
MSc Security and Network Engineering
Research Project I

Invisible Internet Project (I2P)

February 10, 2019

Tim de Boer
tim.deboer@os3.nl

Vincent Breider
vincent.breider@os3.nl

Assessor
Prof. dr. ir. C.T.A.M. de Laat
University of Amsterdam

Supervisor
Fons Mijnen

Deloitte

Abstract

The Invisible Internet Project (I2P) is a decentralised message oriented mixnet, that allows users to communi-
cate in an anonymous and encrypted manner. Invisible Internet Project (I2P) provides an excellent opportunity
for people requiring anonymity to bypass oppressive regimes or censorship. However, it also may provide prob-
lematic in corporate environments where I2P-routers over-utilise limited network resources or provide a way for
malware to exfiltrate data. In this paper, we will investigate the possibility for an IDS to detect I2P network
traffic and positively identify peers. We provide a background on the inner workings of I2P, and we demonstrate
how to identify I2P routers during the bootstrapping phase, and show how statistical traffic analysis reveals a
pattern in the message length that may aid in the fingerprinting of I2P routers that have been participating in
the network for a while.

Contents

1 Introduction 2

2 Research Question 2

3 Related Work 3

4 The Invisible Internet Protocol (I2P) 3

5 Approach 6
5.1 Lab Environment . 6
5.2 Experiments . 7

6 Results 8
6.1 Initialisation phase . 8
6.2 Operational phase . 8

6.2.1 Traffic analysis . 9
6.2.2 Analysis on the NetDB . 10

7 Conclusion 11

8 Discussion 12

9 Future work 12

10 Acknowledgements 12

A Acronyms 15

1 Introduction

There are multiple anonymity networks (e.g. The Invisible Internet Project (I2P),
The Tor Project (Tor) and FreeNet) that intend to protect the end-user from any
tracking, surveillance and monitoring by third parties such as Internet Service
Provider (ISP), network administrators and governments[1].

I2P is an anonymous, self-organising and decentral overlay network[2], which
relies on an extension of the Onion routing technique named Garlic routing[3].
Garlic routing, a variant of the Onion routing protocol (used by Tor), is a technique
for building paths, or tunnels, through a series of peers, and then using that tunnel.
The originator repeatedly encrypts messages which are then decrypted by each
hop as it passes through a tunnel. During the building phase, only the routing
instructions for the next hop are exposed to each peer. The critical difference is
that with garlic routing a router waits for other relayed messages and packs them
together in an encrypted bundle along with its message while in onion routing this
is not the case, making statistical analysis with the purpose of deanonymization
harder.

2 Research Question

With this research, we aim to determine if it is possible for an entity that has full
control of network traffic to identify and fingerprint peers that are participating in
the I2P network. When reading the developer documentation [4], we can see that
- to the developers - anonymity is defined not as to make it difficult to identify
who is hosting an I2P router at an Internet Protocol (IP)-address, but rather to
make it difficult in identifying who send what data at what time to whom for what
purpose within the I2P network. Unfortunately, there are real-world scenario’s
where merely knowing that a router participates in an anonymisation network is
enough to undertake actions that will prosecute or censor citizens. As is the case
in some countries where the use of encryption for any application is restricted or
prohibited[5], or using software that is not sanctioned by the government can get
people prosecuted or have their internet censored (e.g. the Great Firewall of China
[6]).

However, there are less nefarious motivations to identify I2P router traffic, such
as that of a security operations centre of a large organisation, which needs to
identify undesired network communications originating from its local network. To
discontinue unauthorised bandwidth utilisation, or for example to identify mal-
ware. Recently, malwares known as I2Ninja, Dyre and CryptoWall 3.0 have been
identified that use I2P as a covert channel to communicate with a command and
control centre[7]. Our research, therefore, focuses on the following question: Is it
possible for an entity that intercepts network traffic to fingerprint and positively
identifies hosts that are participating in the I2P network?

To support the main research question above the following sub-questions are
defined:

• How does the I2P network operate, how does the protocol work?

