

802.11AX: NEXT GENERATION WIFI

1024 QAM & OFDMA

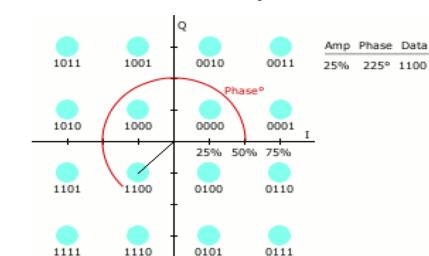
Daan Weller & Raoul Dijksman

Arjan van der Vegt (avdvegt@libertyglobal.com), Jan-Willem van Bloem (jvanbloem@libertyglobal.com)

WIFI 6 - 802.11AX

The 802.11ax amendment focuses on High Efficiency (HE):

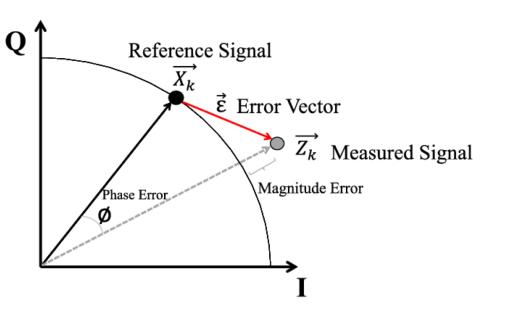
- Increased number of bits in encoding
- Increased bandwidth efficiency
- Increased spatial efficiency

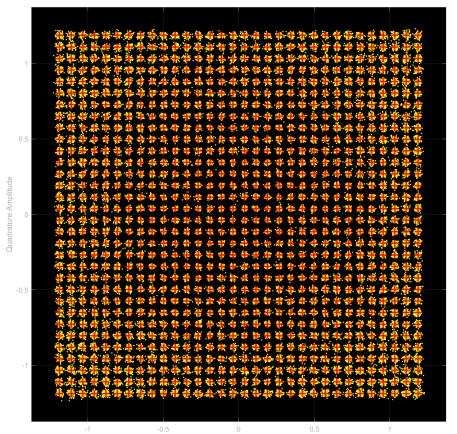

Examples of introduced features are:

Generation		IEEE standard					
Wi-Fi 6	6	802.11ax					
Wi-Fi 5	(802.11ac					
Wi-Fi 4	A	802.11n					

- 1024 Quadrature Amplitude Modulation (QAM)
- Orthogonal Frequency Division Multiple Access (OFDMA)
- Multi-User Multiple-Input Multiple-Output (MU-MIMO)
- Basic Service Set (BSS) colouring

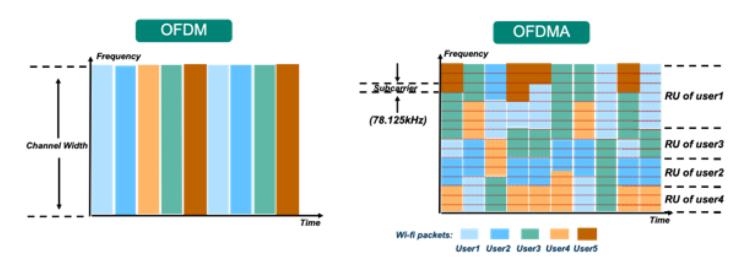
QUADRATURE AMPLITUDE MODULATION (QAM)


- Amplitude and Phase
- Number of points in constellation diagram = 2^{bits}
- 1024 QAM: expected +25% throughput
- Encoding 3/4 and 5/6
- Modulation & Coding Scheme (MCS)
 - MCS 8: 256 QAM, 3/4
 - MCS 9: 256 QAM, 5/6
 - MCS 10: 1024 QAM, 3/4
 - MCS 11: 1024 QAM, 5/6


16 QAM constellation diagram

1024 QAM - EVM

- Constellation reference points
- Error Vector Magnitude (EVM)
- EVM threshold per level of QAM
- Thresholds:
 - 256 QAM: -32 dB
 - 1024 QAM: -35 dB


