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SeaDataCloud

● SeaDataCloud is a distributed marine data infrastructure 
network in different geographical domains
○ 8 institutes with over 100 data centers
○ Aiming to make research data available to scientists

● Sharing large data sets becomes a challenge
○ Congestion
○ Interoperability
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SeaDataCloud
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Figure 1: Current SeaData cloud setup



SeaDataCloud

4Figure 2: Potential solution



Research question

● How to make the Persistent Identifier (PID) and NDN 
(Named Data Networking) namespace interoperable?
○ How to support different PID types?
○ How to incorporate extensibility for future PID schemes?

● How to plan and scale an NDN network?
○ Which NDN scaling problems are known?
○ Which method can be used to plan an NDN network?
○ How to deploy an NDN network in a scalable way?
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Outline

● Short introduction about NDN and PID
● Related work
● System architecture and virtualized NDN functions 

○ PID interoperability
○ Virtual NDN planning, automation and scaling

● Experiment results
● Conclusion and future work
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Why NDN?

● NDN is the most mature variation of ICN
○ ICN = Information Centric Networking
○ ndn-cxx solution was used in our proof of concept

● Forwarding based on name prefixes rather than IP
○ No end-to-end connections needed
○ Data cached on intermediary hops

7Figure 3: IP versus NDN



PID types
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Related work

● Rahaf Mousa
○ Focused on DOI > NDN

■ Concluded that PID > NDN is possible 
○ Most optimal caching strategy in NDN

● Andreas Karakannas
○ For every PID type a PID > NDN mapping server
○ States:

■ "PID > NDN mapping  will  be  highly  depended  on  the  clients  
NDN browser  which  will  need  to  be  updated  every  time  new  
rule  would  be  appeared  or changed"

● Spiros Koulouzis et al.
○ NaaS4PID

■ Supports one PID type 9



PID → NDN namespace interoperability

● Translation is transparent to the user
● Support for multiple PID types
● Extensible with future PID types with different naming 

schemes

Handle: [http://hdl.handle.net/]20/5000/481/objects/example_object  
NDN: /ndn/handle/20/5000/481/objects/example_object

URN: [http://resolver.kb.nl/resolve?urn=]anp:1938:10:01:2:mpeg21
NDN: /ndn/urn/anp/1938/10/01/2/mpeg21
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PID → NDN model
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Figure 4



Proof of concept
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How to make NDN scalable and software definable?

● Kubernetes
○ Open-source container-orchestration system

■ Deployment
■ Scaling
■ Management

● SDN-style control
○ Centrally deploy and configure containers (NDN functions)

■ Add roles (routers)
■ Configure routes
■ Allocate resources
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Architecture drawing - Proof of concept

14Figure 5



How to plan the NDN network

● The challenge becomes
○ How to manage/plan/deploy such a diverse infrastructure?

● Single description to plan and deploy needed
○ Is there an open standard available?
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How to plan the NDN network (TOSCA)

● What is TOSCA?
○ Topology and Orchestration Specification for Cloud Applications
○ Declarative Domain Specific Language (YAML/XML)
○ TOSCA descriptions → orchestrator
○ Used to describe complete lifecycle

■ Hosts (bare metal, VM, containers)
■ Software components (applications, databases, middleware)
■ Network components (load balancers, gateways, VNF’s)

● TOSCA is agnostic towards orchestrators
○ DRIP
○ OpenStack
○ And gaining popularity
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Different types in TOSCA to describe building blocks

● Eight different types to use
○ Node
○ Relationships
○ Artifacts
○ Capabilities
○ Interface
○ Groups
○ Policies
○ Data
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● Node
○ Host, container, VM, etc.

● Relationships
○ Connects nodes to each other
○ dependsOn, hostedOn, connectsTo

● Interface
○ Set of hooks
○ Actions to: Create, configure, 

start, stop or delete
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Figure 6: TOSCA diagram



How to make NDN software definable? (Kubernetes)

spec:
  hostname: ndn-router-1
  nodeName: mulhouse
  containers:
    - image: aqual1te/ndn:router3
      name: ndn-router1
      env:
        - name: gateway
          value: ndn-producer-2
        - name: routes
          value: /ndn/handle /ndn/ark
        - name: protocol
          value: tcp
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Demo
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http://www.youtube.com/watch?v=laOrVno-5_c


Conclusion
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● Deployment planning
○ TOSCA can describe complete lifecycle of infrastructure

● Easy scaling out to other clouds
○ VM’s used to allocate/deallocate resources in the cloud
○ Kubernetes used to scale in/out the application (NDN)
○ Bringing data closer to the user decreases latency and chance of 

congestion

● Interoperability between different PID types is possible
○ Adding new PID types is low effort cost



Future work

● TOSCA blueprints are conceptual
○ The VM and Kubernetes was deployed manually
○ Full implementation developed needed with an orchestrator such as 

e.g. DRIP

● NDN is still experimental
○ Explore performance bottlenecks (benchmarking)
○ Test routing protocols (e.g. OSPFN)

● Extent Kubernetes with intelligence
○ Where to deploy NDN routers (containers)?

● Incorporate the PID → NDN translation into NDN software 
natively
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Questions?
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Performance of proof of concept setup

● TODO: Graphs of NDN vs TCP/IP (boxplot or barplot)
● TODO: Explain why the performance differs
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Performance of proof of concept setup
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Performance of proof of concept setup

● Difference in percentage
○ 100MB file:

■ NDN (UDP) vs PID (TCP/IP): 27%
■ NDN (TCP) vs PID (TCP/IP): 150%
■ NDN (TCP) vs NDN (UDP): 98%

○ 1000MB file:
■ NDN (UDP) vs PID (TCP/IP): 18%
■ NDN (TCP) vs PID (TCP/IP): 24%
■ NDN (TCP) vs NDN (UDP): 5%
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NDN performance bottlenecks

● Underlay (TCP/IP)
○ UDP vs TCP
○ MTU sizes

● Processing problems in software
○ Slow packet decode functions 

(35.4% time spend on decoding)
○ Long names can degrade 

performance
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● Named data forwarding scaling
○ Routing table sizes
○ Forward strategies

● Named data caching scaling
○ Cache strategies + size

■ LCE (Leave Copy 
Everywhere)

○ Cache replacement strategies


