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Abstract

Pentesters perform an authorized simulated attack on a computer sys-
tem to find vulnerabilities. They need to log all the actions they do during
a test. Many pentests happen over the network and pentesters use dif-
ferent tools to execute their tests. During this research, we explore the
possibility of automatically recognizing these tools by only looking at the
network metadata. We use machine learning to create a model which per-
forms this classification. To create such a model, it needs example data
for the classes it needs to learn. This research covers the whole part of the
machine learning process, from creating traffic samples to preprocessing
the data to actually training and testing a model. The results of this re-
search show that preprocessing and classification can happen fast enough
to perform live during a pentest. For the limited number of classes we
defined, the resulting model is highly accurate. Further research is needed
to create a new model with enough classes for a pentester to actually be
able to classify most or all of their traffic.

1 Introduction

Penetration testing, short pentesting, is the task of evaluating the IT security
of any system by finding and exploiting vulnerabilities on that system. In the
pre-engagement phase of a pentest, the pentester and the client agree on the
scope of the test. This is written down in a document called the Permission
to Test document. The scope defines the limitations of what the pentester is
allowed to do on the system and how pentesters should spend their time[9].

For the auditability of the pentest, a pentester needs to record their actions.
This is useful for three scenarios. The first scenario is when a pentester wants
to prove that he performed certain actions. The second scenario is when a
pentester wants to prove that he did not perform certain actions. Finally, it can
be used as reminders for the pentester what he did in what order to help him
write a report.
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Pentesting is a creative process which is often done with a combination of
automated tools and manual investigation. These different tools create different
sources which can be used to create auditability. Examples of such sources
are the command line history, log files from tools, screen shots, and manual
notes[10]. The problem is that each tool leaves different traces on different
locations. One thing all the tools have in common (in a pentest over the network)
is that they send data over the network. A pentester could then capture their
network data from their own machine or all pentesters could connect to a central
server which does the classification for them and automatically combines the
results if desired.

For this research, we focus on using this network traffic as a source for
pentesting auditability. More specifically, we will apply machine learning on
the network metadata (IP and TCP headers). The reason for this is that there
are many different types of tools and we believe that each tool behaves differently
on metadata level. An example of this is a port scan sending a constant stream
of packets to the same IP address but to different ports whereas normal web
browsing would contain smaller bursts of traffic to different destinations with
larger intervals between destinations. Often, there are different tools for the
same purpose and using the same method. A machine learned model might
classify network traffic from these different tools in the same class but this does
not have to be a problem and might even be useful because often, the task a
pentester executes is more interesting than which tool he used.

In a best case scenario, a pentester would run a tool during the pentest that
records their network traffic and classifies it live. This tool would create an
overview of which action was performed at what time by the pentester. If a
pentester creates a new class of traffic which has not been learned by the model
yet, the model can be updated by uploading a file containing only traffic from
of this type.

We realize that there are other methods for classifying network traffic like
Intrusion Detection Systems (IDS). A specific example of an IDS is Snort. This
is a rule based system which means that a human usually creates a rule for each
type of traffic that needs to be logged/detected. These rules look for specific
patterns or strings in a packet header or payload. A deep understanding about
the attack is required to create such a rule. Our idea is that many different
classes of traffic can be recognized by only their metadata fingerprint. The
reason we do not look at the payload, is that machine learning uses statistics
on numbers and pattern recognition in text data (like the payload) is a whole
new field of study.

1.1 Research question

This research will not create a tool which has all the functions of the best case
scenario as described in the introduction. We will focus on creating a Proof of
Concept (PoC) which is able to preprocess network traffic and create a machine
learned model that is able to classify different specified classes of traffic using
pre-captured data.
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The research question we want to answer is as follows:

How applicable is using machine learning in network traffic classification for
pentesting auditability?

To answer this qustion, we define the following sub questions:

1. Is preprocessing and classifying fast enough to do it live?

2. What is the accuracy of the model?

2 Related work

2.1 Pentesting auditability

Maritsas and Tsiridis define one of the sources of auditability data as the com-
mand line in- and output. They propose a framework on how pentesting au-
ditability should be done among a team. They create a prototype implementing
this framework to enhance collaboration, action recording and documenting.
To record the actions of a pentester, they create a tool which captures all the
command line in- and output including timestamps[10].

