Pentest Accountability By Analyzing Network Traffic & Network Traffic Metadata

RP1 Presentation By Henk van Doorn & Marko Spithoff

Relevance

Security Audits

- Company Detects (Attempted) Breach
- Accountability Of Actions

Research Questions

- Is it feasible to log all network traffic live during the execution of a pentest given specific storage, CPU and throughput constraints?
- When performing a live capture of network metadata during the execution of a pentest,
 - What information can be extracted from the metadata?
 - Can accountability of actions be provided based on metadata from the captured network traffic?
 - Based on the metadata from the captured network traffic could the captured traffic be categorized into attack vectors of the Intrusion Kill Chain?

Research Questions Continued

- Is it feasible to log network metadata live during the execution of a pentest given specific storage, CPU and throughput constraints?
- What legal aspects come into consideration when storing the collected (meta)data based on current European legislation?

Research Questions

• Is it feasible to log network traffic live during the execution of a pentest given specific storage, CPU and throughput constraints?

□ Full Capture

Related Work

- What Is Pentesting (Bishop)
- Cyber Kill Chain (Hutchins et al.)
- Using Metadata For Security Analysis (Feamster)
- Fast Portscan Detection (Jung et al.)
- Metadata Based Intrusion Detection (Yasinsac And Leckie)
- Toward Scalable Internet Traffic Measurement and Analysis with Hadoop(Lee and Lee)

Taxonomy Of A Pentest

1: Reconnaissance

2: Weaponization

3: Delivery

4: Exploitation

5: Installation

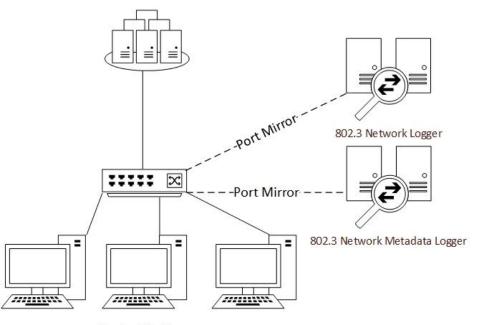
6: Command and Control (C2)

7: Actions on Objectives

Hutchins et al.

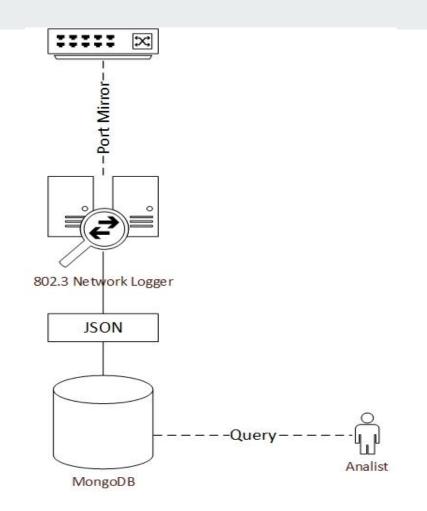
1: Physical Network Layer

2: Logical Network Layer

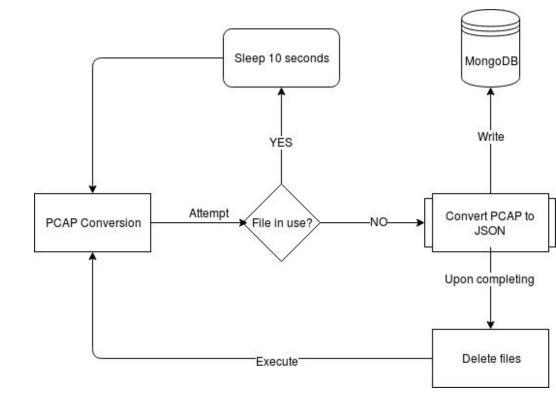

3: Information Layer

4: Cyber Persona Layer

US DOD, Clark


Experiment Setup

Pentest Targets


Pentest Stations

Full Data Capture

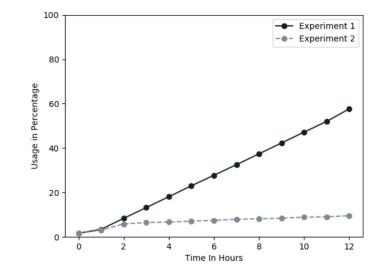
Flowchart PCAP conversion

- Prevent file conflicts
- Convert to JSON
- Import into MongoDB
- Remove old files

