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Abstract—The fast moving technologies on the Web provide
users, developers and researchers with increasing challenges
when it comes to user privacy. The domain of browser finger-
printing has grown in response to the limitations in other tracking
techniques such as cookies. For the sake of countering browser
fingerprinting, detection is an important step. This paper sets
out to answer whether the detection of scripts by static code
analysis and subsequent classification with machine learning is
possible. A Support Vector Machine classifier is used in order
to attempt classification and detection of fingerprinting websites.
The classifier shows to be able to make a correct distinction most
of the time. 0.05 of the non-fingerprinting websites are wrongly
classified, while 0.70 of the fingerprinting websites are correctly
detected. Other metrics prove the proposed method to indeed
be promising for detection. Solving the limitation of size of the
current dataset might improve the results.

I. INTRODUCTION

Nowadays Internet users are extensively tracked [1]. ISPs
might want to study the mobility and usage patterns of clients.
Companies often track users and examine their behaviour. This
tracking is performed to better serve the client or to personalise
advertisements on their website. Research at Uber showed that
users tend to order more hastily when their mobile phone
battery is almost depleted [2]. This near empty battery can be
detected by mechanisms that are used to track the identity and
state of a user. Thus user tracking allows prices to be adapted
to the needs of a user. This price tailoring is quite similar to
the net neutrality discussion. User identification by tracking
can also be used for fraud detection. This will be examined
in related work, section Most often browser fingerprints
are utilised by websites hosting spam or malicious activity
[3[]. It is suggested that users should do more than simply
deleting cookies to disable tracking and thereby safeguard their
privacy [4]. As a result of clearing cookies, and subsequently
demonstrating uncommon behaviour, a user might even be
identified more easily.

This introduces the domain of browser fingerprinting.
Browser fingerprinting detects settings in the browser, op-
erating system and hardware, via the browser, to uniquely
identify a user cross-network. The Electronic Frontier Foun-
dation (EFF) runs Panopticlick, a website on which people
can test how traceable their browser is [5]. The data gathered
by each user test is stored by the EFF. The traceability
test includes the uniqueness of the browser fingerprint. This
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uniqueness is measured by comparing the fingerprint to a
set of previously stored fingerprints. The EFF published a
paper analysing the browser fingerprints of a sample of the
first 470,161 Panopticlick participants [6]. About 86.3% of
browsers could be uniquely identified at the first visit. One
challenge in tracking users is that browser characteristics can
change over time. A simple and crude algorithm, outlined in
the aforementioned paper, was able to correctly identify the
same user at least one hour after the last visit in 65% of cases.
Note that, according to the EFF, this algorithm can easily be
improved.

The similar AmIUnique project was able to collect 118,934
fingerprints of which 89.4% were unique [7]. Both the EFF
and the AmIUnique project state that browser plugins appear
to make the fingerprint more unique and thus have a negative
effect on the user’s privacy. Even the mere circumstance of
having a privacy enhancing browser plugin makes users more
unique and therefore more traceable.

Other parties might outperform Panopticlick or AmIUnique,
since some parties use more or other browser characteristics
to base their fingerprint on [3]. It is likely that commercial
entities, which have been developing fingerprinting techniques
for years, can track users even more accurately.

There exists research that surveys the Web to map finger-
printing practices, but there is limited research that focuses
on static code analysis. In this paper, static code analysis is
used with machine learning in order to classify fingerprinting
scripts. Static analysis involves no execution of code during
the examination. Dynamic code analysis, on the other hand,
is the examination of code behaviour while executed.

A. Motivation

As it can facilitates user tracking, the privacy issues that
result from browser fingerprinting should be taken seriously.
Whereas common browser plugins that safeguard privacy help
against cookies, they seem to fail at protecting a user against
browser fingerprinting. The intricacies of these plugins are ex-
plained in related work, section [[lI-B] In order to preserve user
privacy, fingerprinting needs to be prevented. As mentioned
in related work, this can be accomplished by changing the
browser characteristics to be more generic or by randomising
it every now and then. Yet, this randomisation of the website
can have a negative effect on user experience. Therefore it is



important to prevent fingerprinting without affecting the rest
of the website. Before prevention, detection of the scripts that
perform the fingerprinting is critical. If performed correctly,
only the scripts responsible for fingerprinting can be targeted.
The use of machine learning might improve on earlier methods
that arbitrarily assign a score when features are detected and
classify on an arbitrary threshold [8]. When performing this
detection before execution, it is known whether a script plans
on fingerprinting a user in advance instead of in hindsight.

