Opcode statistics for detecting compiler

settings
MSc Research Project (#20)

Kenneth van Rijsbergen
Master Security and Network Engineering, University of Amsterdam
kenneth.vanrijsbergen@os3.nl
February 11, 2018

Abstract—One aspect of software archaeology is retracing
(part of) the build environment that was used to compile the
binary. The problem is that much of the information about
the build-environment gets lost after compilation or due to
stripping. The approach taken in this paper is to statistically
analyse the distribution of the opcodes in a binary. Opcode
statistics are already proven to be effective at detecting
metamorphic malware. Work has been done to answer the
research question: ”Can opcode frequencies be useful for
determining the build environment of a binary?”.

A collection of binaries were compiled with 6 different op-
timisation flags and 8 different GCC versions. Single opcodes
and opcode combinations (2-grams) were analysed. Statistical
differences in opcode frequencies were then measured.

The opcode combinations show a slightly stronger re-
lationship as opposed to single opcodes. Statistically, the
relationships are weak for the different versions but moderate
for the optimisation flags. But however weak, patterns are
visible and detectable differences do occur. Looking at the
success of detecting metamorphic software using opcode
frequencies, there is at least ground for further research.
By seeing if a machine learning can be applied to detect
compiler versions and/or compiler flags.

I. INTRODUCTION: MOTIVATION

With legacy software there are cases that source code
or documentation of the software get lost. All that is left
is a binary for which it is unclear on exactly what it does,
how it works or how it was designed. Recovering design
information and functionality from legacy software can be
called software archaeology [1].

One aspect of software archaeology is retracing (part
of) the build environment that was used to compile the
binary. Being able to retrace the build environment may
also have its uses in similar fields such as forensics, reverse
engineering and compliance engineering. The problem is
that much of the information about the build-environment
gets lost after compilation or due to stripping. Used tool-
chains, version of the compiler and compiler flags are
essential parts of the build environment that get lost
after compilation. However, different versions of compilers
and different compiler optimization flags should generate
(slightly) different binary files.

The approach taken in this paper is to statistically anal-
yse the distribution of the opcodes in a binary. An opcode

(short for operation code) is used to specify in a machine
instruction what operation needs to be performed by the
CPU. Opcode instructions can differ depending on the
instruction set architecture of the CPU. Most executables
are first written in a higher level programming language
such as Python or C before they are translated to machine
language (aimed for the target computer architecture).
This process of translating from higher level code to
machine code is called compiling. A binary executable
is, in essence, a collection or container of these opcodes
(along with strings constants, variable declarations and
others).

Opcode statistics are already proven to be effective at
detecting metamorphic malware. This is done by training
machine learning classifiers to distinguish between good-
ware and malware. The goal of this paper is to determine
if there is potential to apply the same techniques to extract
information about the build-environment of the binary. The
scope will be the on different versions of GCC (GNU
Compiler Collection) and different optimisation flags.

Section 1A will describe the research questions and
section 1B the related work regarding the subject. Section
2 covers the methods used to conduct the experiments and
the results of these experiments are covered in section 3.
A discussion of the results is given in section 4 and the
conclusion in section 5, along with some ideas for future
work. The appendixes can be found in section 6.

A. Research questions

The main research question is as follows:

”Can opcode frequencies be useful for determining the
build environment of a binary?”
This research question is divided into four sub-questions:

1) How significant are the differences in the opcode
frequencies when using different compiler versions?

2) How significant are the differences in the opcode
frequencies when using different compiler flags?

3) What opcodes are responsible for the differences in
the opcode frequencies?

4) Are differences significant enough to detect what
compiler flag or version is used for a binary?

B. Related work

Much research has been done on using opcode statistics
on malware.