Doorn and Spithoff create a network analysis tool for pentest auditability
based on TCP metadata. They define characteristics for port scans and for
reverse TCP shells by manually analyzing the data. Characteristics they look
at are TCP flags, SYN numbers and timing. They achieve 100% accuracy in
recognizing a port scan or a reverse shell. Unfortunately, they do not provide
data about the number of false positives this method produces. Because of this,
it is difficult to determine the value of this tool.[8]

2.2 Network traffic classification using machine learning

Zhang et al. propose a non-parametric approach to classifying network traffic[11].
The new framework they propose is Traffic Classification using Correlation
(TCC). They use Bag of Flows, BoFs to correlate traffic flows which are gen-
erated by the same application. They define a flow as successive IP packets
with the same five-tuple (src ip; src port; dst ip; dst port; protocol). They also
propose a novel nonparametric approach based on Bayesian decision theory for
the BoF model-based traffic classification. Finally, they use different nearest
neighbor (NN) techniques to implement TCC.

Ali et al. use different machine learning algorithms (J48 Tree, Nave Bayes,
Random Forest, Support Vector Machine) to classify a public data set con-
taining different network attacks (nmap, lan dos, buffer overflow, ftp write and
more)[1][4]. Nmap was best classified with J48, Random forest and SVM and
significantly worse with Nave Bayes. The public dataset they use dates back to
1999.

The dataset contains three different types of data:

• Basic features of individual TCP connections
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• Content features within a connection suggested by domain knowledge

• Traffic features computed using a two-second time window

Pacheco et al. created a survey on how machine learning is used in network
traffic classification[5]. During this research we will use the taxonomy of ma-
chine learning as they describe it in the following steps: Data collection, feature
extraction, feature reduction, algorithm selection and model deployment. For
data collection they describe three possibilities. The first one is real traffic which
has the advantage of being the best representation of real world traffic which
is what you aim for during data collection. The disadvantage is that in many
cases, this traffic is private. The second one is traffic generation. This means
that a researcher simulates real traffic conditions by modeling real interactions
through scripts. The last way to generate traffic is emulation which aims at
setting a scenario close to a real one and generate the traffic manually. During
this research, we will be emulating pentest traffic because this is the fastest valid
approach and data collection is not the main goal of this research.

For feature extraction, they propose statistical based features such as packet
length, graph based features which uses a graph of nodes in the network, time-
series based features like inter arrival times between packets and hybrid combi-
nations of these. During our research, we will use both statistical and time-series
based features.

3 Method

In most machine learning research, the general method is very similar. The goal
of machine learning is to create a model that makes predictions or decisions
without explicitly being programmed for that task. This requires a dataset
which can be used to train a model. The closer the dataset resembles the actual
data on which predictions must be made, the higher the accuracy of the model.
A dataset can contain a lot of noise and that is where preprocessing and feature
engineering come in. In machine learning, features are the properties of data
which you want to use to predict your result. The next step is to select an
algorithm which makes it possible to learn or create a model. Finally, this
model should be tested to verify its performance. The next subsections describe
these steps in more detail. The results of these steps are shown in Section 4.
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Figure 1: Flow chart of machine learning and classifying process.

3.1 Data source

The quality of the dataset is very important to gain desired results. Some
research use predefined or existing datasets. A very popular dataset is the
Knowledge Discovery and Data Mining Tools Cup (KDD Cup) from 1999[4].
This dataset is not a raw packet capture but already preprocessed data. The
features in this dataset can be split in three categories: basic TCP features,
features with domain knowledge and features based on a two-second time win-
dow. An advantage of using a pre-existing dataset is that if a popular dataset
is used by multiple researchers, it provides a fair way to compare their results.
A disadvantage of using an existing dataset is that the chance is low that it is
a good representation of the real world scenario where the model will have to
operate. In this research, the goal is to create a PoC for pentesters to help them
classify their data. We want pentesters to be able to define their own classes of
data. Because of this, we will create our own data sets for training and testing
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the model. This allows us to execute the machine learning process from start
to end and to modify and improve the process after reviewing the results.

