead code?

How can you identify dead
code in runtime
environments?

Is it possible to simulate
runtime environments
when analyzing static
code?

Lower level languages?

Require more detail to
function, e.g. C/C++.
Usually have projects with
larger code bases.

Could improve context from
the output of AST, causing
less confusion such as
imports.

19

Thank you for your time.

Questions?