• Is it possible for a traditional IDS to identify I2P traffic during the router
initiation phase?

• Can traffic be identified by scraping the distributed hash table (NetDB) for
IP addresses of known participants?

2

• Can the I2P protocol be fingerprinted using statistical traffic analysis?

3 Related Work

Bazli et al. investigated how forensic investigation into the I2P network could
be conducted, by examining the forensic artefacts of the I2P installer. Bazli et
al. describe techniques that allow tracking the user’s behaviour within the I2P
network by comparing the address book of against a reference database, taking
over an address book registrar, locating an I2P node by network performance and
identifying the behaviour of new I2P users by creating a false mirror site of existing
eepsites[8].

Timpanaro et al. performed a study in which they design a distributed mon-
itoring system for the I2P network. By deploying many floodfill routers in the
network that retrieve and replicate the NetDB Distributed Hash Table (DHT), it
is possible to build a dataset of leasesets that can be queried to determine the Web
and Filesharing applications running on I2P at certain routers. Timpanaro et al.
show this to be able to chart the use of the I2P network[9].

Hjelmvik and John looked closer into network protocol obfuscation and how sta-
tistical analysis can be used to identify a protocol despite the obfuscation. They
created the Statistical Protocol IDentification (SPID) framework to identify pro-
tocols using statistical analysis of application data and conclude that statistical
analysis is of great help in the identification of network protocols where static
patterns based on fingerprints fail[10].

4 The Invisible Internet Protocol (I2P)

I2P has implemented its a communication network and protocol stack on top of
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). I2P
ensures that participants can send and receive messages with other participants
securely and anonymously. Other software such as Tor or Freenet provides similar
functionality. However, I2P differs from Tor and Freenet as Freenet is an anony-
mous distributed data storage which has services build on top that allows for site
browsing or message-boards. I2P, like TOR, uses a variant of onion routing named
garlic routing to create anonymous connections. Tor aims at connecting to clear-
net clients, where I2P is focused on allowing clients to anonymously access services
internal to the I2P network, such as Bit-Torrent clients or websites hosted within
the I2P network known as eepsites [2]. Besides that, I2P is distributed whereas
Tor has directory services that store statistics and information of Tor-nodes in a
central place. I2P uses the network database (NetDB) to store information on the
I2P network.

The NetDB is implemented as a DHT and is propagated via so-called floodfill
routers using the Kademlia algorithm, making I2P a decentralised network. For a
router to start participating in the I2P network it requires a part of the NetDB
in which the information resides it needs to communicate to other participants
of the network. Obtaining the NetDB is called bootstrapping and happens by
’reseeding’ the router. By default, a router will reseed the first time it starts by
querying some hard-coded domain names via the Domain Name System. When a
router can successfully establish a connection to one of these domains a Transport
Layer Security (TLS) connection is set up through which the router downloads a

3

signed partial copy of the NetDB. Once the router can reach at least one other
participant, the router will query for other parts of the NetDB it does not have
itself. Alternatively reseeding can be done manually by uploading a zip-archive
which has a part of the NetDB.

I2P differentiates between the addressing of routers (RouterInfos) and desti-
nations (LeaseSets). Routers relay I2P messages to other routers, whereas the
destinations offer services on top of the I2P network protocol stack and thus act
as endpoints. These services include but are not limited to websites (eepsites),
file-sharing services, or Internet Relay Chat (IRC) services. A router always relays
messages and optionally can act as an endpoint if it publishes a LeaseSet in the
NetDB for a service that it is hosting. Routers publish their RouterInfo directly
into the NetDB, which consists of an IPv4 or IPv6 addresses, the operating TCP
and UDP port, and a pair of public keys. LeaseSets cannot be directly published in
the NetDB because this would affect anonymity. A LeaseSet consists of a Tunnel
address through which messages can be sent to the service, an expiration time of
the LeaseSet, and a public key to be able to encrypt messages destined for the
endpoint. Because I2P is designed for destinations to remain anonymous, these
LeaseSets have to be published anonymously into the NetDB, so that correlating
a LeaseSet with the RouterInfo of the hosting router becomes very difficult [4].