We want our model to be able to make a prediction between the following
classes:

3.1.1 Dirbuster

Dirbuster is a tool that uses a wordlist to brute force directories and files on web
and application servers.1 This means that the number of packets per second
will be high, server side ports will usually be 80 or 443 and the tool will not
connect to other ports or other destinations.

3.1.2 Nmap

Nmap is a network discovery and port scanning tool.2 It sends specially crafted
IP packets to the target(s) and based on the (lack of) response, determines
if the target is online and which ports have services listening and responding
on them. For our PoC, we use Nmap to only scan a single target using three
different techniques, giving us three classes of data.

SYN scan The Nmap SYN scan is the default and most popular scan type.
This scan crafts and sends TCP SYN packets to a number of ports on the target
(1000 by default). If the port is open, the target sends a SYN/ACK packet back
and Nmap sends a TCP Reset (RST) packet to close the connection before it
is fully established. If the port is closed, the target will reply to the SYN
with a RST packet. If the target does not respond at all to the SYN packet,
Nmap sends a number of retransmissions, based on packet loss statistics, before
continuing with the next port.

ACK scan The Nmap ACK scan is used to see if a firewall is active on
the target ports. Nmap sends an ACK packet to the target. Default TCP/IP
behavior would be for the target to send a RST packet. Lack of this response on
a host that is confirmed to be online, indicates that this port might be filtered
using a firewall.

TCP connect scan The Nmap TCP connect scan tries to establish a full
TCP connection to the host: It sends a SYN, expects a SYN/ACK and sends an
ACK to establish the connection. This scan is used for the same purpose as the
SYN scan but then for users that lack permissions to handcraft packets. These
packets are crafted by asking the Operating System to establish a connection,
which is an operation non-superusers are allowed to do. After establishing a
connection, Nmap immediately closes the connection by sending a RST.

1https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
2https://nmap.org/
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3.1.3 SSH

Establishing a secure shell (SSH) connection to the target is also common during
a pentest. By default SSH listens on TCP port 22. For each character that is
typed in an SSH command prompt, four TCP packets are generated:

1. Client ⇒ Server: Character ‘C’ typed.

2. Server ⇐ Client: ACK

3. Server ⇐ Client: Character ‘C’ appeared on the screen.

4. Client ⇒ Server: ACK

Depending on the server, the second and third message might be combined for
optimization purposes.

3.1.4 Web browsing

For the final class, we captured the packets of a user browsing the web on both
HTTP and HTTPS webistes.

3.1.5 Capturing packets

For each of these classes, we create a packet capture using tcpdump. To make
sure we only capture the relevant packets, we filter tcpdump on the host IP
address of our target. This ensures that we will not capture noise generated by
other applications running on our host device.

These captures are the source for our ground truth. Ground truth are the
labels corresponding to datapoints considered/assumed to be true used for train-
ing and testing. Not per definition always true, as it is a measurement that can
contain errors. The cleaner and more complete the ground truth is, the better
the algorithm will be able to learn the correct behavior.

The results of the data gathering step are multiple packet capture (pcap)
files, each labeled with their class name. These files are binary data and not
yet ready for machine learning, as that needs numerical input. Parsing of these
pcaps to numerical data is part of the preprocessing step.

3.2 Preprocessing

3.2.1 Parsing PCAP

During the preprocessing task, we parse the raw pcap output from tcpdump
to numerical values to create valid input for any machine learning algorithm.
This research uses network traffic meta data as data source. Specifically, we
focus on the IPv4 and TCP headers. We have to choose between either TCP
or UDP and either IPv4 and IPV6 because we have to create a data structure
that is the same for each packet. TCP and UDP have different header fields
and parsing them will result in different columns. Adding both to the same
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data structure would lead to empty fields for one of the two for each packet and
machine learning algorithms can not handle empty fields. A possible solution
for this could be to fill the empty fields with zeros but for our PoC we leave this
out to reduce the complexity. We choose TCP and IPv4 over UDP and IPv6
because these are the types supported by all the classes of data we choose.

