
1

Characterization of a
Cortex-M4 microcontroller
with backside optical fault
injection

Research Project 1
Jasper Hupkens
Dominika Rusek
05.02.2019

2

Introduction to the world of fault injection

Introduction

• Research project at Riscure

• Fault injection techniques introduce faults into a target by controlled
environmental changes, in order to alter its intended behavior

• 5 types - clock, voltage, electromagnetic, optical, temperature

• Our focus - optical (laser) fault injection

3

Why?

Introduction

• Secure software relies on hardware functioning in the intended way

• You can have the best lock in the world on your door, but if your door
is made out of paper, it is useless

• Used e.g in bypassing secure boot of Nintendo consoles

4

Research question

Research setup

What is the security impact of injecting laser glitches into an ARM
based, Cortex-M4 microcontroller (MCU)?

• How may laser glitches be injected into the MCU so that it results in a fault?
• What are the optimal variables for the laser to introduce glitches in the ARM

Cortex-M4 MCU?
• What behavioral changes occur in the MCU when injecting laser glitches?

5

Device Under Test - Cortex-M4

Research setup

6

Test environment

Research setup

7

Test environment

Research setup

8

Methodology

Research setup

• Global vs detailed scan
• Several laser parameters
• Color coding of the results:

• Red/pink – success
• Green – expected
• Yellow – mute
• Orange – reset
• Cyan – timeout

• Glitch repeatability

9

Results: Counter increment

Results

• Goal: verify the setup, check if glitches
can occur

• Result: 0.012% successful glitches

• Different memory and register
operations

Code in C:

Code in ARM assembly:

10

Results: Counter increment

Results

11

Results: Bitwise increment

Results

• Goal: setting bits in a byte with a consecutive
power of 2

• Result: 36.14% successful glitches

• 0xff: 1111 1111
• 0xfb: 1111 1011
• 0xf7: 1111 0111

12

Results: Bitwise increment

Results

13

Results: Register value modification

Results

• Goal: Modify value while in register

• How: Initialize registers with known values

• Result: 1.50% successful glitches

• But we are modifying instructions instead

14

Results: Register value modification

Results

• Register values:
• r0: fa ca de 00 r6: de ad be ef r4: ca fe ba be r5: fa ce fe ed

• NOP instruction: mov r1, r1

• MOV transformed into Linear Shift Left (LSL)

• Expected output: 0xfacade00deadbeefcafebabefacefeed

15

Results: ADD loop

Results

• Goal: Increment a counter to 10,000 using a single instruction

• Instruction: add.w r1, r1 #1 repeated 10,000 times

• Result: 50.77% successful glitches

• 0xdeadd77f
• 0xeadc0789
• 0x1890

16

Results: ADD loop

Results

•

17

Results: ADD loop (0xdeadd77f)

Results

• Register r0 was first loaded with 0xdeadbeef

• This value now shows up in r1

• Subtract 0x1890 from the result

18

Results: ADD loop (0xeadc0789)

Results

• The same was true for this result

• When we subtract 0x1890 from result

19

Results: ADD loop

Results

• So how can this happen?

• We modified the processor instruction, instead loading r1 it loads r0

20

Results: ADD loop

Results

• How could we obtain the value of 0x1890

• Probably the counter was restarted, also this can be explained using a
modified instruction

• The AND instruction sets the counter back to 1 or 0

21

Bypass authentication

Results

• Goal: Attack a real-world scenario, in this case, password verification

• Result: 0.22% successful glitches

• Lots of possibilities for introducing
glitches

22

Results: Bypass authentication

Results

23

Conclusion

Conclusion

• There are two ways laser injection can be
performed - backside and frontside

• Power 20-25% of the maximum 20W seemed
to be most efficient

• Other variables differ per experiment

• We have proven to be able to modify processor
instructions

What is the security
impact of injecting laser

glitches into an ARM
based, Cortex-M4

microcontroller (MCU)?

24

Future work

Conclusion

• Use of different objectives: magnitude 20x or 50x to have smaller
spotsize and more precise aim

• Target specific features of the board e.g. the Read Data Protection
(RDP) byte

• Test other processors in Cortex family with more advanced security
features e.g. TrustZone or Memory Protection Unit (MPU)

25

Thank you! Questions?

Conclusion