1024 QAM - CONSTELLATION DIAGRAM

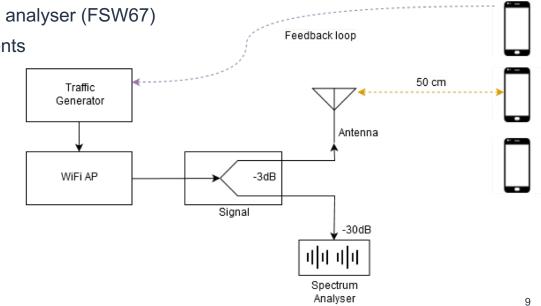
In-phase Amplitude

ORTHOGONAL FREQUENCY DIVISION MULTIPLE ACCESS

- Multiplexing over bandwidth
- Resource Units (RU)
- Scheduler

RU ALLOCATION INDEX

Allocation Index	20 Mhz Subchannel Resource Unit Assignment								
0	26	26	26	26	26	26	26	26	26
1	26	26	26	26	26	26	26	5	2
2	26	26	26	26	26	52		26	26
3	26	26	26 26		26	52		52	
4	26	26	52		26	26	26	26	26
5	26	26	5	2	26	26 26		52	
6	26	26	5	2	26	5	2	26	26
7	26	26	5	2	26	5	2	52	
8	52		26	26	26	26	26	26	26
9	5	52		26	26	26 26		52	
10	5	52		26	26	52		26	26
11	5	2	26	26	26	52		52	
12	5	2	52		26	26	26	26	26
13	5	2	52		26	26 26		52	
14	5	2	52		26	52		26	26
15	5	2	52		26	52		52	
16-23(15+N)	5	52 52		2	0	106 (N		vusers)	
24-31(23+N)		106 (N	users)		0	52 52			


RESEARCH QUESTION

What is the performance of 1024-QAM and OFDMA of 802.11ax on state of the art implementations?

- What is the benefit of introducing 1024-QAM modulation compared to 256-QAM in terms of throughput?
- What is the benefit of the addition of OFDMA in terms of latency?

EXPERIMENT SETUP

- Reference boards of two vendors are compared
- Samsung S10 as 802.11ax capable clients
- Rohde & Schwarz signal & spectrum analyser (FSW67)
- Conducted transmission measurements
- Traffic generator using IxChariot
- Inside RF shielded room

ACCESS POINT SETUP

• AX mode

- Channel 140 on 5 GHz spectrum (5.7 GHz)
- 20 MHz bandwidth
- One spatial stream
- Guard interval of 0.8 µs
- Transmit power 24 dBm