Bilar [2][3] measured the distribution of opcodes on a
collection of goodware and a collection of malware. This
malware collection consisted out of 7 different malware
classes (viruses, bots, rootkits, etc). The goal was to find
out whether there is a statistically significant difference
in the opcode frequency between the goodware and the
seven malware classes. The mov and push codes were
the most common opcodes in all cases, but variations
in the frequencies of appearance could be seen. The
final conclusion was that the less common opcodes (such
as int, imul, Dbt, etc.) show the largest variation
in frequency and gave the strongest predictions, which
could explain 12-63% of the variation. This affirmed that
opcodes statistics can be useful in representing binaries.

Santos et al [4] used opcode frequencies to detect
malware variants. The best results were measured when
using opcode sequences of 2 (instead of using a single
opcode). The Mutual Information (MI) equation was used
to measure the statistical dependence between an opcode
and malware. Weights were then applied to these opcodes
so a feature vector could be build from the executables.
It was able to identify and distinguish malware variants
from benign executables.

Related work most closely related to this paper
was done by Austin et al. who [5] tested four different
compilers. The test data consisted of 92 separate programs:
24 were compiled with GCC, 24 with CLANG, 21 with
Turbo C, and 23 with MinGW. Hidden Markov models
(HMM) were then built for each program and for each
compiler. Initially, the results were not very good.
However, accuracy did improve to more than 90%, when
the dataset was limited to the opcodes that account for at
least 20% of the observations. It was unable to reliably
distinguish between programs built from hand-written
assembly and compiled code. The HMM did manage to
accurately identify certain virus families.

N-gram analysis: N-gram scoring mechanisms were
also being developed and analyzed to use with opcodes.
An n-gram is a sequence of n items from a larger sequence
of f.g. text or speech. In the case of opcodes, a 3-
gram opcode of "al" "b2" and "c3" would become
"alb2c3". The amount of n-gram opcodes increases ex-
ponentially as n increases [6] so feature selection becomes
necessary to filter out the less significant features. In the
research of Santos [7], feature selection (FS) was used
to reduce the training sets. Another method to reduce the
training set is to use Instance Selection (IS).

The research of Kang et al. [6] focused specifically on
Android Malware detection. Up to 10-gram opcodes were
tested with different machine learning algorithms. The

best performing algorithm was Support vector machine
(SVM) when using 4-grams, which showed a 98%
detection rate. Random Forest (RF) and partial decision
tree (PART) came close.

Hidden Markov model (HMM): Combining opcode
statistics with machine learning techniques proved to be
quite effective to detect metamorphic malware. Wong &
Stamp [8] set the benchmark by using tools based on
HMM to detect metamorphic viruses. Many variations of
using HMM have been proposed since then [5], including
using chi-squared in combination with HMM [9].

Graphing: Anderson et al. [10] and Runwal et al. [11]
were processing the opcodes using graphing techniques.

Deshpande [12] investigated algebra methods such as
eigenvalue and eigenvectors to preprocess the graph for
machine learning. This was to detect the highly metamor-
phic MWOR worm. This extended the work of Saleh et
al [13].

Hashemi et al. [14] did graph normalization and
graph embedding using a “power iteration” method.
Machine learning classifiers k-nearest neighbors (KNN)
and SVM were then used and applied. The classifier
Adaboost offered the highest accuracy (96,09%) on a
dataset with 2000 samples. SVM and KNN (K=10)
scored 95.62% and 95.09% respectively. On a larger
dataset with 22,200 samples, SVM, Decision Tree (DT),
KNN (K=1000) and Adaboost performed the best. Their
proposed method also showed advancements compared
to the methods of Santos et al. [7] and Eskandari et al [15].

ML classifiers: Shabtai et al. [16] did a comprehen-
sive test on 8 commonly used classification algorithms
and settings to distinguish between malicious and benign
executables. The best-averaged settings were 2-gram (up
to 6-grams were tested), normalised term frequency (TF)
representation and 300 top features selected by the docu-
ment frequency (DF) measure. The best classifier turned
out to be Random Forest (RF) with 95.146% accuracy,
with Boosted Decision Tree (BDT) and Decision Tree
(DT) being 2nd and 3rd respectively. Finally, a clear
performance improvement was shown when one would
keep the training set up to date with recent malware on a
yearly basis.