B. Problem Definition

The aim of this study is to detect the practice of browser
fingerprinting before execution with classification by machine
learning. The study sets out to answer the following question:

Can the action of browser fingerprinting be detected
before execution by analysing JavaScript code with
machine learning?

The studies discussed in related work, section [[II-C| show
that JavaScript (JS) is used to extract most of the information
used for fingerprinting and that such code stands out. There-
fore, browser fingerprinting is expected to show in JS code.
Approaches using static code analysis and simply looking for
occurrences of calls, were also able to achieve some success.
To prove this, a method of detecting browser fingerprinting
in JS code is designed and tested. As the question implies, a
distinction between code that fingerprints and code that does
not is expected. What makes JS code for browser fingerprint-
ing distinguishable from code that serves other functionality?
When such distinctions are used to detect fingerprinting code,
how accurate can this detection be? Depending on how accu-
rate and time consuming the detection method is, it might be
applicable or not. Would it be possible to use this method as
part of a prevention tool?

II. BACKGROUND

A. Fingerprinting

Fingerprints are obtained through the browser. During a
connection, the browser already provides the server with some
basic device specific information in the HTTP header. This,
along with other information that the browser already discloses
in the communication with the server, can be used in passive
fingerprinting. A client can never know of passive fingerprint-
ing, as all execution is server side. Active fingerprinting, on
the other hand, is obtaining the device specific information
through script execution on the client side. JS can serve as an
interface to device specific information. In this paper, websites
which attempt to fingerprint browsers are called fingerprinters.

Whereas cookies are stateful, browser fingerprints are state-
less. A user can simply read and delete cookies, but this cannot
be applied to browser fingerprints. Most browsers allow for
the deletion of cookies and have an option to block cookies
from third parties only, as such preserving the workings of the
website [9]-[11]. Cookies can be extensively examined on the
client side, allowing for the scope of third party cookies to be
mapped [12]. Browser fingerprints work, on the other hand,
in the shadows. A user can not simply delete fingerprints or

disable third party fingerprinting. Some plugins, as discussed
in related work, section attempt to block certain scripts,
but are either unreliable or disturb the workings of the website.
Because the client machine is unaware of fingerprinting being
executed, the extent of the practice can not easily be mapped.

B. Support Vector Machines

In this paper, Support Vector Machines (SVMs) are fre-
quently referred to. This section will provide some theoretical
background into SVMs and techniques used to validate such
a machine learning classifier.

SVMs are a collection of supervised learning methods [|13]],
[14]]. For this research, SVMs are utilised for classification
purposes. SVMs attempt to separate data with a maximised
margin. Such a boundary does not necessarily have to be linear.
This can be achieved with a ‘kernel trick’, which allows the
data to be classified in higher dimensions [15]].

SVMs provide several relevant advantages. Later sections
will explain how these advantages are utilised. Firstly, it works
well with high dimensional spaces. As mentioned later on, tens
of JS calls are used to form the input vectors, as such creating
a high dimensional space. Secondly, the SVM classifier can
still perform well with more dimensions than samples. Lastly,
while other classification algorithms might become biased
towards the largest set, SVM classification does not degrade
with datasets of different sizes [|16].

There exist several parameters that can be tweaked. A few of
these are worth mentioning, as they are set in the experiments
performed in this study. Firstly, the parameter C' allows for
the measure of classification errors to be weighted. C' should
depend on the noise of the data. A high C' attempts to classify
everything correctly, whereas a low C has a smoother decision
surface. In conclusion, if there is noise in the data and a
high value of C' attempts to weigh this noise heavily, the
classification might be too specific. Since not all features might
be linearly separable, a ’kernel trick’ is used. This second
parameter, the use of a non-linear kernel, such as the Radial
Basis Function (RBF) kernel, allows for a feature to be drawn
to a higher dimension. Lastly, if such a non-linear kernel is
used, the influence of a feature is determined by the value of
v. The larger this ~y, the higher an narrower the peak in the
new dimension. Therefore, a high v requires new samples to
be closer in order to be affected. Choosing a too large v may
result in overfitting, because each sample is fitted perfectly
locally, but other close by samples will not be classified as
similar. Section method, explains how these parameters
are chosen.

