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Abstract—Fault injection techniques introduce faults into a target in or-
der to alter its intended behavior by controlled environmental changes.
In this research we use backside laser fault injection to characterize
a Cortex-M4 microcontroller. Through different experiments, we can
prove that the intended behavior of the microcontroller can be changed
by modifying instructions. This attack is further extrapolated into a real-
world attack, where an authentication mechanism is circumvented.
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1 INTRODUCTION

Fault injection techniques introduce faults into a target
by controlled environmental changes, in order to alter its
intended behavior [1]. One of the first examples of fault
injection originates from the observation that chips were
affected by the presence of radioactive particles in the
packaging material when shipped. Due to the interaction
of these particles with the chip, bits would flip and the
behaviour of the chip would change [2].

There are several methods of intentional fault injection
such as varying the supply of voltage, introducing varia-
tions into an external clock, changing the temperature or
introducing faults via optical means [2]. These injections
could result in glitches impacting the functionality of a mi-
crocontroller so that it is unable to function in the intended
way. Security models such as password verification, secure
boot or separation of OS privileges, often rely on the correct
execution of software by hardware. Fault injection can be a
powerful tool in circumventing these security models [3].

The goal of this project is to characterize the effects
of laser pulses injected into the backside (silicon substrate
side) of an ARM Cortex-M4 32-bit microcontroller (MCU).
The Cortex-M4 is used in embedded systems and Inter-
net of Things (IoT) devices [4]. In order to evaluate the
target’s behavior, we will use a software-based test suite
and develop experiments trying to affect different parts
of the inner workings of the MCU. The main focus is
on modifying instructions and values stored in a register.
The laser glitches will be introduced using Riscure’s Diode

Laser Station (DLS).
This paper is structured as follows: Section 2 outlines

the research question, section 3 presents various fault
injection techniques and background information about
the ARM architecture. Section 4 explains the experiment
setup, whereas Section 5 focuses on describing the research
methodology. Next, Sections 6 and 7 present the results
and discuss their practical application, followed by the
conclusion in Section 8. Finally, Section 9 presents future
work.

2 RESEARCH QUESTION

The main research question for this project is defined as
follows:

What is the security impact of injecting laser
glitches into a Cortex-M4 based microcontroller?

To support the main research question the following sub-
questions have been defined:

• How may laser glitches be injected into the MCU so
that it results in a fault?

• What are the optimal variables for the laser to intro-
duce faults in the Cortex-M4 MCU?

• What behavioral changes occur in the MCU when
injecting laser faults?

3 RELATED WORK AND BACKGROUND

3.1 Fault injection techniques

Semiconductors are sensitive to light and when exposed,
they might switch transistors from one state to another [5].
As a result, a value in a register or an instruction could
be modified [6]. When executed by the microcontroller, it
produces a different outcome than originally intended.

There are several techniques of introducing such faults,
which have been researched in the past. Spruyt defined a
fault and attack model for voltage glitching of XMEGA mi-
crocontroller [7], while Gratchoff [8] focused on introducing
faults into the CPU’s program counter so that it points to
an arbitrary address. If successful, it enables the attacker
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to run arbitrary code on a secure device. Moro et al. [9]
researched the effects of electromagnetic fault injection on
a microcontroller. Optical fault injection, which is generated
with a strong source of light was first presented in the
research paper by Skorobogatov et al. [10], where SRAM
memory of a microcontroller was targeted with a budget
photo flash light. As a result, the researchers were success-
ful in changing any individual bit of an SRAM array. Later,
laser fault injection targeting smart cards was performed[5].

This research contributes to the area of optical fault
injection, where the characterization of the Cortex-M4 mi-
crocontroller is performed. Riscure has developed a new
version of the laser [11], used for security testing of embed-
ded hardware, which is less expensive than other models.
Our goal is to conduct a research to verify whether the new
laser is capable of introducing glitches into the Cortex-M4
microcontroller. We will focus on two main attack vectors:
instruction modification and register value modification.

3.2 ARM architecture

The focus of this research is on a 32-bit Cortex-M4 micro-
controller using the ARMv7-M architecture with a Thumb
instruction set. The microcontroller has 13 general purpose
registers (from r0 to r12) and a number of special purpose
registers (from r13 to r15) [12].