Santos et al. [7] extracted the assembly code of benign
and malware executables and trained machine-learning
algorithms to make a distinction between the two. This
was done with opcode sequences of 2, which resulted in a
high accuracy. Four machine learning models were trained,
each with different learning algorithms for that model:
DT, KNN, Bayesian networks (BN) and SVM. SVM: Nor-
malised Polynomial scored the best with 95,90% accuracy.
DT: Random Forest N=10 and SVM: Polynomial scored
94,98% and 95,50% respectively.

Finally, Mohammad et al. [17] used feature extraction
and DT learning to decide whether a binary contains
malware. 6 different decision trees were constructed. The
most efficient was the random forest (RF) algorithm,
which resulted in zero false positives from sets of
227, 120 and 20 opcodes. The performance was also
acceptable. It managed to detect all tested classes of
malware (NGVCK, G2, MPCGEN, and VCL).

Others: Shanmugam et al. [18] took a slightly dif-
ferent approach for measuring the similarities in opcode
sequences. The method used is inspired by substitution
cypher analysis. The opcode sequence of a file is given
a score on how close it comes statically to a certain
metamorphic family. If the statistics fit with the family
statistics than the file is classified as a member of that
metamorphic family.

Another approach is to use the structural entropy of
the binary for matching. This technique showed excellent
results on MWOR Worms but was moderately successful
against detecting the NGVCK virus [19].

II. METHODS

This paper primarily focused on the statistical differ-
ences in opcode frequencies for different compiler scenar-
ios. So instead of comparing different classes of malware,
different compiler settings are compared.

The statistics are done on a collection of applications.
Meaning a collection of applications are compiled with
a certain setting and then all opcodes of that collection
are combined before statistics are done on them. This
approach is chosen because:

o Not all programs have exactly the same distributions
of opcodes and some programs may react differently
to certain compiler settings as opposed to others. To
generalise these changes between compiler environ-
ments, the applications were combined.

o This is the main approach taken in almost all of
the related works. Billar [2], for example, analysed
the opcode frequencies of different collections of
malware versus a collection of goodware. Machine
learning classifiers were also trained using large col-
lections of malware.

First, the collection of applications had to be compiled

with different GCC versions and different compiler flags.
This resulted in two datasets:

o A collection of binaries that have been compiled with

6 different compiler flags.
o A collection of binaries that have been compiled with

8 different GCC versions.

The opcodes were extracted for each collection of
binaries using ob jdump. Then the opcodes were counted
for each collection of binaries.

First the frequency of individual opcodes (1-gram) and
then the frequency of opcode pairs (2-gram). According

to the related works, opcode pairs should show stronger
variations.

The top 30 opcodes are then taken and compared
with each compiled version and setting. The rest of the
opcodes are grouped into "OTHER”. Finally, a statistical
analysis was done on the data to find out significant
differences in the opcode distribution and to identify
opcodes with the largest deviations.

A. Chosen applications

Commonly used applications and Linux utils were cho-
sen for the dataset. The source code of the programs had
to be primarily written in C. The dataset contains math-
ematical software (gap), web services, crypto software,
and hashing software, common system utilities and other
common software. This in an attempt to create a balanced
dataset.

The following contains the list of all programs that
have been compiled. Some programs could not compile
with certain optimisation flags and are not included in the
dataset for the different compiler flags (*):

barcode - part of barcode-0.99
bash - part of bash-4.4

cp - part of coreutils-8.28

enscript - part of enscript-1.6.6
find - part of findutils-4.6.0

gap* - part of gap-4.8.9

gcal2txt - part of gcal-4

gcal - part of gcal-4

git-shell - part of git 2.7.4

git - part of git 2.7.4

lighttpd - part of lighttpd-1.4.48
locate - part of findutils-4.6.0

Is - part of coreutils-8.28

mv - part of coreutils-8.28
openssl* - part of openssl-1.0.2n
postgresql* - part of postgresql-10.1
sha256sum - part of coreutils-8.28
sha384sum - part of coreutils-8.28
units - part of units-2.16

vim - part of vim version 8.0.1391

Some of the binaries take up more space then others,
which can be seen in the pie-chart in Figure 1. However,
the dataset still remains relatively balanced:

git-shell

sha3g4sum barcode
0% 0%
sha256sum

%
gralZixt
0%

Figure 1: Pie chart that represents the sizes of the compiled
binaries.