1) Validating a classifier: The classifier is validated by
using part of the dataset as test set. The exact details of this
validation will be explained in section method. The
performance of the classifier is determined by examining a
Receiver Operating Characteristic (ROC) curve and calculating
an F; score.

The ROC curve is obtained by plotting the true positive rate
(TPR) against the false positive rate (FPR). The true positive



rate, or recall, shows how sensitive the classifier is.

Number of true positives

TPR = Recall = (1)

Number of positives
The false positive rate shows how likely the classifier is to
falsely identify a sample as positive.

Number of false positives

FPR = 2

Number of negatives

A better result has a higher true positive rate than a false
positive rate. Therefore the area under the ROC curve says
something about the performance of the classifier. This Area
Under the Curve (AUC) is calculated and used as a metric.

The earlier mentioned F; score is used to measure the
accuracy of the classification. The precision and recall, in
formula [1} are considered. The precision shows what fraction
of positively identified values are actually true.

.. Number of true positives
Precision =

3)

Number of selected positives
The F; score is a weighted average between the precision
and recall.

Fl =2 Precision * Recall

* — 4
Precision + Recall @
Thus a higher F; score shows that the classifier can form a

more correct set of selected positives.

III. RELATED WORK
A. Other Uses of Browser Fingerprinting

There exist dual authentication mechanisms for browser
fingerprinting [8]], [17]. After a user has logged in on a service,
a browser fingerprint will be continuously collected during the
user’s session. A sudden change in the fingerprint might imply
that the session has been hijacked. If a fingerprint changes on
a longer term, a user might be logging in from an unknown
device and additional authentication might be required.

B. Thwarting Browser Fingerprinting

There are several techniques and/or tools that attempt to
impede fingerprinting in some way. This section lists those
prevention techniques.

1) Disable functionality: NoScript and the Tor Browser can
disable scripts like JS and plugins by default until the user
accepts the execution of them [18]], [19]. While this is an
effective way of defence, they leave the unpleasant task of
deciding whether the code is actually desirable for the user.
Also, the majority of users may lack the required knowledge
in order to make the right decision.

2) N:1 - Many Browsers, One Configuration: In this tech-
nique, as many browsers N as possible share the same config-
uration in order to prevent fingerprinters to uniquely identify
a single user, since N browsers share the same fingerprint.
This technique is used by the Tor Browser and the Disguised
Chromium Browser (DCB) [20]]. Both implementations try
to be as generic as possible in order to stay in the biggest
anonymity group.

3) 1:N — One Browser, Many Configurations: By constantly
changing the fingerprintable data shared with fingerprinters,
this technique aims to break the linkability of different website
visits by a single user. Implementations do this either by using
a pool of real world configuration options [8]], [20]], or by
complete randomisation of this data [21]]-[23]]. This happens
after every HTTP request or session. A major downside
of complete randomisation is that it could break legitimate
functionality due to faulty values. Also, because browser
technology is ever evolving, the list of settings that are known
to be fingerprintable keeps growing. This requires frequent
updating of randomisation implementations.

4) Blacklisting: A recently introduced feature in Firefox,
Tracking Protection [24], promises to protect the user from
third-party tracking. It guarantees to not only protect against
third-party tracking via cookies, but also in utilising local
storage, fingerprinting and etags, where etags are a caching
mechanism in HTTP. This protection is achieved by blocking
requests to third-parties that are in a known list. Nonetheless,
this does not prevent tracking performed by the website itself.
Also, as they admit, the list requires frequent updating and
therefore might not block everything. However, this list of
what has to be blocked, could be based on something else
but a list compiled by other humans [25]]. The working of the
website, and thus the user experience, could also be affected
by blocking false positives.

C. Detection of Browser Fingerprinting

One of the challenges in the field of browser fingerprinting
is how to distinguish scripts that attempt to fingerprint from
scripts that do not. There are legitimate reasons for scripts
to show fingerprinting behaviour. For example, because font
probing is known to be used to fingerprint browsers, a news
website which probes and uses many fonts for a legitimate
purpose might unintentionally get labelled as a fingerprinter.
This section discusses other studies that tried to detect finger-
printing scripts and their limitations in solving this challenge.