As the payload of the different types of packets will have different formats,
this research focuses on the values of the TCP and IP header fields. We will
use Scapy, a network packet manipulation tool running on Python, to parse the
packets to their values. Appendix A and Appendix B show the values from the
IPv4 and TCP headers as Scapy parses them.

One problem with the output from the parsed pcap, is that not all data is
numerical. IP addresses are saved as strings and the options field in the IP
header is an array printed as a string as well. The first problem with the IP
addresses will be fixed during the feature engineering step. For the IP options
field, we choose to not differentiate between the different options in our feature
set but, for each packet, count the number of IP options that are set. As the
IP options field is rarely used, a tool that does use it, can be identified by it.

3.2.2 Feature engineering

When we have parsed the data, we have a table where each row is a packet
and each column corresponds to a TCP/IP header value. All these columns are
called features and they represent the measurable properties of a packet.

The next step is to transform the features from their current value to more
relevant values. This is called feature engineering. The features, as they are
in the table, do not tell us everything we could know about those packets even
though some information is actually in the table of data. If a human sees many
packets per second, they would recognize this but, based on the current features,
a computer wouldn’t. The context in which a packet is measured is important
to recognize which tool might have created the packet. We define the context
based on time. That is why we will modify the following features:

Time The timestamp of a packet does not give us any indication of which
class a packet belongs to. However, it does give us a way to create context
for new features like: number of packets with the same destination IP address
as this packet in 0.2 seconds before and after the current packet. This method
originally comes from [4] where they use 2 seconds, but we choose 0.2 seconds
because some of our data captures last less than 10 seconds. Having a total of
4 seconds (2 before and 2 after each packet) of context time would take up a
large portion of that scan, resulting in too small differences per packet.

IP addresses (source & destination) The IP addresses are not related
to the class of traffic because in each scenario, the addresses will be different
from the addresses being used for training the model. However, the number of
packets within a set time frame coming from the same source or going to the
same destination does actually say a lot about the class of traffic. Tools which
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are brute forcing anything over the network, like an Nmap scan or a dirbuster
attack, send many packets to the same host in a short amount of time.

TCP ports For classifying between different types of traffic, the source and
especially the destination ports are useful because generally the same application
runs on the same port. To recognize portscanners, it is also interesting how
many packets within a certain timeframe went to the same port. That is why
we introduce the fields same src port and same dst port. These fields contain
the number of packets in 0.2 seconds before and after the current packet with
the same source or destination port.

The following pseudocode shows how the number of packets with the same
source address before and after each packet are counted. This works the same
for the other context features. It is important that this algorithm is efficient
because calculating these features must be done for both training and using the
model. If it has a higher than linear time complexity, it would not be possible
to calculate these features live during an intense packet capture. During this
algorithm, we keep a list which has a count for each possible value of ‘source ip’
which is updated for each packet. The algorithm loops over all the packets in
the network data N once. Within this for loop, there are two while-loops; one
to manage the beginning of the ‘context time frame’ and one to manage the
end. Within these while-loops, the indices ‘before’ and ‘after’ are increased by
one and the new values are kept during the start of the next loop. This means
that after the algorithm has finished, the three values b, c, a have gone from
zero to |N | (the numer of rows in N). All the individual operations in this code
are O(1): accessing value in array, accessing and modifying value in hash table.
This makes the total time complexity of this algorithm O(N).
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Algorithm 1 Create context feature: same src

INPUT: Two dimensional array of network data N [][] where each row is a
packet and each column is a feature. Context time T is the time in which pack-
ets before and after the current packet are counted.
OUTPUT: Two dimensional array of feature-engineered network data F con-
taining original features and the feature same src.

c is the index of the current element in list N
b (before) is the index of the first element in N where Nc.time−Nb.time ≤ T

a (after) is the index of the last element in N where Na.time−NC .time ≤ T

src count is a hash table with default value 0. It keeps the number of times
each source address is present within the context time.
F is a copy of N with extra column same src
for all packets Nc in N do

if C > 0 then
src count[Nc−1.src]+ = 1
src count[Nc.src]− = 1

end if
while Nc.time−Nb.time > T do
src count[Nb.src]− = 1
b+ = 1

end while
while a + 1 < |N | and Na+1.time−NC .time < T do
a+ = 1
src count[Na.src]+ = 1

end while
Fc.same src = src count[Nc.src]

end for
return F

3.3 Training

To train the model, we first have to choose an algorithm. We use the Python
library scikit-learn which has many machine learning algorithms built in. They
published a flowchart on their website to help determine which algorithm is best
for the task at hand3. Following this chart, the first algorithm we end up with is:
Linear Support Vector Classification (SVC). The path we follow here is: (More
than 50 samples: Yes), (Predicting a category: Yes), (Do you have labeled data:
Yes), (Less than 100K samples: Yes). Besides this, many related works include
SVM as one of the classifiers for network traffic classification[2][6][7].