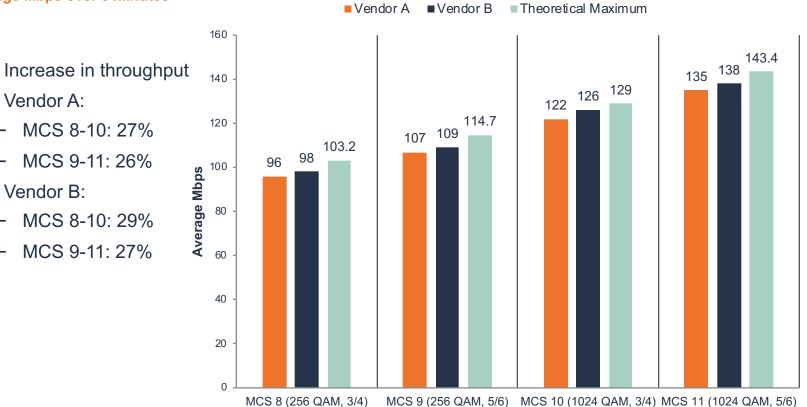
1024 QAM METHODS & RESULTS

QAM METHODS

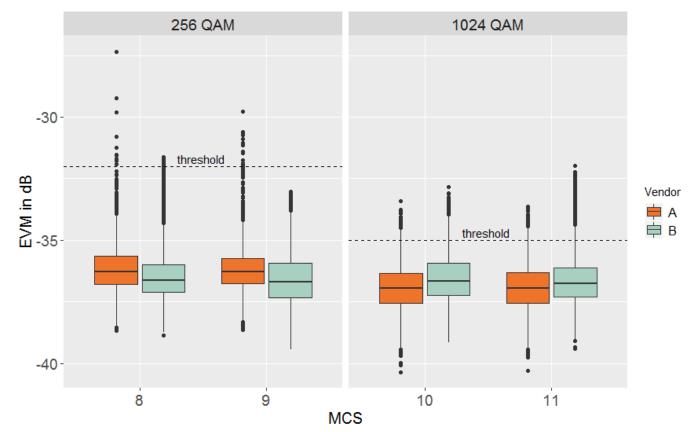
- Four measurements per vendor
 - MCS 8, 9, 10 and 11
- IxChariot UDP throughput test for 5 minutes
- One client
- Make a capture with Matlab every 30 seconds
 - 1 million samples over 25 ms
- Analyse results:
 - Calculate the average throughput
 - Calculate the EVM of the HE packets in the captures using MatLab
 - Estimate theoretical distance of 1024 QAM
- OFDMA is disabled

QAM RESULTS - THROUGHPUT

Average Mbps over 5 minutes

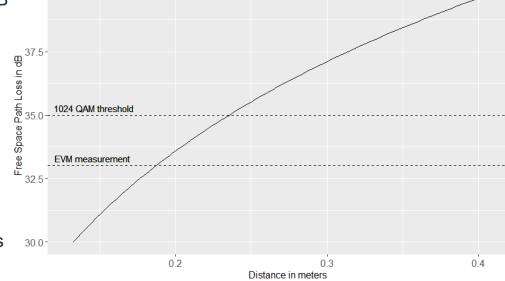

•

_



_

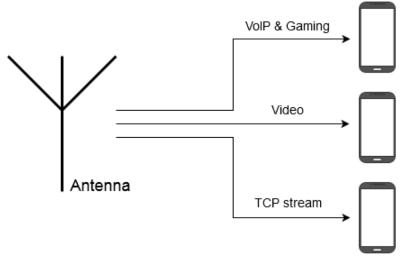
QAM RESULTS - EVMS


EVM measurements per MCS for each vendor with 33 dB attenuation

QAM RESULTS - DISTANCE

Estimate of theoretical distance

- At 33 dB attenuation EVM ≈ -36.76 dB
- Free Space Path Loss at 5.7 GHz
- FSPL.distance(33) ≈ 19 cm
- -35 + 36.76 = 1.76 dB
- FSPL.distance(33+1.76) ≈ 23 cm
- No antenna gain or cable loss!
- E.g: antenna gain = 6 dBi
- 23 * 6dB = 92 cm
- Wooden door: 6-7 dB at 5 GHz bands


Free Space Path Loss at 5.7 GHz

40.0

OFDMA METHODS & RESULTS

OFDMA METHODS

- Two measurements per vendor
 - OFDMA enabled vs disabled
- IxChariot home environment traffic profile to 3 clients for 5 minutes
 - VoIP and Gaming to client 1
 - Video to client 2
 - TCP stream to client 3
- Make a capture every 30 seconds
 - 1 million samples over 25 ms
- Analyse results:
 - RU allocation using MatLab
 - Latency measurements
 - Air time saturation

OFDMA RESULTS

- Results are vendor specific:
- Vendor A has OFDMA scheduler implemented
 - Number of OFDMA frames is dependent on:
 - Buffer sizes
 - Number of clients
 - Packet size
- Vendor B has no scheduler implemented
 - OFDMA frames configuration is binary
 - Either 100% or 0% OFDMA frames are sent
- Therefore results will be considered individually