One of the studies discussed is FPDetective, a fingerprinting
detection framework which visits websites as a crawler and
collects data about events that might be related to fingerprint-
ing [26]. FPDetective classifies a JS file as a fingerprinter
when it loads more than 30 system fonts, enumerates plugins
or mimeTypes, detects screen and navigator properties, and
sends the collected data back to a remote server. The prob-
lem with this classification is that fingerprinting scripts that
happen to have all but one of these characteristics would by-
pass detection, resulting in false negatives. Also, FPDetective
focuses on events that use JS-based font detection and Flash-
based fingerprinting which covers only a small subset of the
features that can be fingerprinted.

Another approach is implemented in FPGuard, which aims
to detect JS objects fingerprinting, JS-based font detection,
HTMLS5 Canvas fingerprinting, and flash-based fingerprinting
at runtime [21]]. Its detection mechanism counts the occur-
rences of suspicious calls in JS code. If the counting reaches
specific threshold values, FPGuard will flag the JS code as



fingerprinting. The threshold values are set based on the
researchers’ definition of abnormal behaviour. FPGuard can
also prevent fingerprinting by randomising settings sent to
a suspected tracker with a high score. Unfortunately the
researchers are vague in describing their definition of abnormal
behaviour, and the actual threshold values are not mentioned
anywhere. Also the study does not provide the FPGuard source
code. Thus, their approach is not reproducible and cannot be
validated.

Both FPDetective and FPGuard show that there is a distinc-
tion between code that is used for fingerprinting and code that
is not. This means that detection by JS code analysis prior to
execution might be possible. However both solutions are still
examples of dynamic code analysis.

Similar research utilising static code analysis can also be
found. One such study attempts to measure how often certain
browser fingerprinting scripts are used [27]]. This is achieved
by scraping the top 1000 websites in the United States and ex-
amining the scripts on these websites. The scraped scripts are
only compared to three known fingerprinting scripts. Therefore
only these three specific scripts can be detected. It turns out
that less than 6% of examined websites use one of these three
browser fingerprinting scripts. While this research does utilise
static code analysis, it only tries to identify previously known
fingerprinting scripts. Therefore it cannot be concluded that
fingerprinting is only used on 6% of these top 1000 websites.
Other fingerprinting scripts or techniques could be used on
websites, without being detected by this study.

All of the mentioned studies in this section failed, in their
publication, to clearly define the line between fingerprinting
scripts and legitimate scripts. On the contrary, Laperdrix de-
tailed several signs that indicate that a script is a fingerprinter
[81:

o Accessing specific functions

o Collecting a large quantity of device-specific information

o Performing numerous access to the same object or value

« Storing values in a single object

o Hashing values

¢ Creating an ID

o Sending information to a remote address

o Minification and Obfuscation

Since Laperdrix’s thesis is extensible and written very
recently, we can argue that these signs are a good source for
indicators of fingerprinting. Figuring out which JS functions
belong to these signs and finding those functions in the JS
code analysis may detect the act of fingerprinting.

IV. METHOD
A. Overview

In this approach, two predefined sets of scripts are ex-
amined. The gathering of the scripts is explained in the
“Gathering” phase outlined in section After the scripts
are gathered, some processing is performed to be able to
better analyse the scripts. During this “Processing” phase,
as explained in section deobfuscation is performed

and member expressions hidden in variables are expanded.
Afterwards, the real analysis of the scripts is performed. This
“Detection” of fingerprinting phase, is explained in section
In the final stage, the amount of calls that are likely to
be found in fingerprinting scripts can be counted. The three
phases are shown in figure [T} See Appendix [C| for a reference
to the codebase.

Collecting
predefined sets

Gathering
Raw
source code
per domain
Deobfuscation
Member
Deobfuscated .
expressions
source code .
expansion
Processing
Full
member
expressions
results
Count
suspicious
Detection calls

SVM classification

Fig. 1. Process of analysing JS source code for a given set of websites to
find fingerprinting practices.