To transmit messages anonymously (e.g. to publish a LeaseSet) a client creates
a pool of Inbound and Outbound Tunnels, these Tunnels expire every 10 minutes.
A Tunnel is a series of routers, selected from the NetDB, that forward messages
from or towards a client using a variant of onion routing. Each hop in this tunnel
can have a different role, either being a Gateway, a Participant or an Endpoint.
An I2P router has two types of Tunnels, Client Tunnels, and Exploratory Tun-
nels. Client Tunnels are used for anonymously offering LeaseSets to the NetDB
and accessing destinations within the I2P network, and to offer and connect to end-
points. Exploratory Tunnels are used for peer selection, to identify other suitable
candidates in the I2P network with whom the router will establish future Tunnels.

Tunnels in I2P are unidirectional, meaning that different Tunnels are used for
transmitting and receiving messages. For instance, if Alice wants to communicate
with Bob - who is hosting a service - she establishes a pool of Outbound and
Inbound Tunnels. She does this by querying the NetDB for a set of peers and
obtains their RouterInfo. Alice then establishes an encrypted connection with the
first hop and sets up the first part of the Outbound Tunnel. Through this first
hop, she will send the messages required to create Tunnels with the second and
third router and completing the Outbound Tunnel as shown in figure 1. Alice
repeats this until she has a set of Inbound and Outbound Tunnels called Tunnel
Pools. Typically I2P Tunnels have a length of two hops, but can be configured
to have at most five hops. To communicate with Bob Alice selects an Outbound
Tunnel to send a message through. In this Tunnel the first hop is a Gateway, then
the intermediate routers act as Participants in the Tunnel. Finally, the Endpoint
of the Tunnel transmits the message via intermediate routers from Alice to the
Inbound Tunnel of Bob, as shown in figure 2. To be able to receive messages
Bob will publish the LeaseSet of the service he is hosting through an Outbound
Tunnel into the NetDB, because it is costly to look up Tunnels in the NetDB Alice
will send Bob the information needed to respond to her messages using one of her
active Inbound Tunnels [4]. To prevent routers that are part of a Tunnel from
snooping inside the messages they are relaying, a form of Onion Routing is used
called Garlic Routing. With Onion Routing transmitted messages are encrypted
multiple times (often referenced as the layers of an onion) and can be thought of

4

Figure 1: Creation of an Outbound Tunnel, by querying RouterInfo from the
NetDB.

Figure 2: Typical communication of messages in the I2P network using inbound
and outbound tunnels.

like an envelope with a seal (the act of encrypting a payload) containing another
sealed envelope. Each ’envelope’ consists of a payload encrypted with a router’s
public key and routing instructions to the next hop in the Tunnel, in turn each
payload also consists of such an envelope, this repeats itself for every hop, and each
hop in the tunnel can therefore only operate on the message data that is meant for
that hop, it also means that a hop cannot see where a message is going beyond the
next hop. In the ’envelope’ of the last hop of a Tunnel is a message encrypted with
the public key of the destination, this is again encrypted by the Inbound Tunnel
in multiple envelopes to be transmitted further along the Inbound Tunnel towards
the destination. Garlic Routing differs from Onion Routing because it can pack

Figure 3: An illustration of layered encryption used in onion routing.

multiple messages together as ’garlic cloves’ to form a ’garlic’ message, which is
then further routed to the next hop, as depicted in figure 4. Garlic Routing gives

5

I2P the advantage that timing-based traffic analysis is difficult to achieve. For
instance, if Alice sends a message using Onion Routing to Bob and an adversary
named Eve is eavesdropping on the network connections of Alice and Bob she may
infer from the timing that Bob receives a message several seconds after Alice had
sent it [11]. When Alice sends a message using Garlic Routing, she bundles the
message she wants to send with other messages she received from participating in
other Tunnels that share the same Tunnel Endpoint, when the garlic reaches a hop
where the gloves have different destinations it is split again and merged into other
garlic messages. Eve now sees that Alice has sent a message, but a few seconds
later Eve cannot be sure if Bob received the same message because several other
participants also received a message [4]. More specifically Eve cannot see if the
message originated from Alice or if she is relaying it as she participates in other
tunnels.