OFDMA RESULTS - VENDOR A - RU ALLOCATION

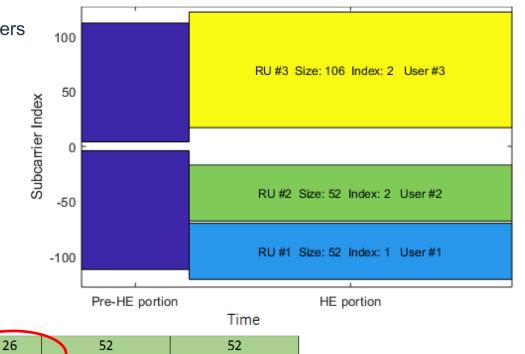
• Dynamic RU allocation for three users

52

52

• Allocation index 16

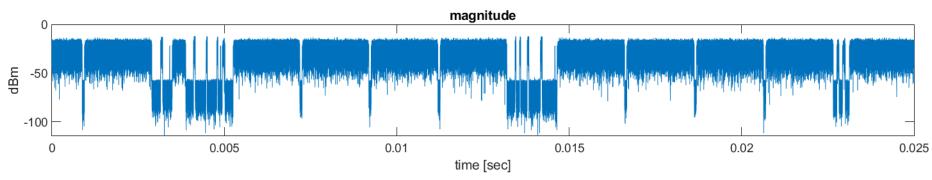
52


52

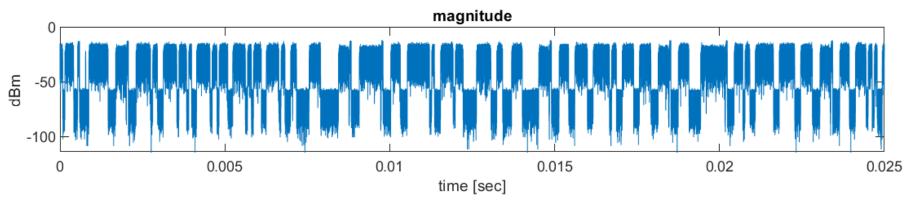
RU allocation index

15

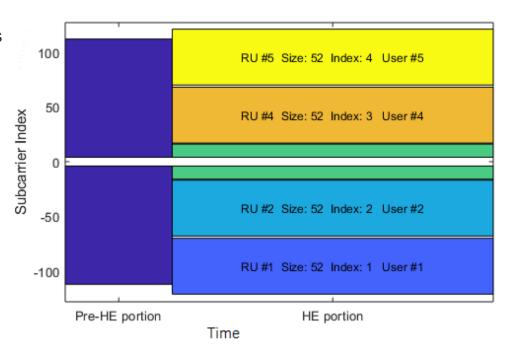
16-23(15+N)


• 1/9 of the bandwidth lost

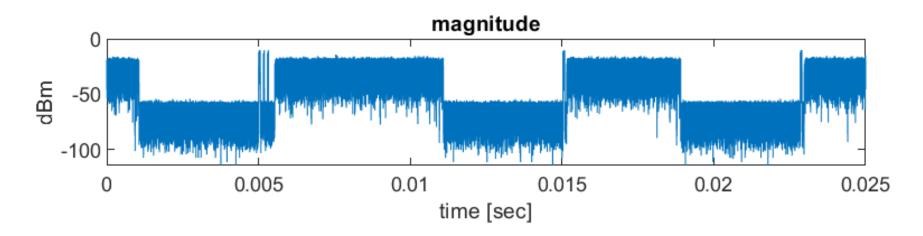
106 (N users)


OFDMA RESULTS - VENDOR A - HOME ENVIRONMENT

- Link heavily used
- Yet only 1.15% of the traffic was OFDMA
- · Low chance of having packets to multiple users at a single moment
- Packet size matters
- Nothing about the influence of OFDMA on the latency could be said


OFDMA RESULTS - VENDOR A - UNREALISTIC PROFILE

- Streaming 18 Mbps with packets of 448 bits to each client
- Only 36% of the traffic was OFDMA
- One-way delay average:
 - OFDMA: 7 ms
 - Without: 5 ms


OFDMA RESULTS - VENDOR B - RU ALLOCATION

- Fixed resource allocation
- Only supports a few allocation indices
- Allocation index for 5 users used
- Only 3 RUs used
- Unused RUs are padded
- Results in unused bandwidth