B. Gathering

In the first part of this process, two sets of real world JS
scripts are needed: a set of fingerprinters, and a set of non-
fingerprinters. Both sets are manually gathered from the Web.
The set of fingerprinters are found by looking for websites
of parties which are known to use browser fingerprinting.
Academic sources have also been used to compile this set [8]],
[21]], [26]. Earlier research in the detection of fingerprinting
has often cited parties that fingerprint. Besides that, code used
in research that aims to collect fingerprints, was also used.
The non-fingerprinters are initially found by browsing the
Web with several browser add-ons that detect cross-domain
trackers. Finally, both sets of scripts are manually analysed
in order to verify that they are indeed classified as initially
expected.



C. Processing

1) Deobfuscation: Because JS is interpreted by the browser,
the source code itself needs to be transferred to the client.
This allows the client to observe the source code. Most often
users would not examine code themselves, but code could
be statically examined by the browser, extensions, plugins or
more experienced users. Besides offering freedom to examine,
transferring source code can also be more resource expensive.

In order to mitigate the effects of these two downsides to
transferring source code, the code that is transferred is often
adapted before deployment on the website. In order to lessen
the size, code is often minified. As a byproduct, the code is
often unreadable for humans, which can be a positive effect
for companies that desire their code to not be examined.
There exists a field solely focused on making source code
unreadable: Obfuscation is the deliberate discombobulation
of code to make it incomprehensible for static analysis or
humans.

Both techniques complicate the static analysis of code.
Therefore it is important to try to counter the obscurity caused
by obfuscation and possibly by minification. Using JS Beau-
tifier, the code is deobfuscated and deminified where possible
[28]. The JS Beautifier repository offers several scripts, that
are used in this research, to extend the beautifier to better
unpack and deobfuscate scripts. JS Beautifier has been used
in research to deobfuscate code for static analysis before [29],
[30]. Obfuscation and deobfuscation is an ongoing arms race.
Therefore it cannot be expected with full certainty that the
deobfuscation will always act as desired.

Note that basic JS calls to standard objects cannot be
obfuscated well. The object “navigator” obfuscated is still
“navigator”. Likewise, the list of plugins will always be ob-
tained by calling the property “plugins”’. However obfuscation
does hide the further meaning and workings of the source
code, as well as the relation between these earlier mentioned
objects and their properties.

2) Expanding Member Expressions and Deriving Variables:
When trying to detect calls that are common in fingerprinting,
some object properties can be accessed indirectly. This com-
plicates the search.

The following example shows this phenomena: The object
“navigator.plugins” is stored in the variable “np”. Later in
the code, the length of the plugins is requested by using
“np.length”. To detect fingerprinting, it is interesting to know
that the number of plugins is requested. Since “length” is an
often used property, simply noting that the length of a variable
is requested, is not important. How to derive the meaning
of “np.length” to be “navigator.plugins.length”? During the
processing phase, the real meaning of variables from previ-
ous assignments has to be determined in order to see from
what object a property is called. This allows these member
expressions to be expanded.

In order to do this expansion, the code is parsed and an
Abstract Syntax Tree (AST) is constructed. An AST allows
source code to be represented in a structured and hierarchical

order. As such, the possibility to syntactically examine to code
and derive its meaning arises.

This tree can henceforth be traversed. During the traversal,
all declared variables are stored in the current scope. If the
initialisation or assignment of the variable is another variable
or a member expression, the initialisation is stored. When a
property is requested in a member expression, the previously
stored variables are searched to attempt an expansion of this
member expression.

var nav = navigator;
function fingerprint () {

var a = nav.plugins;
var b = a;

var ¢ = b.length;

var d = nav.userAgent;

Fig. 2. Example JS code of object properties split over different variables.

An example of properties split over multiple variables
is provided in figure In a fingerprinting script, “navi-
gator.plugins.length” and “navigator.userAgent” could be re-
quested. However, a simple search in the source code for these
strings will offer no result. That is because these calls are
split over multiple variables. Running the member expression
expansion traversal of the obtained AST, would derive the real
meaning as shown in figure[3] The AST created in this example
is shown in figure [6] in appendix [Al Now the conclusion
that “navigator.plugins.length” and “navigator.userAgent” are
called can be drawn.

nav.plugins is navigator.plugins
b.length is navigator.plugins.length
nav.userAgent is navigator.userAgent

Fig. 3. Output of analysing the member expressions and variables in figure

D. Detection

1) Count suspicious calls: Related work, section [[II-C]
describes several signs in code which could indicate the act
of fingerprinting. Accessing specific functions, which return
fingerprintable information, and collecting a large quantity of
device-specific information are signs which can be recognised
by counting specific keywords in the scripts. This is part of
static code analyses, which is the reason why these signs are
included in this study’s approach. To make counting possible,
the processing phase makes sure that these JS calls are revealed
in plain text.