So we will train the model using the Support Vector Machine (SVM) algo-
rithm. SVMs are well known supervised binary classifiers. Supervised means

3https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
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that learning the model requires training data which is already classified. A bi-
nary classifier is able to classify between two classes. Of course, we have multiple
classes and thus need multi class classification. For N classes, this is possible
by creating a classifier between each combination of classes. With four classes
A, B, C, D, this is a classifier for: (A,B), (A,C), (A,D), (B,C), (B, D), (C,D).
The pattern here is that there are (N − 1) + (N − 2) + ... + 1 classifiers, which
can be rewritten to n · (n− 1)/2. This is known as the handshake problem.

SVM creates a hyperplane of d − 1 dimensions in an d-dimensional space
where d is the number of features of the dataset. In a two dimensional space, this
would look as shown in Figure 2. The dotted lines are the margins. To calculate
the margin in Figure 2b, the distance from each of the points to the hyperplane
is calculated and the margin on each side is the distance from the closest point
to the hyperplane. In Figure 2b, you can see that there are datapoints within
the boundaries of the margin. This is possible because of the so called penalty
term (we call this term C). A low small penalty term allows more datapoints
to fall within the margin, resulting in a larger margin. A larger penalty term
makes it less likely for datapoints to fall within the margin, resulting in a smaller
margin.

If all the training data is correctly classified, a larger penalty term would
lead to a more accurate classifier. If the training data contains errors or outliers,
it is preferable to decrease the penalty term so that they do not influence the
hyperplane too much. Choosing a large penalty term, could lead to overfitting
on the training data. Overfitting is the problem where the model is too specific
for the training set and the training set is not a good representation for the real
world. An example of how this could happen in our dataset is when the training
data contains outliers like packets from another tool. With a high penalty term,
the model tries to find a hyperplane that still includes those packets. With a
lower penalty term, these packets are excluded from the model.

(a) Small margin, large penalty term C (b) Large margin, small penalty term C

Figure 2: SVM hyperplanes 4
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Other than the penalty term, the ‘kernel’ is a parameter which can be tuned
for SVM. Figure 2 shows a linear kernel, which generates a linear hyperplane
(in 2D dimension a straight line). Other kernels are a polynomial kernel and
the ‘Radial Basis Function’ (RBF) kernel. The polynomial kernel creates a
polynomial hyperplane and the RBF kernel can create circular hyperplanes,
which is usefull if class A is a cluster of points and class B are data points all
around this cluster. As explained at the start of this section, our PoC is written
in python using the scikit-learn svm.svc implementation with a linear kernel.

3.4 Testing and verifying

We split our dataset into a smaller trainingset and a larger testset. The model
will be created using the trainingset. To test the accuracy of the model, we use
the F1-score which is the harmonic mean of the precision and recall. This is a
widely used metric for the performance of classification models [11].

In binary classification, there are two classes usually called Positive and
Negative. The classification metrics are then created using a confusion matrix
shown in Table 1.

Predicted class
Positive Negative

Actual class
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 1: Confusion matrix for binary classification

Precision or Positive Predicted Value (PPV) is the number of True Positives
divided by the sum of True Positives and False Positives:

PPV =
TP

TP + FP

Recall or True Positive Rate (TPR) is the number of True Positives divided by
the sum of True Positives and False Negatives:

TPR =
TP

TP + FN

Looking at Table 1, the precision only uses values from the first column and
the recall uses the values in the first row.