Register r13 is used as the stack pointer. The Cortex-
M4 uses a full descending stack, which means that the
stack pointer holds the address of the last stacked item in
memory. The link register is register r14, storing the return
address when a subroutine call is made. Register r15 is the
program counter, which is incremented by the size of the
instruction executed.

The ARMv7 architecture is bi-endian for data access,
while instructions are always fetched in little endian format
[12], which is important when analyzing obtained results.

4 TEST ENVIRONMENT

The following hardware components are part of the test
environment:

• An ARM Cortex-M4 STM32F417IG microcontroller,
mounted on a Printed Circuit Board (PCB), hereafter
referred to as Cortex-M4;

• A Riscure Diode Laser (DLS) [11], used for perform-
ing fault injection, mounted on the EM probe station
[13];

• A Riscure Spider [14], responsible for finding the
right moment in time to glitch;

• Riscure Glitch Amplifier [15], used to supply power
to the microcontroller.

The test environment is shown in Figure 1. The test laptop
is running a Python framework, which is used to perform
experiments and store the results in a database. The laptop
is connected to three devices: the microcontroller, the Spider
and the EM probe station. The Spider is connected to the
laser and to the microcontroller. It receives the glitch trigger
from the microcontroller and through the Glitch Amplifier,
the Spider supplies the power to the MCU. The Spider
itself is capable of delivering enough voltage to the board,
however, the Glitch Amplifier is needed to also deliver
sufficient current. By supplying the power via the Spider
we are capable of performing hardware based resets by
taking the power away from the MCU. The laser and the
target are placed in a metal safety box, which prevents
anybody being exposed to the laser beams fired at the

MCU. The laser we use for this research is a category 4
laser [16] and should be handled with care.

Fig. 1: The test environment for backside laser fault injec-
tion.

4.1 Device Under Test (DUT)

The target of this research is a Cortex-M4 microcontroller,
which is widely used in embedded systems and Internet
of Things (IoT) devices [4]. It has a True Random Number
Generator (TRNG) and a hardware cryptographic processor
build in, supporting the DES, 3DES and AES algorithms
[17].

Laser fault injections can be performed by shooting
laser beams either to the frontside (metal layer side) or
the backside (silicon substrate side) of the chip [3]. The
frontside of the chip provides good visibility in the layout.
However, it does not allow targeting desired locations due
to a metal layer, which reflects the laser beam [3] [18].
Backside injection allows for targeting the microcontroller
more precisely with regards to geometric location [18], but
it requires more advanced preparation of the chip.

In this research, we will focus on backside injection. The
Cortex-M4 microcontroller is mounted on a PCB, which
allows us to interface with it easily. Riscure prepared the
PCB with a hole exposing the bottom of the MCU. Using
acid, they decapsulated the bottom of the chip, further
exposing the substrate. Figure 2 shows the backside of
the target with the exposed silicon substrate and Figure 3
shows the picture of the die, taken with an infrared camera.

4.2 Diode Laser Station (DLS) specifications

The laser used in this research, Riscure’s Diode Laser Sta-
tion, uses Near Infrared (NIR) light with a wavelength of
1064 nm. NIR light with this wavelength is necessary to
perform backside fault injections, because the laser beam
needs to cross the entire wafer of the chip. The wafer
is made of silicon, which is translucent for light of this
wavelength [19], therefore, allowing the laser to reach the
light-sensitive features on the die [18].



3

Fig. 2: Picture of the Cortex-M4 with exposed substrate,
indicated with the red arrow.

Fig. 3: Picture of the Cortex-M4 microcontroller die made
with an infrared camera.

In order to cause faults, a laser beam can be injected
into a target either as a continuous light source (constant
output power) or as a laser pulse (laser beam in the form of
pulses) [3]. It has been proven that in case of fault injection,
a continuous wave does not allow for precise location of the
faults, because it can affect other regions of the chip [20].
Laser pulses are more effective, as they can be switched
on for short periods of time. The laser has a peak output
power of 20W and the pulse duration can be configured
between 20ns - 100µs [11]. The laser has a Mitutoyo NIR 5x
magnifying objective installed. The lens influences the spot
size, which is the area on the chip affected by the laser. To
be able to aim precisely, it needs to be as narrow as possible.