A list of suspicious calls is comprised by desk research and
examining existing fingerprinting solutions. The list is shown
in figure [B|in appendix [B] When comparing the occurrences of
each call between the non-fingerprinters and the fingerprinters,
it is possible to pick the calls which occur most differently.



This subset of calls are the most relevant and usable to classify
scripts and are detailed in results, section

When a website is investigated, the number of occurrences
of these fingerprinting indicators are counted. Both the de-
obfuscated source code and the list of expanded member
expressions are used to count. This is because not every call
might be a member expression that can be expanded. The
result is a list of JS calls or expressions and how often these
occur on a website.

2) Support Vector Machine Classification: The SVM Clas-
sifier requires two sets of scripts. As mentioned before, one
collects fingerprints and the other does not. In the same manner
as in background, section the first step is to select
the correct parameters. Attempting all combinations in an
exhaustive search and picking the combination that provides
best score, results in the best combination of parameters. Both
the linear and RBF kernel are tested. The C values of 1,
10, 100 and 1000 are attempted. Where, as mentioned in
background section a lower C'is likely to perform better
with noise. The y values of 10~%,1073,1072,0.1,0.2 and 0.5
are tried. As mentioned in background section a higher
value of ~ narrows the peak in the new dimension that is
introduced by the RBF kernel. Too narrow a peak could result
in overfitting.

When a classification is validated, a test set is kept apart
and the classifier is trained with the rest of the set. In order
to prevent biased results due to overfitting or sheer luck in
selecting this test set, cross-validation is used. Cross-validation
performs multiple iterations of fitting, with each iteration
containing a different part of the complete set as test set.
An average score is taken to base the score of the classifier
on for a given set and parameter settings. The K-fold cross-
validation used, splits the complete dataset in K parts for K
iterations. Still, some test sets might only contain one of the
two possible results. This phenomena is likely to occur when
one set is larger than the other. Therefore a stratified K-fold
is performed. A stratified /K -fold roughly keeps the same ratio
of positives and negatives for the train and test set as in the
full dataset. Different values of K might give different results.
Because of the small nature of the dataset, a higher K, and
thus a higher training set, might provide better results. This
cross-validation is also included in the parameter selection.

After parameter selection and fitting with the Stratified K-
fold cross-validation, the I} score is calculated, ROC is plotted
and AUC is derived from the ROC curve. Each experiment is
repeated 100 times to arrive at a reliable average. These results
should illustrate the accuracy and performance of the classifier.

V. RESULTS

In this research, the fingerprinter set contains scripts from
12 domains, while the non-fingerprinter set contains scripts
from 20 domains. The scripts are aggregated per domain, since
functionality is often spread over multiple JS files.

A. Where fingerprinting stands out

Figure [ illustrates the difference between fingerprinters
and non-fingerprinters for the selected features. The high
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Fig. 4. The average occurrence of (partial) JS calls when comparing

fingerprinters to non-fingerprinters.

standard deviation proves that simply picking one or two
features, would not provide reliable results. Several JS calls
are barely ever mentioned on non-fingerprinters. A call such
as “JavaEnabled” would likely only occur for very specific
applications. From the set of features gathered from earlier
work, as mentioned in section only those that occur
more often in fingerprinters than in non-fingerprinters were
used. For the classifier, some sub-strings are also used. In the
end, 51 strings are used as features to count and classify.

B. Classification

The classifier was configured with the parameters found by
the exhaustive search. The parameters are as follows: An RBF
kernel, C' = 1000 and v = 0.0001. These parameters were



TABLE I
DIFFERENT SCORING METRICS ON 4 STRATIFIED K -FOLDS FOR BOTH
SETS AND AVERAGE METRICS OF BOTH SETS. THE FINAL COLUMN SHOWS
A TOTAL SIZE OF THE TEST SET.

K=14 precision | recall | F; score | size of
test set
non-fingerprinting | 0.83 0.95 0.88 5
fingerprinting 0.84 0.70 0.73 3
avg/total 0.84 0.82 0.80 8

used in all experiments carried out in order to come to the
results in this section.

