Improving Quality of LDA Models RP#76

Henri Trenquier

Supervisor:

Dr. Carlos Ortiz Martinez
MSc Security and Network Engineering

University of Amsterdam

July 5, 2018

Context

Forensics

- Accelerate forensic investigations
- Large document collections

A Forensic Analysis Solution of the Email Network Based on Email Contents

- L Xie, Y Liu, G Chen (2015)
- Email network analysis

Topic modeling LDA

Latent Dirichlet allocation

- David Blei, Andrew Ng, and Michael I. Jordan (2003)
- Cited over 23K times
- Machine learning

Statistical model

- Bayesian
- generative & probabilistic
- for a collection of discrete data
- Topic discovery

Document



- Preprocessing
- Bag of word: ('human', 'interface', 'computer')

Corpus

- 'human', 'interface', 'computer'
- (2) 'survey', 'user', 'computer', 'system', 'response', 'time'
- (a) 'eps', 'user', 'interface', 'system'
- 'system', 'human', 'system', 'eps'
- 'user', 'response', 'time'
- 6 'trees'
- 'graph', 'trees'
- graph', 'minors', 'trees'
- graph', 'minors', 'survey'

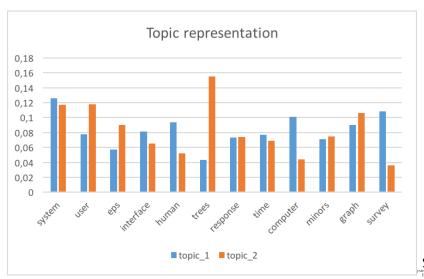
Corpus

- 'human', 'interface', 'computer'
- (2) 'survey', 'user', 'computer', 'system', 'response', 'time'
- (a) 'eps', 'user', 'interface', 'system'
- 'system', 'human', 'system', 'eps'
- 6 'user', 'response', 'time'
- 6 'trees'
- o 'graph', 'trees'
- (graph', 'minors', 'trees'
- graph', 'minors', 'survey'

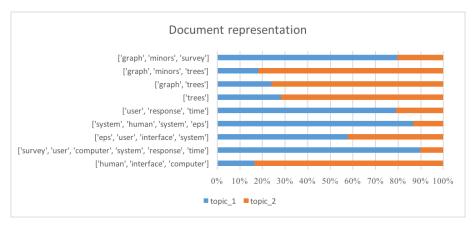
Expected topics

- Human machine interface
- @ Graph theory

Topic modeling LDA



Topic modeling LDA



Topic modeling LDA

Expected topics:

- Human machine interface
- @ Graph theory

Model	Topics		
$Good_{L}Model$	('system', 'user', 'eps', 'human', 'interface') ('graph', 'trees', 'minors', 'survey', 'time')		
	('graph', 'trees', 'minors', 'survey', 'time')		
$Bad_{L}Model$	('computer', 'system', 'user', 'trees', 'graph') ('system', 'graph', 'trees', 'user', 'eps')		

Table: Good and Bad models

Topic modeling LDA

Expected topics:

- Human machine interface
- @ Graph theory

Model	Topics		
$Good_{L}Model$	('system', 'user', 'eps', 'human', 'interface') ('graph', 'trees', 'minors', 'survey', 'time')		
Bad_Model	('computer', 'system', 'user', 'trees', 'graph') ('system', 'graph', 'trees', 'user', 'eps')		

Table: Good and Bad models

- More words over all topics
- More similar words within a topic
- Less similar words across topics

Context

Enron

- Accounting fraud
- ~500K e-mails database
- Topic modeling dataset
- quickly target incriminating e-mails

Research Question

How to improve the quality of LDA models?

- What is the optimal number of topics for a LDA model
- How does the number of iterations influence the quality of models?
- Can we improve semantic quality evaluation?

Scope: Enron e-mail dataset

Coherence

Evaluation metric for topic modeling

Optimizing Semantic Coherence in Topic Models

- D Mimno et al. (2011)
- 542 citations

$$C(t; V^{(t)}) = \sum_{m=2}^{M} \sum_{l=1}^{m-1} log \frac{D(v_m^{(t)}, v_l^{(t)}) + 1}{D(v_l^{(t)})}$$
(1)

Coherence

Evaluation metric for topic modeling

Optimizing Semantic Coherence in Topic Models

- D Mimno et al. (2011)
- 542 citations

$$C(t; V^{(t)}) = \sum_{m=2}^{M} \sum_{l=1}^{m-1} log \frac{D(v_m^{(t)}, v_l^{(t)}) + 1}{D(v_l^{(t)})}$$
(1)

Measure evaluated by a survey:

- "good", "intermediate" or "bad"
- no literal definition of coherence
- lack of "inter-topic" evaluation
- \bullet C_v and U_{MASS}

Coherence

A Practical Algorithm for Topic Modeling with Provable Guarantees

- S Arora et al. (2013)
- 229 citations
- introduces "inter-topic similarity"