All of the binaries have been compiled from the same
machine, running Ubuntu 16.04.3 LTS. The executable
file format for all binaries in the datasets are 64-bit ELF
(Executable and Linking Format), which is one of the
standard binary formats of Unix-like systems.

B. Compiler versions

The following versions of GCC were used to compile
the programs:

o GCC: (Ubuntu/Linaro 4.4.7-8ubuntu7) 4.4.7

e GCC: (Ubuntu/Linaro 4.6.4-6ubuntu6) 4.6.4

e GCC: (Ubuntu/Linaro 4.7.4-3ubuntul2) 4.7.4
GCC: (Ubuntu 4.8.5-4ubuntu?) 4.8.5
GCC: (Ubuntu 4.9.4-2ubuntul 16.04) 4.9.4
GCC: (Ubuntu 5.4.1-2ubuntul 16.04) 5.4.1 20160904
GCC: (Ubuntu/Linaro 6.3.0-18ubuntu2 16.04) 6.3.0
20170519
e« GCC: (Ubuntu 7.2.0-1ubuntul 16.04) 7.2.0

The GCC version can be selected by supplying the
CcC= flag to the shell. No other parameters were supplied
to the compiler other than the parameters that are already
in the makefile of the program.

Strip

Binaries found in /us#/bin/ and retrieved from repositories
are often stripped. Stripping is a common practice where
strings and comments are removed from the binary to
save space. Stripping away comments and strings should
not affect the number of opcodes in a binary. This was
confirmed with the binaries git, sha256sum and 1s.
Therefore all binaries have been analysed unstripped for
this experiment.

C. Compiler optimisation flags

The GCC optimization flags can be selected by
supplying the CLAGS== flag to the shell. GCC:
(Ubuntu 5.4.1-2ubuntul 16.04) 5.4.1

20160904 was the compiler version used to compile
the binaries for this dataset.

-00
Default optimisation of GCC. [20]
-01

Light optimization. This optimizes the binary without
significantly increasing the compilation time. This acts as
a macro for numerous optimizations that can be also be
defined separately.

-02

Increased optimization. This enables all optimizations
that don’t come with a space trade-off. All optimisation
flags of —01 are enabled along with additional flags.

-03

Turns on all optimizations of —02, along with additional
flags. Compilation using this flag should take longer to
complete.

-Os

A flag to optimize a binary for size. This enables all the
—02 optimizations along with other flags that reduce the
size.

-Ofast

Optimize for speed. This enables all —O3 optimiza-
tions along with other (non-standardized) flags such as
—fast-math. Some programs refuse to compile with this
optimization such as OpenSSL.

D. Statistical Analysis:

Each collection of binaries has been analyzed by the
individual (1-gram) and opcode pair (2-grams) statistics.
The statistical analysis has been applied to the absolute
number of opcodes. The absolute numbers can be found
in the Appendix.

Relative frequencies

The results are presented in relative frequencies (in per-
centages %). Tables with the absolute number of opcodes
can be found in the Appendixes.

The differences in relative frequencies have also
been added to the tables. This has been calculated by
subtracting the smallest relative frequency from the largest.

Z-scores

The Z score indicates the number of standard deviations
an observation deviates from the mean. This will give in-
sight into what opcode went through the strongest change
at a certain setting. At the same time, it is easier to observe
what opcode increased or decreased by value. The Z-score
is calculated for each cell as such [21]

X —p
g

7 =

6]

where X is the value of the cell, x4 is the mean of the
row and o is the standard deviation of the row. The more
the Z-score of a cell has moved away from 0 (either
positive or negatively), the more the value has deviated
from the mean. Note that the Z-scores have been applied
per row.