For multiclass classification, the confusion matrix grows to a table of n ∗ n
with n being the number of classes. The precision and recall are then calculated
per class. A True Positive is an item where the predicted and actual class is the
same. False Positives for class c are all the items where the predicted class is c
and the actual class is not c. False negatives for class c are all the items where
the actual class is c but the predicted class is not c. This way, the precision and

4https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html
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recall can be calculated for each class. The F1-score is the harmonic mean of
the precision and recall:

F1 = 2 · precision · recall

precision + recall

The Nmap scans for the top 1000 ports contain between 2000 and 3000
packets. From all our classes, these have the fewest number of packets. Large
discrepancies between the number of packets per class can lead to bias in the
model [3]. To prevent this, we choose to cut off the datasets of our captures for
this PoC after the first 3000 packets. Per class, all the packets come from the
same capture, which could lead to overfitting. To test for this, we also check our
model with separate captures. The results of this are shown in Section 4.2.1.

4 Results

This section contains the results for the experiments based on our method and
research question. To make reproduction of our results possible, the code of
our PoC is online available on GitHub5. During these experiments we focus on
speed and accuracy to be able to say something about applicability.

4.1 Capturing & preprocessing

In this section, we show for each class the number of packets that we use during
this research and the time span in which they were captured. If these times are
longer than the preprocessing and classification times, this would indicate that
during a pentest, preprocessing and classification could be performed live.

Class #Packets Capture time(s) Preprocessing time(s)
Dirbuster 3000 4.50 2.24
Nmap ACK 2641 8.37 1.72
Nmap SYN 2451 5.90 1.63
Nmap TCP 2306 17.00 1.5
Web browsing 3000 333.46 2.26
SSH 3000 122.63 2.33

Table 2: Preprocessing times for each data class

Table 2 shows that the ‘brute force classes’ have significantly shorter capture
times than the web browsing and SSH classes and thus more packets per second.
For all the classes the preprocessing times are shorter than the capture times.
This makes the idea of live preprocessing and classification possible.

In Section 3.2, we showed that preprocessing has a linear time complexity,
meaning that double the number of packets, would double the time needed for
preprocessing. This makes it scalable for a larger number of packets.

5https://github.com/THuizinga/Pentest-network-traffic-classification
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4.2 Model learning

This section shows the process and results of creating the machine learned clas-
sification models. We find flaws with the first model we create and try to fix
them in the next model.

4.2.1 First training

For the experiments in this section, we train the model using the six data classes
as mentioned before, different values for error term C (0.1, 1, 10) and two
amounts of packets (150, 300) as training data. Table 3 shows the most im-
portant results for the trainingset of 150 packets and Table 4 shows the results
of training with 300 packets. The total dataset is here 15000 packets and the
data that is not being used for training, is used for testing the accuracy and
calculating the F1-score. Splitting the data in separate training and test sets is
done randomly and we repeat each experiment 5 times to get reliable results.

C=0.1 C=1 C=10
Training time (s) 9.6766 9.5322 3.361
Classifying time (s) 0.0398 0.042 0.0394
Average F1 score 0.892 0.896 0.892

Table 3: Overview results of size trainingset = 150 packets

C=0.1 C=1 C=10
Training time (s) 118.525 42.3954 28.2364
Classifying time (s) 0.045 0.0442 0.0446
Average F1 score 0.942 0.96 0.958

Table 4: Overview results of size trainingset = 300 packets

The most important conclusions we can make from these results is that a
higher value for the error term C leads to a faster training time with minimal dif-
ferences in the F1-score. A larger penalty term means that the algorithm allows
less items to fall within the boundaries of the hyperplane, and thus choosing a
hyperplane with a smaller boundary.

We can also see that doubling the number of packets to train the classifier,
resulted in more than linear growth of training time. This is expected because
the SVM algorithms training time is more than quadratic with the number of
input samples. Relatively, the training time for C = 1 increased the least.

Testing with new unbiased dataset The previous accuracy tests were done
by randomly splitting the data in a test- and trainingset. Each class of data
from this dataset contains packets of one capture. This means that the highly
accurate results might partially be due to overfitting on the data. To test if
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this is the case, we create a new packet capture of an Nmap SYN scan with a
different target.