Figure 4: An illustration of messages packed as garlic cloves in garlic routing.

5 Approach

To be able to fingerprint the I2P protocol and positively identify hosts running I2P
routers, we need to capture the network traffic in various circumstances and look
for identifiable attributes. In this section, we describe the lab environment that
we use to capture network traffic of I2P routers, and we describe the experiments
that we perform to answer the research questions posed in section2.

5.1 Lab Environment

To conduct the experiments we need to capture the network traffic of routers that
participate in the live I2P network as they are relaying messages. We can achieve
this by creating an Infrastructure as Code using Ansible for configuration manage-
ment and GitLab to store the code under version control [12]. Using an Infrastruc-
ture as Code allows us to provision Ubuntu-based virtual machines configured to
run an I2P-router. The experiments run in the following environment:

• Hyper-visor running Ubuntu 18.04 with kernel 4.15-0.39-generic and xen-
hypervisor-4.9-amd64

• Virtual Machines with Ubuntu 18.04 with kernel 4.15-0.43-generic, 10GB
hard-disk, 1GB of Ram and two virtual CPU cores, running I2P-router soft-
ware versions 0.9.37-0 and 0.9.38-0.

6

Figure 5: The lab environment generated with an Infrastructure as Code, Packet
Capture (PCAP)s are converted to Comma-separated values (CSV) files using a
Bash script. These CSV files are then processed further using Python and R.

5.2 Experiments

The first experiment will focus on the bootstrapping phase of the router. We
deploy a single Virtual Machine (VM) with an I2P router installed and start a
traffic capture using an Ansible task right before the I2P daemon starts. This ap-
proach ensures that we capture the network traffic when the router reseeds itself by
querying the domain names that are hard-coded in the router software. As Domain
Name System (DNS) and DNS are protocols that operate on well-known ports with
identifiable parameters, the behaviour of the router during bootstrapping should
be trivial to detect in the captured data.

For the second experiment, we will look at the router’s network traffic when it
has been running for 24 hours, meaning that it has reseeded and only will transmit
TCP segments and UDP datagrams. We expect no identifiable parameters to be
in this traffic and that the payloads are encrypted and padded. When comparing
I2P with other protocols such as Tor, during a connection a typical TLS handshake
takes place. This handshake sends a TLS Client Hello message of which the certifi-
cate’s Common Name (CN) discloses that the traffic is the Tor protocol [13]. This
example shows how network meta-data can provide information on the protocol
despite it using encryption. As we expect no identifiable parameters we will use
statistical traffic analysis to try and fingerprint I2P traffic and look at the following
attributes:

• The use of TCP or UDP as the transport protocol.

• The top-talker port of the intercepted hosts.

• The port numbers that are used by the routers.

• Length in bytes of the transport layer Protocol Data Unit (PDU) payload.

To extract the attributes from the network PCAP files, we will convert them [14]
extract the attributes mentioned above using Bash and Python, to visualise the
data we will use R [15].

For our final experiment, we look from the perspective where we also operate an
I2P router and are provided by updates of the NetDB from other floodfill routers.
We hypothesise that the RouterInfo of every router must once be part of the NetDB

7

in order to receive traffic from other participants. We will create a parser that
extracts the IP-addresses of routers participating in the I2P-network and match
these against the source IP-address our routers in the network traffic captures [16].

6 Results

This section contains the result from the experiments done using the setup as
described in section 5.

When an I2P router needs to communicate with other routers, it has to look
up the RouterInfo of its peers in the NetDB. After a router is installed and the
application is started for the first time, it requires an initial copy of the NetDB with
some entries. A newly installed I2P router does not have a NetDB and requires a
preseed. This phase is also known as bootstrapping or initialisation phase. When
the I2P router is bootstrapped, it can communicate with some other participating
I2P router and will propagate the rest of the NetDB, which we call the operational
phase. By using multiple I2P routers in our lab-environment, we were able to
capture network traffic in a controlled manner and analyse the different phases.