When working with the laser fault injection, there are
several parameters that need to be taken into account. The
glitch power is the wattage of the laser pulse, given in
percentages of the maximum value. The glitch delay is the
time after the trigger is received by the Spider and the laser
pulse is deployed. The step size is the distance between
two points, defining how much the laser moves to before
reaching the next point on the target. The area specifies the
location on the chip, which is scanned.

5 RESEARCH METHODOLOGY

Our research consists of a series of experiments to deter-
mine the impact of laser glitches injected into the target.
Our focus is on detecting behavioral changes that can
be extrapolated into real-world attacks. Using Riscure’s

software-based test suite, we aim to detect faults resulting
from the modification of instructions and the modification
of register values. The test framework is able to execute
multiple tests at the same time. Experiments are written in
C or ARM Assembly.

5.1 Experiments

5.1.1 Counter increment

This test contains different types of instructions. Its goal
is to prove that useful faults can occur and to verify the
robustness and reliability of the test setup. The script exe-
cutes 32,768 loop iterations while a counter is incremented
by 1 and another counter being decreased by 1. During this
process, the laser pulse is injected. Upon completion, the
board returns a value. The knowledge of the starting value
of the counter and the number of increment instructions
allows for precalculating the result and therefore makes
verification possible whether all instructions were executed
correctly. A counter value different than the expected one
indicates that the laser changed the intended behavior
of the MCU. The expected return value for this test is
0x00008000, where 0x0000 is the decreasing counter, count-
ing back from 32,768 to zero and 0x8000 is the incremental
counter. Appendix A, Listing 9 shows part of the code used
in the experiment.

5.1.2 ADD loop

The next step is to investigate whether we can determine
which instruction is affected. For this purpose, we created
an Assembly based test using multiple ADD instructions.
The ADD instruction is repeated 10,000 times, during which
a laser pulse is injected. When the board returns value
0x2710, it means that the execution of the program was not
affected. The code is shown in Appendix A, Listing 10.

5.1.3 Bitwise increment

Another experiment, allowing to indicate which instruction
was affected during the execution of the program is the
bitwise increment. Register r1 is initialized with the value 1
after which the next consecutive power of two is repeatedly
added to that value, setting every bit separately until a
byte is filled. In the end, this results in the value 255. If
the outcome is different, we should be able to see which
instruction was modified, because that bit will still have
zero as a value. The expected return value for this test is
0xff. Appendix A, Listing 11 shows the code of the test.

5.1.4 Register value modification

The goal of this test is to investigate whether a laser glitch
can change a value residing in a register. Four registers are
initialized with known values, as shown in Appendix A,
Listing 7. A no-operation (NOP) instruction in form of mov
r1,r1 instruction is executed 10,000 times, during which a
laser pulse is injected. After the execution of the program,
the values are read from the registers. A successful glitch
is identified when a register contains a different value than
the one which was loaded.

5.1.5 Authentication bypass

This experiment is an example of a practical attack, which
can be accomplished with laser fault injection. It imple-
ments an ’if’ statement, which compares the password
stored on the board with the password send as a pay-
load. If the password matches, the MCU will reply with
value 0x9000, otherwise value 0x6986 is returned. The laser
pulse is introduced during the execution of the password
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authentication with the intention to bypass it by modifying
an instruction. This could result in obtaining unauthorized
access. Appendix A, Listing 13 shows the code in C used
for this experiment.

5.2 Glitch repeatability

An important aspect of successful fault injection attack,
or any experiment, is the repeatability of the obtained
results. In order to achieve this, the experiments will be
conducted multiple times. During the first attempt we
target the entire board with the laser beam and the goal is to
identify areas where successful glitches occur, without set-
ting specific laser parameters. Detailed experiments follow,
where variables such as glitch power, glitch duration, glitch
delay and glitch location are set to fixed values in order
to approximate the repeatability of the successful glitches
from the global scan. By taking this approach, we are able
to define, per experiment, a set of variables, which result in
the highest ratio of successful glitches and we make sure
that these faults can be repeated.