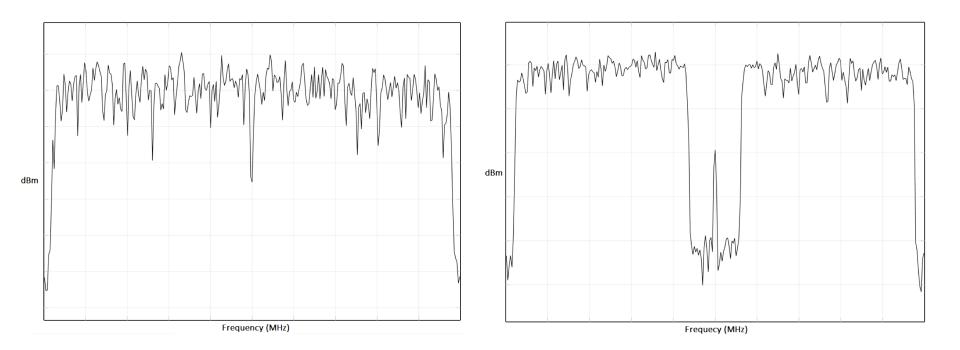
OFDMA RESULTS - VENDOR B – HOME ENVIRONMENT

- 100% of traffic was OFDMA
- Low air time saturation
- Expected buffer timeouts
- Average latency decreased slightly to 4 ms compared to 7 ms

CONCLUSION

- 1024 QAM
 - Maximum throughput increased by 27% (between 8-10 and 9-11)
 - Close to theoretical max
 - Low distance of operation
 - EVM improvements also for lower MCS levels
- OFDMA
 - Latency not decreased within this test environment
 - Scheduler dependant:
 - Packet size, link saturation, number of clients
 - Can also increase latency
 - No benefit in home environment

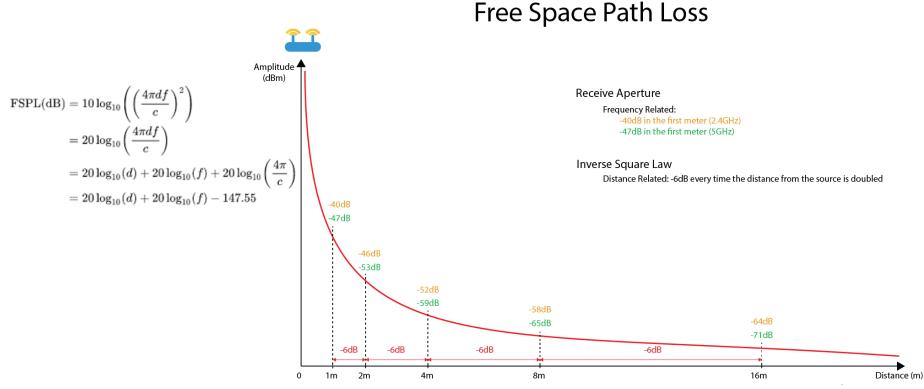
FUTURE WORK


- 1024 QAM distance in practice
- OFDMA higher number of clients
- Stable release boards
- DL/UL MU-MIMO
- BSS Colouring
- 6 GHz band

QUESTIONS?