6.1 Initialisation phase

During the bootstrapping phase, by default, the router will attempt to reseed
(i.e. obtain an initial copy of the netDb) over Hypertext Transfer Protocol Secure
(HTTPS) which results in the following, observable DNS queries, the domains of
which are hard-coded in the application.

• reseed.i2p.net.in

• i2p.novg.net

• i2pseed.creativecowpat.net

• itoopie.atomike.ninja

• reseed.onion.im

• reseed.memcpy.io

• reseed.atomike.ninja

• i2p.mooo.com

• download.xxlspeed.com

• netdb.i2p2.no

• reseed.i2p-projekt.de

The router will attempt to download the i2pseeds.su3 -file, which is a signed file
containing around 80 router entries. This file is downloaded via HTTPS where a
Certificate Authority (CA) could sign the certificate or is validated with the pre-
bundled certificates. These certificates contain identifiable parameters, such as;
fingerprint, common-name and dates.

Downloading the preseed file will generally fail for all listed reseed-servers,
due to a check on the User-Agent. The Hypertext Transfer Protocol (HTTP)
requests made by the I2P router is always made with the User-Agent string of
”Wget/1.11.4”. After downloading, verifying and unpacking the initial seed, the
router can populate the netDB further by querying other peers.

6.2 Operational phase

After around 20 minutes the I2P router is fully operational and has established
some tunnels through which it is relaying Garlic Routed messages. In this phase,
the router maintains a constant rate of throughput, and periodically (i.e. every 10

8

minutes) revokes and creates new tunnels. From a traffic capturing perspective,
only TCP and UDP PDUs are transmitted of which the payload contains data that
appears random.

6.2.1 Traffic analysis

The network captures we gained from our lab-environment contain almost solely
I2P traffic. The first thing we have noticed is the fact that each I2P-router commu-
nicates over consistently over a randomly chosen port during the initialisation for
TCP and UDP. Filtering the network capture data on the used I2P router port,
which is known in our controlled lab-environment, resulted in a clean capture of
I2P traffic.

As shown in figure 6 and figure 7 we can verify that these ports are chosen fairly
random, and no single set of ports is constantly reused.

Figure 6: Distribution of TCP Desti-
nation Ports

Figure 7: Distribution of UDP Desti-
nation Ports

Looking more closely on figure 6 we see a denser area which corresponds with
the Dynamic Port Range (49152-65535) defined by Internet Assigned Numbers
Authority (IANA)[17]. This range of ports is never assigned and mainly used for
temporary and dynamic connections, such as Network Address Translation (NAT).
A second denser area can be observer right under the IANA Dynamic Port Range
which is caused by the deviant range (32768-61000) used by the Linux Kernel since
version 2.6.22[18] release on 17 December 2003. This range is still used in modern
Linux distributions, such as Canonical Ubuntu 18.04, with modern Kernel version,
as seen in figure 8. Also in figure 7 we observed different bandwidths in the usage of
UDP ports, starting from 10.000, with increments of 10.000, till 40.000. A logical
explanation could be; different implementations of UDP Port forwarding ranges.

We expect I2P traffic to have an evenly spread distribution of the message
length because messages are padded. Analysing the message length of I2P related
traffic we observed that some message lengths are over-represented as shown in
figure 9 and figure 10. In particular, for UDP messages with sizes in between 50
and 100 bytes and around 300, 500, 600 and 1100 bytes appear to be more common.
For TCP messages of sizes in between 1000 and 1100 bytes, 1400 and 1500 and
around 800 bytes appear to be more common. In the TCP data we can also see

9

Figure 8: Ephemeral ports used in modern Linux distribution

an over-representation of messages with length 0, these are empty TCP segments
with the ACK flag set.

Figure 9: Frequencies of TCP mes-
sage lengths.