Dirbuster Nmap ACK Nmap SYN Nmap TCP SSH Other
1716 39 48 1 37 159

Table 5: Nmap SYN scan classification results without overfitting

Table 5 shows that most packets have been classified as Dirbuster traffic even
though it was a SYN scan. Only 48 out of 2000 packets are classified correctly.
This indicates that the high accuracy scores shown previously are indeed an
indication of overfitting. One possible cause for this overfitting is that there
are features which are capture-specific. Because of this, in the next model we
create, we will exclude the following features:

• IP Identification

• IP checksum

• TCP source port

• TCP destination port

• TCP checksum

The reason we also exclude the TCP ports, is because although the ports of
our target are fixed in our experiments, the ports from where we run our tools
are chosen by the OS and different each time.

4.2.2 Training without capture-specific ports

Now that we have removed theses features, we will create a new model with the
same dataset. The results of this training are shown in Table6.

The first thing we notice is that the model performs much better with an
average F1-score of 0.99. This is a great improvement and shows that the
model with the capture-specific features indeed used those features to make the
predictions. Now we will again test our model with newly created Nmap scans
on a different destination compared to the trainingset.

Testing with new dataset Table 7 shows the result of classifying an Nmap
SYN, ACK and TCP scan with a different destination than used in the train-
ingset. As we can see, the recall values for the ACK and TCP scans are similar
to the values in Table 6. The Nmap SYN scan has a lower performance than
before. This is mainly due to 114 packets being classified as a TCP scan and
71 packets as a Dirbuster scan. We will look more closely to the packets which
are misclassified as TCP.

The model is a combination of classifiers for each combination of two classes
separating them. We can inspect the classifier between Nmap SYN and Nmap
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Precision Recall F1-score Support
Dirbuster 0.99 1 0.99 2841
Nmap ACK 0.99 1 0.99 2508
Nmap SYN 1 0.98 0.99 2320
Nmap TCP 1 0.99 0.99 2197
Web 0.99 0.99 0.99 2859
SSH 0.99 0.99 0.99 2854

Average 0.99 0.99 0.99 15579

Training time (s) 10.172
Number of training packets 819
Classification time (s) 0.040
Number of classification packets 15579

Table 6: Training results without capture-specific features

Predicted class
Dirbuster Nmap ACK Nmap SYN Nmap TCP Web Recall

Nmap ACK 0 2802 1 20 0 0.99
Nmap SYN 71 21 2563 114 2 0.92
Nmap TCP 8 6 0 2584 2 0.99

Table 7: New Nmap scan classification results

TCP. For each feature, it has a weight of how important that feature is for that
classifier. The feature with the highest weight between the Nmap SYN and
TCP scan is same sequence number. This feature counts the number of packets
with the same sequence number 0.2 seconds before and after the current packet.

If we look at Figure 3, we see that most of the values for same sequence
number for the Nmap SYN scan are very different from those of the TCP scan,
but a small portion falls within the small range of the TCP scan. We believe
this could be one of the causes for the misclassification.
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Figure 3: Distribution of ‘Same sequence number’ for Nmap TCP and SYN
scans

5 Conclusion

5.1 Classifying time

The results in Section 4.1 show that the time to preprocess the data was always
at most half the time in our experiments than the time needed to capture the
data. The time needed to classify 15579 preprocessed packets is 0.04 seconds.
This is a clear indication that during a pentest, data could be processed and
classified live so that the pentester can see the results during and directly after
the test without delay.

5.2 Model accuracy

In Section 4.2, we show that the accuracy of the model greatly depends on the
features that are used. It is important to avoid features that are capture-specific.
Such features result in a model that takes longer to learn, is less accurate and
has a higher possibility to overfit on these features. We also tested the model
with new captures to a different target (just like different pentests have different
targets). This test shows that there has been some overfitting in the original
results but that the classification still had an average recall of 0.97. This is
comparable with the results from [1].
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5.3 Applicability for pentesters

For a pentester, these results would need to be converted to a list with tools
that are ran with corresponding timestamp. This could be done by counting the
number of packets within a certain time frame that are classified as class X. For
each tool the (minimum) expected number of packets would need to be known
to create a threshold. If the number of packets counted for X come above this
threshold, the conclusion would be that tool X has been run.