6 RESULTS

This section presents the outcome of the experiments, fol-
lowed by the analysis of the obtained data, which proves
that modifying instructions with laser fault injection is
possible. The code used in the experiments can be found in
GitLab repository [21]. The test suite is able to differentiate
between several types of results, which allow us to identify
the behavioral changes caused by the laser glitches injected
into the MCU. ’Expected’ indicates that obtained value
matches the expected value and the laser had no impact
on the operation of the target. When the obtained value
differs from the expected value, the glitch has affected the
operation of the target and is labeled a ’successful glitch’.
’Reset’ is shown, when the injected glitch alters the code,
but the execution cannot continue and the target resets or
’mutes’. This could happen e.g. in case the board attempts
to execute an illegal instruction or due to excessive glitch
power. ’Timeout’ indicates a Spider timeout, which takes
place when the Spider doesn’t receive a trigger signal from
the target. This can happen in case the target did not yet
recover from a previous, successful glitch.

By combining results from the experiments, we iden-
tified four areas on the target, where successful glitches
occur. These areas are shown in Figure 4 and are referred
to in this section. Moreover, we discovered that setting
the glitch power between 20 - 25% of the maximum 20W
was the most effective in introducing successful glitches.
Setting the power to a lower value significantly decreased
the amount successful glitches, whereas setting it to a
higher value resulted in muting the response of the target.
Other values like glitch length and glitch delay varied per
experiment and thus it was difficult to define the most
effective values for detailed scan.

6.1 Results of the experiments

This section outlines the results of the experiments. Table
1 shows the initial parameters used in every experiment.
Glitch delay is excluded from the table including initial
values, because it was experiment specific.

6.1.1 Counter increment

As shown in Table 1, we ran the experiment with ran-
dom parameters and a glitch delay of 450ns, in order
to identify the values resulting in the highest amount of
successful glitches. Out of total 498,434 attempts over a

Fig. 4: Four areas on the die with the highest rate of
successful glitches.

Parameter Initial value
Glitch power Random between 10% and 30%
Glitch length Random between 10ns and 100ns

Step size 120µm
Location Global scan

Table 1: Initial parameters for every experiment.

period of 7 hours with random parameters, we obtained
26 successful glitches (0.005%), 6656 mutes/resets (1.34%),
2 timeouts (<0.01%) and 491,751 times the laser pulse did
not influence the chip’s operation (98.66%). The experiment
yields successful glitches in area 4 as shown on Figure 4.
When re-running the experiment for approximately half an
hour with parameters outlined in Table 2, we managed to
increase the amount of successful faults to 0.04%.

Even though successful, the test is designed in such a
way, that there are many different memory and register
operations, e.g. MOV, ADD, SUB, LDR, STR and CMP.
Hence, it is very difficult to determine which instruction
was affected by the laser pulse. In order to define which
instruction is affected by the laser pulse, additional experi-
ments were performed.

Parameter Final value
Glitch power Random between 20% and 25%
Glitch length Random between 80ns and 100ns
Glitch delay 450ns

Step size 100µm
Location Area 3,4

Table 2: Final parameters for the counter increment experi-
ment.

6.1.2 ADD loop

The experiment was successful in introducing glitches and
changing the intended behavior of the system. The initial
parameters set for the experiment are the same as shown
in Table 1, with a random glitch delay between 8ns and
50,000ns. Out of total 564,877 attempts over a period of ap-
proximately 11 hours, we obtained 8,055 successful glitches
(1.43%), 23,588 mutes/resets (4.18%) and 533,234 times
the laser pulse had no influence on the MCU’s behavior
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(94.40%). Successful glitches appeared in areas 1, 2 and 4
in Figure 4. Next, we modified the parameters, as shown
in Table 3, in order to approximate the repeatability of
a successful glitch. When re-running the experiment for
approximately half an hour, we managed to increase the
percentage of successful glitches to 50.77%.

Parameter Final value
Glitch power 25%
Glitch length Random between 80ns and 100ns
Glitch delay 48000ns

Step size 120µm
Location Area 1,2

Table 3: Final parameters for the ADD loop experiment.

6.1.3 Bitwise increment

The initial parameters set for the experiment are the same
as shown in Table 1. In the first experiment, we obtained
3,829 successful glitches (0.81%) out of 472,615 attempts ran
over the period of approximately 9 hours. There are 13,923
(2.95%) mutes/resets, 2 timeouts (<0.01%) and 454,861
times the laser pulse had no influence on the MCU’s
behavior (96.24%). Successful glitches were seen in areas
1, 2 and 4 as shown in Figure 4. After narrowing down
the target area and modifying parameters which are shown
in Table 4, the success rate increased to 36.14% with the
experiment duration of approximately half an hour.