Figure 10: Frequencies of UDP mes-
sage lengths.

Looking more closely, by using scatter-plots, we see message length of the used
message length for TCP in figure 11 and UDP in figure 12. These deterministic
patterns, the horizontal lines, could have a correlation with the number of partici-
pating I2P routers, i.e. the number of hops, in a tunnel.

6.2.2 Analysis on the NetDB

As described in section 4, the I2P router has a database containing meta-data on
the I2P-network such as the RouterInfos of other I2P routers, the so-called NetDB.
The database contains public-keys, IP-addresses, LeaseSets and ports among other
things. Because it contains IP-addresses of participating routers it is interesting
to harvest this data and compare it to live network traffic captures, to see if it is
possible to identify I2P routers within a network segment.

For this purpose, we were able to build a parser for the NetDB database and
compared the containing IP-address and port combinations with other NetDB
databases. Interestingly these databases are not fully intersecting, as the databases
contain different sets of IP-address and port combinations. Even geographically
close I2P routers have of different sets. We observed that although six routers were
running at the time, only two showed up in the NetDb. Presumably, the NetDB

10

Figure 11: Distribution of message
length with TCP traffic

Figure 12: Distribution of message
length with UDP traffic

databases contain a small set of I2P routers and routers will actively query for
missing information as the browsing behaviour of the user requires it.

7 Conclusion

We can conclude from the experiments that it is possible to identify I2P traffic
during the initialisation/bootstrapping phase as we could quickly detect the DNS
queries and HTTPS requests towards the clearnet. Preventing I2P routers from
bootstrapping in a controlled network can be done by blocking the DNS queries,
blocking reseed related domains, blocking HTTPS traffic with TLS certificate Com-
mon Names and User-Agent HTTP headers by using an Intrusion Prevention Sys-
tem (IPS) or HTTP(S) proxy. Do note, however, that it is possible for an I2P
router to bootstrap itself by letting the user manually upload the initial NetDB file
that it obtained out-of-band thus bypassing detection.

After an I2P router reseeds, its network traffic shows no identifiable parameters
(e.g. protocol headers or fields), making it difficult to detect with an Intrusion
Detection System (IDS) traditionally. By performing a statistical analysis of the
TCP and UDP payload data length, we demonstrate that it is possible to find a
deterministic pattern. This pattern can potentially be used to identify I2P routers
that have already bootstrapped. However, to give a definitive conclusion on how
this pattern characterises I2P more research is needed. Statistical analysis on
the source and destination ports shows a distribution from ports within the non-
privileged range (i.e. higher than 1023) all the way up to the dynamically allocated
port ranges. We conclude that the distribution of protocol source and destination
ports is too widely dispersed to serve as an IDS metric practically. The data does
show that I2P characterises itself as a protocol in which incoming and outgoing
traffic is symmetrical and of high throughput, identifying the I2P routing port as
’top-talker’ over time.

Parsing the NetDB to identify participating routers provides inconsistent results
as not all routers in the experiment showed up in each others NetDB. We speculate
that this the result of not using a broader set of routers that are more geographically
dispersed. Determining if this method will yield more usable results is a topic of

11

future research.

8 Discussion

The patterns in the message length are hard for an IDS to detect as most IDS
systems look at discrete values in a single frame, such as the TCP port numbers, or
a header that may be present in the application layer data. However, the pattern
in the message data length reveals itself when observing I2P messages as traffic
flows over time. Making it possible to identify I2P traffic as part of a forensic
investigation in hindsight, but it is infeasible for an IDS or IPS to use as a metric
as it often needs to act on this information in real-time.

An alternative approach would be to use the information in the NetDB to
query the IP-address of participating routers and match this against the inspected
traffic. However, the NetDB changes in such a rapid manner that it would require
a constant update of the IDS detection ruleset.