Chi-squared test

The Chi-squared test is a statistical test that can be
applied on matrices. It works by comparing the measured
(or sampled) data with the expected data. In the case of
this experiment, the expected amount of opcode values are
calculated cell by cell. The expected value of a cell is an
average number that is calculated by multiplying the total
of the cell’s entire row and column and then dividing it
by the total sum of the entire table [22]. The formula used
to calculate the expected values of the cells is:

% 2

E’L,] ==

where R; is the total of the cell’s entire row, C; the

total of the cell’s entire column and N the total sum of

the entire table. All of the expected cells will then be

compared with the real measured values. The chi-squared
number is then calculated as such:

B)2
22 = Z (Om Em) 3)

.3

where O; ; is the cell’s real value and FE; ; is the cell’s
expected value. This formula returns the chi-squared value.
The higher the chi-squared value, the more significant
the differences. Using the chi-squared distribution table,
a probability value (p) can be determined. This will test
the probability that the null hypothesis is true. The null
hypothesis means that there are no statistically significant
differences between the measured and expected data. F.g. a
placebo medicine would likely confirm the null hypothesis
in that the symptoms of the patients do not change
compared to that of the untreated patients.

A low probability value such as <0.05 indicates that
the results differ from the expected data. In the case of the
opcodes, such probability would indicate that they are not
uniform, meaning, some opcode quantities are relatively
larger than in comparison with other opcodes.

The chi-squared calculation has been done on a matrice
containing the top 30 opcodes. The remaining opcodes
that were listed under JOTHER” have not been included
in this score. It has to be noted that for all tables in
this paper, p = 0. This means that there is a near 100%
probability that significant differences will be found
between the compiler settings/versions. However, it is
hard to tell if these differences are meaningful due to the
large sample size. So a way to measure the differences
between opcodes regardless of sample size (effect size) is
needed. This is done using Cramérs V.

Cramérs V

The Cramer’s V is a measure of association, which is
based on the chi-squared statistic. The Cramer’s V can be
used to determine differences in data on a scale between

0 and 1 that indicates the strength of a relationship. The
Cramer’s V is calculated as such [23]

22
V= n-min(r—1,c—1) @

where 22 is the chi-squared value, n the total sum of the
entire table, r is the number of rows and c is the number
of columns. This returns a number between 1 and 0. The
following guidelines are used to interpret the Cramer’s V
numbers [24]:

e <0.10 indicates a weak relationship between the

variables
e 0.10 - 0.30 indicates a moderate relationship
e >0.30 indicates a strong relationship

III. RESULTS

The results of the experiments are laid-out in this
section. The implications of these results will be discussed
in the Discussion section.

A. GCC versions (1-gram)

In Figure 2 the relative frequencies of the opcodes are
shown for each version of GCC along with a bar chart of
the differences in relative frequencies. The mov opcode
is by far the most common opcode, followed by callq,
test and je. These four opcodes comprise 50% of all
opcodes. The bar chart in this figure show that these
opcodes do not show the largest variation in relative sizes.
The opcodes with the greatest variances were push,
pop, nop and movl.

Figure 3 shows the Z-scores and the 2 greatest deviators
after counting the opcode pairs. When looking at push
and pop opcodes more closely we can see that the number
of opcodes significantly increase at GCC 4.8, leading to
a difference of almost 50%. The Z-scores also show that
the top 15 opcodes generally increase in opcode size with
newer GCC versions, except for the mov opcode. Most
of the large opcode deviations can be found in the older
GCC versions.

Finally, the negative and positive Z-scores appear to
be for the largest part clustered together. Meaning that
a pattern of negative/positive z-scores is followed by a
pattern of positive/negative z-scores. This shows that the
opcode distribution is not random.

B. GCC versions (2-gram)

The opcode pairs (2-gram) of the binaries have also been
analysed. Figure 4 shows the relative frequencies along
with a bar chart. Figure 5 shows the Z-scores and the 2
greatest deviators after counting the opcode pairs.