Parameter Final value
Glitch power 25%
Glitch length Random between 80ns and 100ns
Glitch delay Random between 50ns and 200ns

Step size 120µm
Location Area 1

Table 4: Final parameters for the bitwise increment experi-
ment.

6.1.4 Register value modification

The goal of this experiment was to verify whether it is
possible to modify a register with a laser pulse. Out of
492,532 experiments, we identified 5,091 successful glitches
(1.03%), 20,088 mutes and resets (4.08%) and 467,353 times
the laser pulse had no influence on the MCU (94.89%).

Parameter Final value
Glitch power 25%
Glitch length Random between 80ns and 100ns
Glitch delay 500ns

Step size 120µm
Location Area 1

Table 5: Final parameters for register value modification
experiment.

After focusing the laser on area 1 which had the highest
density of the successful glitches and re-running the experi-
ments with the parameters shown in Table 5, the percentage
of success increased to 48.09%.

6.1.5 Authentication bypass

Out of 565,906 attempts over 11 hours, we identified 275
(0.05%) successful glitches, 27,361 mutes/resets (4.83%),
322 timeouts (0.06%) and 537,948 (95%) times the laser
pulse had no influence on the MCU’s behavior. Successful
glitches were visible in area 1 and 2 as shown in Figure 4.

The second experiment focused specifically on those
two areas and was run with the decreased step size of 100

µs as shown in Table 6. The results demonstrated that out
of 142,515 experiments, which were done in approximately
7 hours, we located 318 (0.22%) successful glitches.

Parameter Final value
Glitch power Random between 10% and 30%
Glitch length Random between 8ns and 100ns
Glitch delay Random between 8ns and 800ns

Step size 120µm
Location Area 1,2

Table 6: Final parameters for authentication bypass experi-
ment.

6.2 Analysis of the results

6.2.1 Instruction modification with ADD loop

In the ADD loop experiment, unused general purpose
registers were initialized with well recognizable values.
Register r0 had the value of 0xdeadbeef and register r1
was used for the incremented value. Listing 1 shows the
expected output versus values of the most frequently occur-
ring successful glitches. A more complete list can be found
in Appendix B, Table 7.

By analyzing the results of the experiment we can prove
that modifying instructions with a laser pulse is possible.
As shown in Listing 1, there are three results appearing
frequently. A value starting with 0xdead is amongst these
frequent results. To obtain this value, either the laser pulse
changed multiple bits in register r1 several times or the
value of register r0 was loaded into r1.

Expected output :
0 x00002710

Value of r e g i s t e r r0 :
0 xdeadbeef

S u c c e s s f u l g l i t c h :
0xdeadd77f
0 xeadc0789
0 x00001890

Listing 1: The values of most frequently occurring success-
ful glitches of the ADD loop experiment.

The ADD instruction used in ADD loop experiment
is add.w r1, r1 #1, which means increase the value of
the source register (second r1) by 1 and write it to the
destination register (first r1). Figure 5 provides an overview
of the ADD instruction encoding in ARM [12].

Fig. 5: Overview of the ADD instruction encoding.

Listing 2 shows the ADD instruction before and after
a successful glitch where r0 got loaded into r1. Through
the binary representation, it is visible that 1 bit in the
source register Rn was modified in order to create the new
instruction.
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ADD i n s t r u c t i o n in binary :
11110 0 0 1000 0 0001 0 000 0001 00000001

ADD i n s t r u c t i o n in binary a f t e r g l i t c h :
11110 0 0 1000 0 0000 0 000 0001 00000001

Listing 2: The ADD instruction presented in binary repre-
sentation.

Another frequently occurring result was 0x00001890,
which is a counter value lower than the expected
0x00002710. Since it is not likely all the bits were set to
zero by the laser several times, we looked whether this
was caused by an instruction. The AND instruction is an
instruction which differs only a single bit with the original
ADD instruction and it is shown in Figure 6.

Fig. 6: Overview of the AND instruction encoding.

The AND instruction ”performs a bitwise AND of a
register value and an immediate value, and writes the result
to the destination register” [12]. This immediate value is
comprised of the following fields in the AND instruction: i,
imm3 and imm8, as shown in Figure 6. Using the values
from the original ADD instruction the immediate value
would be 000000000001. Only the last bit of the value in
r1 at that point in time is taken into account for the bitwise
AND operation, which means that the value of the counter
would be reset to either 0 or 1. Listing 3 shows the AND
instruction after the successful glitch.