9 Future work

I2P allows for different operational modes that aid in testing and debugging. In
particular, routers can be forced to only find other routers by controlling where
routers reseed from and which RouterInfos are present in the NetDB. In such a
test network it is easier to eliminate variables such as Tunnel hop-length as this
can be a fixed value among all network participants. To further investigate how
the pattern in the data length characterises I2P traffic a follow-up study should
compare our data. This study should compare our data with traffic captured from
the private I2P network setup where Tunnel lengths are fixed on a single value,
but also with traffic captured from other protocols that use Onion Routing, such
as Tor, to see if the deterministic pattern is a result of the layered encryption each
hops adds or strips from a Tunnel.

The experiments in this paper mainly focused on passive techniques to identify
and fingerprint I2P routers, an interesting subject of research is how active probing
techniques can identify I2P routers by eliciting identifiable behaviour. More specif-
ically, since the reseeding of a router is trivial to detect, is it possible to exploit an
I2P router and force it to reseed over the network?

Finally, it is interesting to see if it is possible to parse and accumulate the NetDB
of geographically dispersed routers to build a complete dataset of the entire I2P
network. This dataset can then be used to maintain a historical archive of routers
that have appeared in the network database, and use this to create a reputation
list to be used by an IDS.

10 Acknowledgements

We want to thank Fons Mijnenen and Vincent van Mieghem for their feedback and
supervision.

We would also like to thank the OS3 Core-team for the feedback sessions and
opportunities as well as the educational facilities that were at our disposal to per-
form this research.

In particular, we would like to thank Paola Grosso for her insight and feedback
on our statistical analysis, and advice on data visualisation.

12

References

[1] The Invisible Internet Project. 10 Jan. 2019. url: https://geti2p.net/en/.

[2] Intro - I2P. 10 Jan. 2019. url: https://geti2p.net/en/about/intro.

[3] Garlic Routing - I2P. 7 Jan. 2019. url: https://geti2p.net/en/docs/
how/garlic-routing.

[4] I2P’s Threat Mode. 3 Feb. 2019. url: https://geti2p.net/en/docs/how/
tech-intro.

[5] Bert-Jaap Koops. Crypto Law Survey. 10 Feb. 2019. url: http://cryptolaw.
org/.

[6] Roya Ensafi et al. “Examining How the Great Firewall Discovers Hidden
Circumvention Servers”. In: Internet Measurement Conference. ACM, 2015.

[7] Etay Maor. Out of the Shadows: i2Ninja Malware Exposed. url: https:

/ / securityintelligence . com / shadows - i2ninja - malware - exposed/

(visited on 20/11/2013).

[8] Behnam Bazli, Maxim Wilson and William Hurst. “The dark side of I2P, a
forensic analysis case study”. In: Systems Science & Control Engineering 5.1
(2017), pp. 278–286. url: https://doi.org/10.1080/21642583.2017.
1331770.

[9] Juan Pablo Timpanaro, Isabelle Chrisment and Olivier Festor. Monitoring
the I2P network. English. Preprint. Oct. 2011. url: http://hal.inria.fr/
inria-00632259.

[10] Erik Hjelmvik and Wolfgang John. “Breaking and Improving Protocol Ob-
fuscation”. In: (Jan. 2010).

[11] I2P’s Threat Model. 30 Jan. 2019. url: https://geti2p.net/en/docs/
how/threat-model.

[12] 8 Feb. 2019. url: https://gitlab.os3.nl/tboer/rp1/tree/master/IaC.

[13] Srdjan Matic, Carmela Troncoso and Juan Caballero. “Dissecting Tor Bridges:
A Security Evaluation of their Private and Public Infrastructures”. In: 24th
Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. 2017. url: https:
//www.ndss-symposium.org/ndss2017/ndss-2017-programme/dissecting-

tor - bridges - security - evaluation - their - private - and - public -

infrastructures/.

[14] 8 Feb. 2019. url: https://gitlab.os3.nl/tboer/rp1/blob/master/
pcap_analysis/script/pcap_to_csv.sh.

[15] 8 Feb. 2019. url: https://gitlab.os3.nl/tboer/rp1/tree/master/
script.