Figure [5] shows the ROC Curves for 2 and 4 stratified K-
folds with the current classifier. The accuracy appears to be
promising. The line is quite steep, as such, the true positive
rate or recall shows that most positives are indeed classified
correctly. There still is a visible false positive rate, therefore
some non-fingerprinters are wrongly classified as positives.

In order to examine the results for K = 4 in more detail,
the precision, recall and Fj score for both sets, separate and
combined, are shown in table m This shows a precision of
0.83 for the non-fingerprinting set. This means that a ratio
of 0.83 of the samples seen as non-fingerprinting, are indeed
non-fingerprinting. The recall of 0.95 tells us that a ratio of
0.05 of non-fingerprinters are wrongly seen as fingerprinting.
In the end, 0.70 of the fingerprinters are correctly detected.

For the detailed comparison, K = 4 was chosen. Other
values of K are shown in table[[} With the small value K = 2,
only half of the whole set is used for training at one time. It is
not surprising that such a small training set provides inferior
results. The AUC and F; score can be seen to improve as

TABLE 11
COMPARISON BETWEEN DIFFERENT VALUES OF K IN THE STRATIFIED

K-FOLD.

K | AUCH stdev | F; score | size of test set

(total size is 32)

2 0.81 £0.16 0.73 16

3 0.87 £0.15 0.78 10

4 0.90 £0.14 0.80 8

5 0.90 £0.16 0.83 6

6 0.90 £0.18 0.82 5

8 0.91£0.23 0.84 4

the size of the training set increases. However, after K =
4, the standard deviation of the AUC also increases. This is
likely due to the variation in the different test folds. When
the test set is larger, each individual K-fold produces a closer
average. Once the K-fold size decreases, the differences in
the individual samples become more apparent. The more in-
depth experiments were conducted with K = 4 because of
the combination of the high AUC and F; score, along with
the low standard deviation.

VI. DISCUSSION

As demonstrated by the results, some JS calls are better
for detecting fingerprinters in statical analysis than others.
Using this approach, new JS calls used in the future can be
tested to decide whether they can be added to the list of
suspicious JS calls. The performance of the SVM classifier
looks promising: The AUC is 0.90 when using 4 stratified K-
folds. This implies there is a substantial larger amount of true
positives than false positives. In the dataset used in this study,
the classifier has a fingerprinter detection rate of 0.70. Thus,
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most fingerprinters are indeed detected. However, 3 out of 10
are missed. Hence, the current method with this dataset, would
not catch every fingerprinter. There are false positive though.
0.05 of the non-fingerprinters are classified as fingerprinting.
The false positives could break the website and thus the user
experience.

When decreasing the size of the test set, as seen in table
the F; score increases. This is due to more samples
being available for training the classifier. This shows that the
dataset used in this study might be too small. Therefore, a
bigger dataset is likely to improve the results. The size of
the dataset is constricted due to time limitations. The manual
collection proved to be a time consuming task. Another point
of discussion is the possibility that the dataset is biased
because the scripts are collected manually. This process is
probably not completely random, and mistakes could be made
in manually analysing those scripts. As a final point, this study
uses the SVM algorithm as a result of the advantages described
in section background, However, there might be other
machine learning algorithms that could score similar or even
higher.

A. Conclusion

There exists a distinction between JS code that fingerprints
and JS code that does not. In accordance with previous
research, tens of JS calls are more likely to occur in fin-
gerprinting. It is therefore possible to use an SVM classifier
to detect the scripts that perform browser fingerprinting by
using these JS calls as features. The current method, though
quite accurate, cannot detect everything and does show false
positives. These promising results motivate future research into
the use of machine learning as a detection tool for browser
fingerprinting. Such detection could be used in a prevention
tool, by providing a smarter method of blocking scripts.

B. Implications

By adding machine learning classification to the domain of
detecting browser fingerprinting, this approach improves on
more naive methods. It is not clear what this previous research,
mentioned in section @ related work, bases its scoring on.
It might be possible to implement a system, similar to the
approach discussed in this paper, for use by a blacklist provider
or browser. The result might improve user privacy. Being able
to block fingerprinting takes away the difficult challenge of
creating a worthless browser fingerprint, as in the solutions
discussed in section [[II-B] related work.