Again, the mov and callqg opcodes contribute the
most to the total amount of opcodes. mov, mov is the
most common opcode pair, followed by mov, callg ,
callg, mov and mov, Xor.

Figure 2: Relative frequencies of opcodes for different GCC versions (1-gram).

Pearson's chi-squared test (x2) 116455.3
Cramér'sV 0.025513
p 0 Differences in
Opcode Average |GCC4.4 |GCC4.6 |GCCAT |GCC 4.8 | GCC49 GCCS5 GCC 6 GCC7 relative frequencies
mov 34.90% 36.22% 34.27% 33.94% 33.98% 34.07% 0.08
callg 8.30% 8.30% 8.31% 8.28% 8.29% B8.30%| 0.03
test 5.00%| 4.94% 5.01% 4.95% 4.592% 4.95% 4.98%| 005
je 4.70%| 474% . 4.68% 4.66% 4.67% 4.70%| 0.6
xor 4.60% ! 4.63% 4.59% 4.59%| 0.05 ’“ﬁ" '__
cmp 3.30%| 3.33% : 3.31% 3.32% 3.30% 3.33%| 0.02 i =
jne 3.10% 4 d 3.00% 3.15% 3.15% 0.09 g —
jmpg 3.00%) 3.02%) 3.04% 3.03% 3.03% 3.01%| 0.06 xor -
lea 3.00%, 3.11% 3.06% 0.16 cmp H
pop 2.90% 0.44 ne -—
add 2.90%| 2.98% 2.88% ; 0.11 g =
push 2.40% 0.49 p:s
nopl 2.30% 2.25% 2.31% 2.33% 2.23% 0.14 add - E—
sub 1.50% 1.51% 1.52% 1.55% 0.11 push
nopw 1.40% 1.38% 1.41% 1.39% 0.05 napl
retq 1.10% 112% 112% 110% 111%| 0.12 sub
movl 1.10% 1.02% 103% 1.03%) 0.20 "'::t": =
jmp 0.99% 0.97% 0.98% 0.97% 0.94%| o011 movl
movg 0.96% 0.95% 0.95% 0.96%] 004 imp
movzbl 0.91% 0.98% 0.91%| 0.15 movq -
0.68%| o0.08 movzb| -
0.7 mojsn\: *=
0.56% o009 cmib
0.06 jle ——
0.14 movh - —
0.39% 0.41% 0.12 shr - EE—
041% 041% 0.41% 0.22 o
movzw| . 0.06 mfx::
cmpg 0.40%| 0.38% 0.38% 0.36% 0.36% 0.18 shi
shl 0.40% 0.38% 038% 0.37% 0.37% 0.35% 0.15 OTHER
OTHER 6.90%| 6.88% 6.76% 6.91% 6.91% 6.90% 0.08 0.00 0.10 0.20 0.30 040 0.50 0.60

The relative frequencies of the opcodes for each GCC version. The cells have been coloured based on size for each row. Green indicates the largest value and red visa

versa. Above the table are the results of the statistical analysis. The leftmost column holds the total average for each row. The rightmost column holds the differences

in relative frequencies, which has been calculated by subtracting the smallest relative frequency from the largest. The bar-chart on the right gives a visual representation
of the differences in relative frequency.

Figure 3: Z-scores and the 2 greatest deviators for different GCC versions (1-gram).

Opcode ‘GCC4.9 ‘GCCS ‘GCCB ‘GCC}'
mov -0.65 -0.54 -0.46 -0.75)
callg 0.89 0.76 1.09|
-0.55 120000
100000
80000
4
g s0000 52495 (52906 | 53288
=]
40000
20000
0
GCC GCC GCC GCC GCC GCCS GCCE GCC7
44 46 47 4B 49
movl
mp |
mavg 140000
movzbl 120000
100000
£ 50000 {69445 59674 |70418
g 50000
40000
20000

GCC44GCCA6GCC4TGCC4BGECAD GCCS GCCE GCLCT

The Z-scores of the opcodes for each GCC version. The cells have been coloured based on size. This has been done for the entire table to put more emphasis on the
exceptional Z-scores. The stronger the colour, the greater the Z-score and therefore the greater the opcode has deviated from its mean. The two bargraphs on the right
represent the two opcodes that show the largest deviations overall. It shows the absolute number of opcodes between the compiler versions.