The lowest support value in our final model is 0.92. Setting this threshold
to 90% of the expected (minimum) number of packets should be a safe value
to identify different classes of traffic. This method would still have the risk of
misclassification if many packets are misclassified as one class but it does reduce
noise of all the single misclassifications. In this form, we do believe that machine
learning could be a useful addition to pentesters for their auditability, but only
as a supporting tool which results still need to be verified by the pentesters
themselves.

6 Discussion

6.1 Unknown classes

The model needs to be trained for each tool a pentester uses during a test. If the
model has to classify traffic from an unknown class, it would be classified as the
known class with the most resemblance. It is not possible to create one ‘other’
class that catches all unknown classes because if each class is a cluster in a multi-
dimensional graph, ‘other’ traffic would be on multiple sides of different classes,
making it impossible to create a correct hyperplane separating the classes.

6.2 Running multiple tools parralel

The network captures used in this research, always contained traffic from one
specific tool. If, during a pentest, multiple tools are ran at the same time,
this influences the time-based features. This could make it look like one tool is
sending many packets per second which can impact classification.

6.3 Differences in network speed

Differences in network speed between training and real world data might result
in misclassification because the number of packets per second are different. This
could be partially fixed by having one feature containing the number of packets
per second and the other time-based features being the a ratio to that value.
Another feature type that could be interesting are context features which are
not based on time but on a set number of packets before and after the current
packet.
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6.4 Metadata versus payload inspection

This research focuses on metadata because the IP/TCP headers always have
the same format which makes them easy to parse. The six classes we defined
during this research were very good distinguishable based on metadata only. In
a real world scenario, there might be many more classes which are harder to
distinguish from each other by metadata. Using domain knowledge about those
classes, would then be a solution. This does take a bit away from the idea of
machine learning for which no domain knowledge is needed but a combination
of the two might give a powerful tool.

7 Future work

7.1 Diversify training data

The training data is currently not very diverse because it contains one capture
per class of data. A more diverse trainingset with captures on different targets
and on faster and slower networks would make a more complete representation
of real world data.

Further the dataset needs to be expanded to include all the classes of data
a pentester needs to classify.

7.2 Other algorithms

This research focussed on Support Vector Machines with a linear kernel. Re-
search on other machine learning algorithms would be useful to see if that re-
sults in faster or more accurate models. Suggestions for other algorithms are:
K-nearest neighbors, SGD classifier and decision trees.

7.3 Extend feature set

The current feature set could be extended with relative time based features and
context features based on a set number of packets before and after the current
packet as described in Section 6.3. Furthermore would features based on the
payload of a packet be useful as described in Section 6.4.
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A All fields parsed from the IP header

Field (feature) Possible values
Time (Seconds since epoch) 1562072053.48703
IP version 4
Internet Header Length 5 to 15
Type of Service/ DiffServ 0 to 255
Total length 20 to 65535
Identification 0 to 35535
Flags 0 to 5
Fragment offset 0 to 65528
Time To Live (TTL) 0 to 255
Protocol 0 to 255
Chekcsum 0 to 65535
Source address String: e.g.: 127.0.0.1
Destination address String: e.g.: 127.0.0.1
Options Array as string: [ ]

Table 8: IPv4 header fields output from Scapy
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B All fields parsed from the TCP header

Field (feature) Possible values
Source port 0 to 65535
Destination port 0 to 65535
Sequence number 0 to 4294967296
Acknowledgment number 0 to 4294967296
dataofs 5 to 15
reserved 0
FIN flag 0 or 1
SYN flag 0 or 1
RESET flag 0 or 1
Psh flag 0 or 1
ACK flag 0 or 1
Urg flag 0 or 1
Ece flag 0 or 1
Cwr flag 0 or 1
Window size 0 to 65535
Checksum 0 to 65535
Urgptr 0 to 65535

Table 9: TCP fields parsed with scapy
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C All features

ip version
ihl
tos
ilen
IP flags
frag
ttl
IP protocol
same src
same dst
ip options
same src port
same dst port
same seq
dataofs
reserved
same tcp flags
fin
syn
rst
psh
ack
urg
ece
cwr
window
urgptr

Table 10: All 27 features used for learning
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