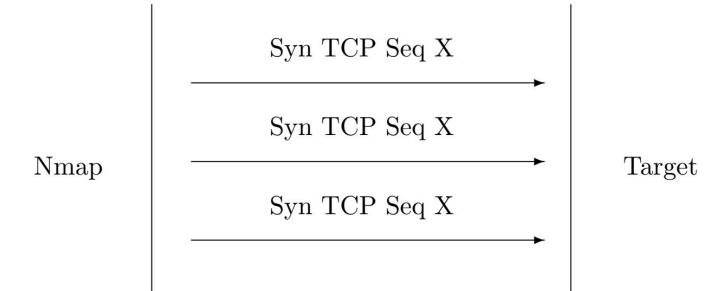
Results: Full Data Capture Verification

% sudo ping -f -c 1000000 192.168.1.107

1000000 packets transmitted, 1000000 received, 0% packet loss, time 151825ms


```
MongoDB Enterprise > db.ICMP.count({ "layers.icmp" : {"$exists" :
true}});
```

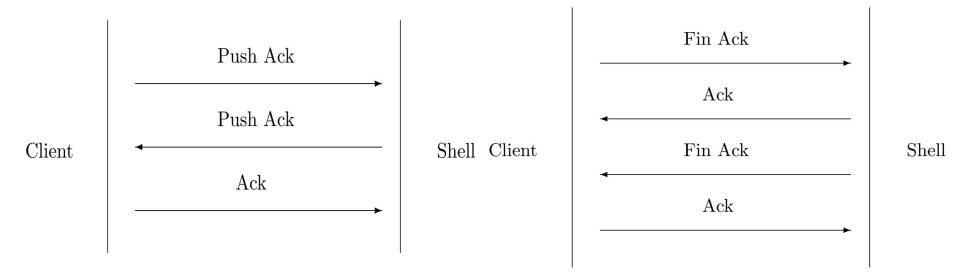
2000000


Results: Metadata Capture

- Software Limitations
 - Scapy vs Sockets
 - $\circ \quad \text{Python vs C}$
- Hardware Constraints
 - \circ Storage
 - CPU
 - Network
 - Memory
 - Disk IO

Nmap TCP Detection

• Mean Completion Time: 13.302947s


Results: Nmap TCP Detection

- 100 Nmaps Performed From Virtual Host
- 100 Nmap Scans Detected
 - Port Scan Detected On: 2018-01-31 11:30:43,993446, From IP: 192.168.1.109, To IP:192.168.1.108, TCP Sequence:2393481580
 - Port Scan Stopped On: 2018-01-31 11:30:47,907038, Number Of Ports Scanned 615, TCP Sequence:2393481580
- Accountability: Plausible

Tcp Shell Detection

- Character At A time Mode
- "almost all requests to web servers have their TCP PUSH and ACK flags set" (Roesch et al.)
 - Could This Be Applied To TCP Shells?

TCP Shell Detection Continued

Results: TCP Shell Detection

- 100 Reverse TCP Shell Connections Build & Destroyed
- 100 Reverse TCP Shells Detected
 - Connection Detected On: 2018-01-29 14:50:58,419131, IP: 192.168.1.108:8080,
 Connects To IP: 192.168.1.107:39294
 - Connection Stopped On: 2018-01-29 14:51:08.424046, From IP: 192.168.1.108:8080, To IP: 192.168.1.107:39294
- Accountability: Plausible

Results

- Storing All Network Traffic Seems Plausible With Enterprise Solutions
 12 Hour Total 5,5 GiB
- Storing All Network Metadata Seems Plausible With Small Business Solutions
 - 12 Hour Total 261 MiB
- Achieving Accountability Seems Plausible Using Metadata
- Hardware Performance Differences
- Further Research Needed For Proposed Methods
- Scapy Makes Inefficient Use Of System Resources
- Python Is Not Fast Enough To Log Traffic Realtime

Discussion

• Legal Aspects Of Storing All Data

Future Work

- Research Into Proposed Methods
 - Other TCP Protocols
 - Detection Methods Known Or New?
- Rewriting The Methods Into C
- Rewrite Methods For UDP Thresholds
- Effect Of VPN's On Proposed Methods
- Multithreading on pcap(ng)

Questions?