ADD i n s t r u c t i o n in binary :
11110 0 0 1000 0 0001 0 000 0001 00000001

AND i n s t r u c t i o n in binary a f t e r g l i t c h :
11110 0 0 0000 0 0001 0 000 0001 00000001

Listing 3: The comparison of ADD and AND instruction
after glitch, presented in binary representation.

Due to a fixed glitch delay, we always injected the
laser at the same point in time. Therefore, the counter
consistently reached the value of 0x00001890 in every ex-
periment. Because when we subtract 0x00001890 from the
most frequently occurring value 0xea dc0789, we obtain
0xea dbee f9. This shows that the instruction was modified
and the value of register r0 was loaded into register r1,
which also happened in the same point of time as the
AND instruction change. Moreover, when modifying the
value of the glitch delay to a lower one, we discovered that
the values of the counter changed consistently to a higher
one. This is because glitching earlier meant the counter
had a longer time to increase after the AND instruction
was executed. The same was true for changing the glitch
delay to a higher value, which resulted in a lower value of
the counter. This shows we can control the outcome of the
experiment.

6.2.2 Instruction modification with bitwise increment

Another example of instruction modification comes from
the bitwise increment experiment explained in Section 5.1.3.
Listing 4 shows the expected outcome and the glitched
result, which was returned most frequently. It is visible

that the values differ with 1 bit. This means that the
injected laser pulse affected the intended behavior of the
microcontroller. Since the affected bit is in the 3rd position,
the glitched instruction was the ADD operation with value
4 in Listing 5. It is possible that the value in the instruction
was modified to another one with value zero, which would
leave the bit unchanged.

Expected output :
0 x f f
Expected output in binary :
1111 1111
S u c c e s s f u l g l i t c h :
0 xfb
S u c c e s s f u l g l i t c h in binary :
1111 1011

Listing 4: The value of the most frequently occurring suc-
cessful glitch of the bitwise experiment.

. . .
add .w r1 , r1 , #2
add .w r1 , r1 , #4
add .w r1 , r1 , #8
add .w r1 , r1 , #16
. . .

Listing 5: ADD instruction affected by the laser pulse
marked in bold, the result is value 0xfb.

The repeatability of this glitch is proven, by changing
the order of the executed instructions as shown in Listing
6. In this case, the most frequently occurring glitch was
0xf7, which meant that the ADD instruction with value 8
was modified. This proves that we can modify a specific
instruction.

. . .
add .w r1 , r1 , #2
add .w r1 , r1 , #8
add .w r1 , r1 , #4
add .w r1 , r1 , #16
. . .

Listing 6: Changed order of the ADD instruction execution,
the result is value 0xf7.

6.2.3 Register value modification

The integrity of values stored in registers is important for
the correct functioning of the microcontroller. In our ex-
periment, we focused on general purpose registers, which
were initialized with known values as shown in List-
ing 7. The expected output of the experiment is 0xfa-
cade00deadbeefcafebabefacefeed. Although we ran mul-
tiple tests for several days, we were not able to modify
register values. Instead, we again noticed instruction mod-
ification.

r0 : fa ca de 00
r4 : ca f e ba be
r5 : fa ce f e ed
r6 : de ad be e f

Listing 7: Correct output of the register value modification
experiment.
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0xcade0000 deadbeefcafebabefacefeed
0xde000000 deadbeefcafebabefacefeed
0x00000000 deadbeefcafebabefacefeed

Listing 8: Outcome of the register value modification exper-
iment.

Listing 8 clearly shows that the value of facade00 is
shifted to the left. This can be explained by the NOP
instructions, which we implemented so that the laser has
enough time to introduce a glitch. The operation of the
program was too fast and there was no time to glitch. Thus,
instruction mov r1, r1 was used, which is essentially an
instruction that does nothing but provides the necessary
time.

When analyzing the results, we noticed that this MOV
instruction implemented as a NOP was modified into the
Linear Shift Left (LSL) instruction. LSL is one of the MOV
instructions listed in the ARM manual [12]. The encoding
for this instruction is shown in Figure 8. When comparing
MOV and LSL instruction, we see that they differ with
a single bit. If this bit is changed, the MOV instruction
becomes the LSL instruction.