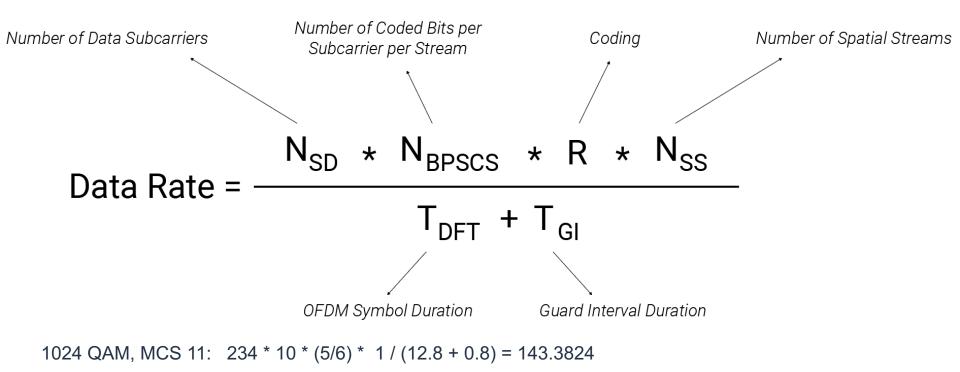
APPENDIX

OFDM VS OFDMA SPECTRUM


Allocation Index		2	0 MHz Sul	bchannel i	Resource	Unit (RU)	Assignme	nt						
0	26	26	26	26	26	26	26	26		26 🗣	_	26 tone RU assigned to 1 user		
1	26	26	26	26	26	26	26		52			as part of a 20 MHz subchannel		
2	26	26	26	26	26	Ę	52	26		26		assignment of 9 26-tone RUs		
3	26	26	26	26	26	Ę	52		52					
4	26	26	5	2	26	26	26	26		26				
5	26	26	5	2	26	26	26		52					
6	26	26	5	2	26	Ę	52	26		26				
7	26	26	5	2	26	Ę	52		52					
8	52	2	26	26	26	26	26	26		26		No users assigned to this RU; no		
9	52		26	26	26	26	26		52			data field transmitted on these		
10	52	2	26	26	26		52	26		26		subcarriers		
11	52		26	26	26	Ę	52		52					
12	52	2	5	2	26	26	26	26	$ \downarrow $	26				
13	52	2	5	2	26	26	26		52			The number of users (N) assigned to this 106-tone RU		
14	52			2	26	Ę	52	26		26		depends on the allocation index		
15	52	2		2	26		52		52		_	and must be 1-8.		
16-23 (15 + N)	52	2	5	2	- • •		106 (N	users)		•		and most be 1 o.		
24-31 (23 + N)		106 (N	users)		-	Ę	52		52			The number of users (M)		
32-39 (31 + N)	26	26	26	26	26		k	users)				assigned to this 106-tone RU		
40-47 (39 + N)	26	26		2	26		106 (N	users)				depends on the allocation index		
48-55 (47 + N)	52	2	26	26	26		106 (N	users)				and must be 1-4.		
56-63 (55 + N)	52	2	5	52 26 106 (N users)				1						
64-71 (63 + N)		106 (N	users)		26	26	26	26		26	/	The sumber of some environments		
72-79 (71 + N)		106 (N	users)		26	26	26		52		<i>'</i>	The number of users assigned to the upper 106-tone RU depends		
80-87 (79 + N)		106 (N	users)		26	5	52	26		26 /		on the allocation index, but 2 users are always assigned to the		
88-95 (87 + N)		106 (N			26	Ę	52		52					
96-99 (95 + M)		106			-	106 (M users)				•	lower 106-tone RU			
100-103 (99 + M)	106 (2 users)			-	106 (M users)									
104-107 (103 + M)	106 (3 users)				-	106 (M users)				If selected, this 20 MHz				
108-111 (107 + M)		106 (4			-	106 (M users)				subchannel is unused; the				
112	52	2	-	2	-		52		52		/	subchannel is punctured		
113			Em	pty 242-tor	ne RU - No	user assig	ned			•				
116-127					Reserved						Г	RU assigned to 1 user		
128-135 (127 + N)	106		26	106 (N users)					no assigned to nuser					
136-143 (135 + N)	106 (2 users)		26	106 (N users)				F	RU assigned to 1-4/8 users, depe					
144-151 (143 + N)	106 (3 users)		26	106 (N users)				the allocation index						
152-159 (151 + N)	106 (4 users)		26	106 (N users)										
160-167 (159 + N)		106 (5			26			users)				RU assigned to specified number		
168-175 (167 + N)		106 (6			26	106 (N users)			irrespective of the allocation					
176-183 (175 + N)		106 (7			26			users)						
184-191 (183 + N)		106 (8	users)		26		106 (N	users)						
192-199 (191 + N)				2	42 (N user	s)								

pending on

er of users, lex


Source: https://nl.mathworks.com/help/wlan/examples/802-11ax-parameterization-for-waveform-generation-and-simulation.html

FREE SPACE PATH LOSS

Sources: https://en.wikipedia.org/wiki/Free-space_path_loss, https://www.semfionetworks.com/blog/free-space-path-loss-diagrams

THEORETICAL MAXIMUM CALCULATION