Existing solutions are often criticised for breaking the
browsing experience. Either by blocking harmless scripts or
lying about important browser characteristics. Because there
are false positives in the current solution, if implemented, it
could also break browser characteristics. It is therefore crucial
that the method is not implemented exactly as described in
this paper. One solution might be the use of a lower threshold
of when something is a fingerprinter, but this would likely
lower the detection rate. Improvements to the current proposed

method are discussed in the next section. Any enhancements
might mitigate the complications caused by false positives.

On the other hand, classification of fingerprinters could also
improve existing solutions. An add-on such as NoScript could
be enhanced if users are aided with their decision. The same
would apply for blacklist based solutions.

VII. FUTURE WORK

Currently the selected JS calls were chosen, as described
in section method, by manually observing the means
and deviations in occurrences of these calls from both sets.
Linear SVMs allow support feature selection. There exists no
such simple process with non-linear SVMs. Future research
might improve on the feature selection, by comparing the
performance of the classifier for different sets of features.

JS calls are not necessarily the only phenomena that show
whether a script is fingerprinting [8]]. Using other indications
of fingerprinting alongside JS calls, might improve the classi-
fication.

The current dataset is limited by its size. As mentioned
before, a larger training set hints towards better results. Future
research would certainly improve on this paper, if a larger
dataset could be obtained.

The SVM classifier was chosen for earlier mentioned ad-
vantages. However, there also exist other classifiers that rival
SVM. Research utilising such a rival, could improve on the
accuracy of detection.

If a more practical implementation is ever developed, it
would be interesting to see if this could sniff out fingerprinters
from the Web. It might be possible to do a small survey,
where one attempts to find fingerprinters. An implementation
in the form of a browser plugin, could potentially be able
to block scripts that fingerprint. However, static code analysis
will demand resources. Research into the performance of static
code analysis would provide a valuable insight into how the
user would be affected. Any improvements to the accuracy
of the proposed method, will also aid in any future practical
implementation.

In this paper, only classification with static code analysis is
investigated. Machine learning might also improve on earlier
detection solutions that utilise dynamic code analysis. These
methods were usually implemented for surveys, attempting to
grasp the breadth of browser fingerprinting on the Web.
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APPENDIX A
ABSTRACT SYNTAX TREE EXAMPLE

Program
fingerprint.js
Variable /
Declaration
var
Variable Function
Declarator Declarz.ltlon
= function
Identifier Identifier Identifier Block
nayv naviga[or ﬁngerprlnt() Statement
{1}
Variable Variable Variable Variable
Declaration Declaration Declaration Declaration
var var var var
Variable Variable Variable Variable
Declarator Declarator Declarator Declarator
Identifier Member Identifier Identifier Member Identifier Member
a Expression b a Expression Expression
Identifier Identifier
Identifier Identifier Identifier Identifier nav userAgent
nav plugins b length

Fig. 6. The Abstract Syntax Tree of fingerprint.js as described in figure E}
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APPENDIX B
COMMON CALLS USED FOR FINGERPRINTING

This is the full list of features considered. The selection is explained in section [[V-D1| method.

navigator .userAgent navigator .mimeTypes.enabledPlugin
navigator .appCodeName navigator . mimeTypes. description
navigator . product navigator .mimeTypes. suffixes
navigator.productSub navigator . mimeTypes.type
navigator .vendor navigator .doNotTrack

navigator .vendorSub window . screen . horizontalDPI
navigator .onLine window . screen . verticalDPI
navigator.appVersion window . screen . height
navigator.language window . screen . width
navigator.plugins .name window . screen . colorDepth
navigator.plugins.filename window . screen . pixelDepth
navigator . plugins.description window . screen . availLeft
navigator.plugins.length window . screen . availTop
navigator . mimeTypes window . screen.availHeight
navigator.cookieEnabled () window . screen.availWidth
navigator.cookieEnabled Date (). getTimezoneOffset ()
navigator.javaEnabled () Date (). getTimezoneOffset

navigator.javaEnabled

APPENDIX C
CODEBASE

The source code of the method proposed in this paper is open-source. A Git repository of the source code is available on:
https://github.com/Timvanz/static-javascript-fingerprint-classification.

Please note that the code was designed with this particular project in mind. Feel free to contact the authors for questions
that might arise.
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