Even though we were able to flip a single bit, it doesn’t
explain the results we obtained. With one bit flip, we would
still have register r1 for source and destination register,
instead of register r0. This means that is highly likely we
managed to flip 3 bits. The difference between instructions
is shown in Figures 7 and 8.

Fig. 7: Overview of the MOV instruction encoding[12].

Fig. 8: Overview of the LSL instruction encoding [12].

This shows that the value for the LSL, with 3 bits
flipped, is 11000. Listing 8 shows that this shift occurs
only in one of the results. However, for the other results to
occur, up to three additional bits have to be flipped. Further
research is needed to better understand these results.

7 DISCUSSION

The results of the experiments show that we are able to alter
the behavior of the target by modifying instructions or their
arguments with laser pulses. Other researchers will be able
to reproduce our results under similar circumstances and
with similar equipment.

Obtained results can also be applied to e.g. bypass fu-
ture authentication mechanisms. If a password check can be
compromised by flipping a single bit, other researches can
now draw conclusions that the attack is feasible without
the need to practically prove it.

However, we were not able to modify register values.
Due to the limited time, we did not perform a global scan
with a significantly smaller step and spot size, which could
have resulted in finding the precise location of the register
and modifying it.

The experiments have shown that there are 4 interesting
areas on the board as shown in Figure 4. This is where the
majority of the successful glitches occured. We suspect that
area 1 is where a type of memory is located and areas 3 and
4 is where the CPU resides. However, we have no means
to prove this theory and further research is needed. We do
not know which component is located in area 2.

In order to mitigate the threats posed by laser fault
injection, chip manufacturers can deploy hardware or soft-
ware countermeasures. Creating a physical barrier such
as a metal shield, covering parts of the chip is a way to
prevent laser beams from penetrating it. Another counter-
measure is the implementation of the photodetectors or
light sensors, which can detect scanning laser beams and
terminate operation [5] [3]. Furthermore, when designing
a PCB it should be taken into account that the system
ceases operation when an attacker attempts to drill a hole
to access the Cortex-M4. When it comes to the software
countermeasures, implementing random delays in checks
will increase the difficulty of a successful glitch [5].

8 CONCLUSION

In order to answer our main research question, we first
need to elaborate on the sub-questions. The first one,
focused on the ways laser faults can be injected. In our
research, we decided to perform the backside laser fault
injection over frontside, because it allows for precise target-
ing of features on the die, once it is exposed. Furthermore,
based on the recommendations found in the literature, we
used laser pulses in order to target certain areas of the die,
instead of continuous wave, which is not precise enough.

The second sub-question was about finding the optimal
variables for the laser to introduce faults in to the target.
During our research we discovered that many variables
for laser fault injection exist and we noticed that each
experiment had their own set of optimal variable values,
except for the glitch power. When setting the value of this
variable between 20 - 25% of the maximum 20W it resulted
in the highest amount of successful glitches throughout all
the experiments.

The last sub-question was about the type of behavioral
changes that can occur in the MCU when injecting laser
faults. We set out to test for two: modifying instruction and
modifying register values. We noticed that we can reliably
modify an instruction and thus change the intended ex-
ecution of the program with several experiments. In the
proven cases this was achieved by changing the value of a
bit from 1 to 0. In some cases this effectively changed the
entire instruction. The password authentication mechanism
implemented on the target was successfully bypassed, by
exploiting the possibility to modify instructions.

To answer our main question ”What is the security
impact of injecting laser glitches into a Cortex-M4 based
microcontroller?”, we can conclude that the results of the
experiments have shown that the target is vulnerable to
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backside laser fault injection. While instruction modifica-
tion was proven successful with high success ratio during
several experiments, modifying register values was not
accomplished in this research. Nevertheless, the conse-
quences of instruction modification showed to be severe
enough to state that the security impact of backside laser
fault injection on the MCU is high.

9 FUTURE WORK

As part of the future work, further research into modifying
registers is necessary. The experiments could be performed
with a different objective magnification e.g. 20x or 50x.
Changing the objective narrows down the spot size and
allows for more precision when firing the laser.

In this research we have proven to change instructions
or their parameters by changing the value of a bit from 1 to
0. It would be interesting to verify whether it is possible to
change a 0 to a 1, which could trigger different instructions.