[16] 8 Feb. 2019. url: https://gitlab.os3.nl/tboer/rp1/blob/master/
pcap_analysis/netdb_parser.py.

[17] et al. M. Cotton. Internet Assigned Numbers Authority (IANA) Procedures
for the Management of the Service Name and Transport Protocol Port Num-
ber Registry. url: https://tools.ietf.org/html/rfc6335 (visited on
07/02/2019).

13

https://geti2p.net/en/
https://geti2p.net/en/about/intro
https://geti2p.net/en/docs/how/garlic-routing
https://geti2p.net/en/docs/how/garlic-routing
https://geti2p.net/en/docs/how/tech-intro
https://geti2p.net/en/docs/how/tech-intro
http://cryptolaw.org/
http://cryptolaw.org/
https://securityintelligence.com/shadows-i2ninja-malware-exposed/
https://securityintelligence.com/shadows-i2ninja-malware-exposed/
https://doi.org/10.1080/21642583.2017.1331770
https://doi.org/10.1080/21642583.2017.1331770
http://hal.inria.fr/inria-00632259
http://hal.inria.fr/inria-00632259
https://geti2p.net/en/docs/how/threat-model
https://geti2p.net/en/docs/how/threat-model
https://gitlab.os3.nl/tboer/rp1/tree/master/IaC
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/dissecting-tor-bridges-security-evaluation-their-private-and-public-infrastructures/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/dissecting-tor-bridges-security-evaluation-their-private-and-public-infrastructures/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/dissecting-tor-bridges-security-evaluation-their-private-and-public-infrastructures/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/dissecting-tor-bridges-security-evaluation-their-private-and-public-infrastructures/
https://gitlab.os3.nl/tboer/rp1/blob/master/pcap_analysis/script/pcap_to_csv.sh
https://gitlab.os3.nl/tboer/rp1/blob/master/pcap_analysis/script/pcap_to_csv.sh
https://gitlab.os3.nl/tboer/rp1/tree/master/script
https://gitlab.os3.nl/tboer/rp1/tree/master/script
https://gitlab.os3.nl/tboer/rp1/blob/master/pcap_analysis/netdb_parser.py
https://gitlab.os3.nl/tboer/rp1/blob/master/pcap_analysis/netdb_parser.py
https://tools.ietf.org/html/rfc6335

[18] Mark Glines. [TCP]: Use default 32768-61000 outgoing port range in all
cases. url: https://github.com/torvalds/linux/commit/3f196eb519a419bf83ecc22753943fd0a0de4f8f
(visited on 01/07/2007).

14

https://github.com/torvalds/linux/commit/3f196eb519a419bf83ecc22753943fd0a0de4f8f

A Acronyms

Acronyms

CA Certificate Authority. 8

CN Common Name. 7

CSV Comma-separated values. 7

DHT Distributed Hash Table. 3

DNS Domain Name System. 7, 8, 11

HTTP Hypertext Transfer Protocol. 8, 11

HTTPS Hypertext Transfer Protocol Secure. 8, 11

I2P Invisible Internet Project. 1–12

IANA Internet Assigned Numbers Authority. 9

IDS Intrusion Detection System. 11, 12

IP Internet Protocol. 2, 4, 8, 10, 12

IPS Intrusion Prevention System. 11, 12

IRC Internet Relay Chat. 4

ISP Internet Service Provider. 2

NAT Network Address Translation. 9

PCAP Packet Capture. 7

PDU Protocol Data Unit. 7, 9

SPID Statistical Protocol IDentification. 3

TCP Transmission Control Protocol. 3, 4, 7, 9–12

TLS Transport Layer Security. 3, 7, 11

UDP User Datagram Protocol. 3, 4, 7, 9–11

VM Virtual Machine. 7

15

	Introduction
	Research Question
	Related Work
	The Invisible Internet Protocol (I2P)
	Approach
	Lab Environment
	Experiments

	Results
	Initialisation phase
	Operational phase
	Traffic analysis
	Analysis on the NetDB

	Conclusion
	Discussion
	Future work
	Acknowledgements
	Acronyms