Evaluation metric

Topic Coherence

 $C_{word2vec}$ coherence measure

- Semantic space
- word2vec model trained on Google News

Evaluation metric

Topic Coherence

$C_{word2vec}$ coherence measure

- Semantic space
- word2vec model trained on Google News
- intra_topic_similarity
- inter_topic_similarity

$$C_{word2vec} = \frac{avg(intra_topic_similarity)}{avg(inter_topic_similarity)}$$
(2)

Evaluation metric

Topic Coherence

$C_{word2vec}$ coherence measure

- Semantic space
- word2vec model trained on Google News
- intra_topic_similarity
- inter_topic_similarity

$$C_{word2vec} = \frac{avg(intra_topic_similarity)}{avg(inter_topic_similarity)}$$
(2)

Model	Topics	$C_{word2vec}$
Good_Model	('system', 'user', 'eps', 'human', 'interface')	0.887
	('system', 'user', 'eps', 'human', 'interface') ('graph', 'trees', 'minors', 'survey', 'time')	
$Bad_{L}Model$	('computer', 'system', 'user', 'trees', 'graph')	0.604
	('system', 'graph', 'trees', 'user', 'eps')	System and Net

Experiment

Pipeline

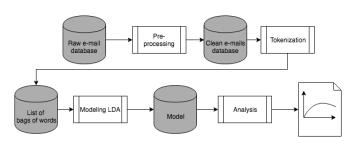


Figure: Similarity measures

- Modeling: I, K
- Coherence analysis: C_v , u_{mass} , $C_{word2vec}$

 C_V

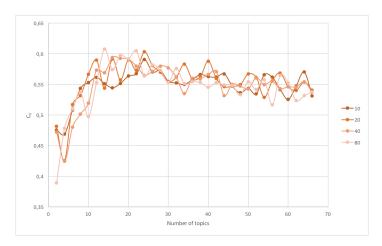


Figure: Influence of the number of topics on the C_V coherence

Results U_MASS

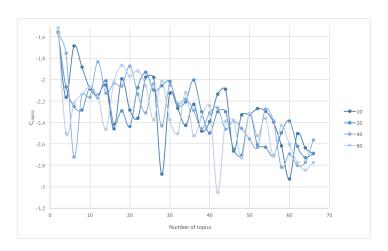


Figure: Influence of the number of topics on the U_{MASS} coherence

C_{word2vec}

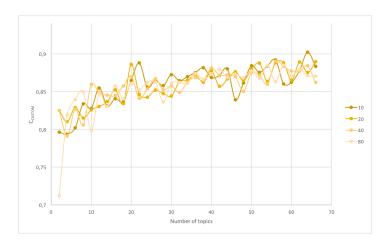


Figure: Influence of the number of topics on the $C_{word2vec}$ coherence

Low & High number of iterations

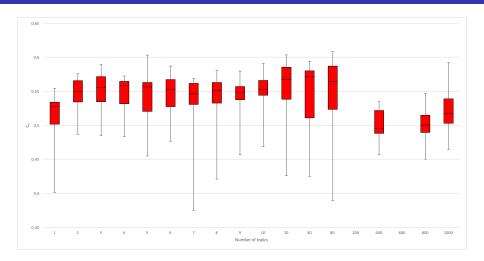


Figure: Influence of the number of iterations on the C_V coherence

July 5, 2018

Low & High number of iterations

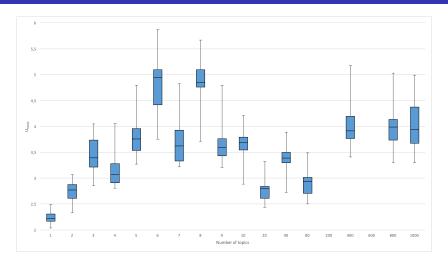


Figure: Influence of the number of iterations on the U_{MASS} coherence

Low & High number of iterations

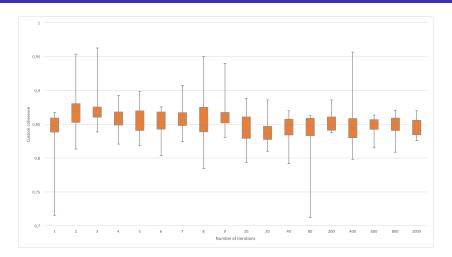


Figure: Influence of the number of iterations on the $C_{word2vec}$ coherence

July 5, 2018

Discussion

- E-mail information density
- Preprocessing phase
- word2vec semantic representation is not perfect sim(['th', 'de', 'er', 'ed', 'ng', 'enron', 'nd', 'es', 'al', 'ing']) = 1.28669572453
- Cword2vec coherence still too simplistic

Conclusion

How to improve the quality of LDA models?

- Impression of model coherence
- New semantic coherence
- Results do not reveal an optimum number of topic
- Number of iterations has no visible impact

Future Work

- Better preprocessing: stemming
- Refine $C_{word2vec}$ coherence
 - weight the words of a topic
 - word2vec training dataset
 - compare similar models
- Hierarchical topics

Question?

Thank you for your attention