Also, further research could be done into specific func-
tionalities of the Cortex-M4, such as the Read-Data Pro-
tection (RDP) or the True Random Number Generator
(TRNG). The RDP has three levels of read/write protection
and with optical glitching it could be attempted to down-
grade the protection level, allowing an attacker to e.g. flash
its own code on the target while this was not permitted.
The operation of the TRNG could potentially be disrupted
with the optical glitching, which could result in producing
less random numbers used in cryptographic operations.

Finally, other microcontrollers from the ARM Cortex
family could be investigated, which implement more ad-
vanced security functionalities such as a Memory Protec-
tion Unit (MPU) or a TrustZone and attempt to bypass those
with laser fault injection.
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APPENDIX A
CODE IN C AND ARM ASSEMBLY USED IN THE EXPERIMENTS

Full code base can be found in Gitlab [21].

Counter increment

GPIOC−>BSRRL = GPIO Pin 2 ;
while ( payload len ) {

payload len−−;
upCounter ++;

}
GPIOC−>BSRRH = GPIO Pin 2 ;

Listing 9: Counter increment code in C used in the experiment.

Add loop
. . .
add .w r1 , r1 , #1
. . .

Listing 10: ADD instruction in ARM assembly used in the experiment.

Bitwise increment

. . .
add .w r1 , r1 , #2
add .w r1 , r1 , #4
add .w r1 , r1 , #8
add .w r1 , r1 , #16
add .w r1 , r1 , #32
add .w r1 , r1 , #64
add .w r1 , r1 , #128
. . .

Listing 11: Bitwise increment instructions in ARM assembly used in the experiment.

Modify register values

. . .
mov .w sl , #0
add .w sl , s l , #56832 ; 0xde00
add .w sl , s l , #13238272 ; 0 xca0000
add .w sl , s l , #4194304000 ; 0 xfa000000
mov .w r6 , #239 ; 0 xef
add .w r6 , r6 , #48640 ; 0xbe00
add .w r6 , r6 , #11337728 ; 0xad0000
add .w r6 , r6 , #3724541952 ; 0 xde000000
mov .w r4 , #190 ; 0xbe
add .w r4 , r4 , #47616 ; 0xba00
add .w r4 , r4 , #16646144 ; 0 xfe0000
add .w r4 , r4 , #3388997632 ; 0 xca000000
mov .w r5 , #237 ; 0xed
add .w r5 , r5 , #65024 ; 0 xfe00
. . .

Listing 12: ARM assembly code used in the modify register value experiment.

Authentication bypass

. . .
f o r ( i = 0 ; i < 4 ; i ++) {
i f ( r x B u f f e r [ i ] == password [ i ] ) {
charsOK = charsOK + 1 ;
}
. . .

Listing 13: C code used in the authentication bypass experiment.
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APPENDIX B
THE VALUES OF THE MOST FREQUENT SUCCESSFUL GLITCHES

Count Value
82 01 01f1 01
72 ea dc07 94
70 00 0019 22
57 00 0019 21
46 00 0026 83
32 de add8 1a
31 00 0019 20
30 08 0047 95
28 de add8 1d
27 00 0018 a5
23 ea dc07 91
19 00 0018 a2
19 00 0018 94
17 ea dc07 96
16 00 0026 80
15 ea dc07 92
15 00 0027 00
14 00 0018 a6
13 00 0019 25
11 00 0018 a1
10 00 0026 84
10 00 0018 a4
8 f1 0101 01
8 de add8 1c
8 00 0026 ff
8 00 0019 1f
8 00 0018 9d

Table 7: ADD loop experiment. The values of the most frequent successful glitches.

Count Value
939 00 0000 fb
158 00 0000 fc
138 00 0000 f8
22 00 0001 1f
11 00 0001 a9
10 79 0000 fc
8 00 0001 9f
5 ae 00ae fb
5 79 0000 f8
5 00 0001 a1

Table 8: Bitwise increment experiment. The values of the most frequent successful glitches.

Count Value
10537 00 0000 00de adbe efca feba befa cefe ed
360 f5 95bc 00de adbe efca feba befa cefe ed
22 da 0000 00de adbe efca feba befa cefe ed
21 fa cefe edde adbe efca feba befa cefe ed
13 ed 0000 00de adbe efca feba befa cefe ed
13 95 bc00 00de adbe efca feba befa cefe ed

Table 9: Modify register values experiment. The values of the most frequent successful glitches.
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