Figure 4: Relative frequencies of opcodes for different GCC versions (2-gram).

Pearson's chi-squared test (x2) 146756.3
Cramér'sV 0.036947
p [Differences in
Opcode Average |GCC4.4 |GCC4A6 |GCCAT |GCC4A8 ‘ GCC49 |GCC 5 GCC 6 GCC7 relative freguencies
mov,mov 15.50% 14.84% 14.43% 14.49% 14.51% 0.13
mov,callg 5.49%| 5.56% 5.57% 0.03
callg,mov 3.97% 4.06% 0.06
mov,Xor 2.18% 2.23% 0.12
test,je 2.11% 2.08% 2.13% 08% 0.05 ”"“::(’:IT" o
je,mav 2.09% 2.15% 07% 0.07 o i
pop.pop 1.97% 2.34% 0.46 movxor
mov,test 1.61% 1.60% 1.64% 1.61% 0.05 testje -
callg test L.57% 0.07 ie,mov -f—
xor,mav 1.45% 142% 1.46% 0.09 r‘:‘:‘:{‘t’;‘z =
testjne 1.28% 1.29% 1.28% 1.27% 0.04 callg test
jne,mov 1.22% 1.21% 1.21% 1.21% 0.04 Xor,moy - —
leamov 1.16% 117% 000N 119% 015 testjne mm
mov,jmpg 1.13% 112% 115% 1.15% 0.10 ine,mov. -
push,push 1.12% 0.61 m:ffj:z:
xor,callg 1.06% 1.06% 1.05% 0.14 push, push
cmp,je 1.06% 1.08% 1.07% 1.04% 1.06% 0.08 or,callg
push,mav 0.95% 1.13% 1.08% 0.44 cmp,je -—
nopl,mav 0.92% 0.89% 0.89% 012 push, mov
mov,add 0.89% 0.77% 0.78% 0.33 ""p""‘:;
test,mov 0.87%| 0.86%) 0.86% 0.86% [NOB1%4 0.16 Z:t":‘ —
mov,lea 0.83% 0.89% 0.88% 0.21 mov,lea - EE——
jmpg,nopl 0.82% 0.80% 0.82% 0.10 impa,nopl
jmpg,mov 0.75% 0.77% 0.71% 0.75% 0.77% 0.12 jmpg,mav
add,mov. 0.69% 0.71% 0.68% 0.70% 0.14 add, mov
pop,retq 0.69% 0.77% 0.41 popr sj‘:
mov,je 0.68% 0.68% 0.10 sub,mov
sub,mov 0.65% 0.61% 0.61%) 0.28 movsub
mov,sub 0.65% 0.65% 0.26 cmp,jne

0.59% 0.59% 0.60% 0.59% 0.16 OTHER

AA.04%, A43.63% 437!]‘36- A4.30%, 0.03 000 010 020 030 040 050 060 070

Figure 5: Z-scores and the 2 greatest deviators for different GCC versions (2-gram).

GCC4.6 |GCCAT ‘GCC:LE ‘GCC*J.Q ‘GCCS
0.89 -0.61 -0.73

~mov,mov -0.66

-0.87

-0.35

maov,callg
callg,mov
mov,xar

0.21

0.6 -0.53

-0.53

test,je

je,mov

maov, test
callg,test
xar,mov

test,jne

jne,maov
lea,mov
mov, jmpg
push,push
xor,callg

nopl,mov
mov,add

mov,je

sub,mov

mav,sub
cmp,jne

0.85 0.83 0.52 0.54
0.11 -0.28 -0.2 -0.07|
0.28 0.48 0.42

0.75 0.73 0.73 1.08

50000

50000

40000

30000

Opcodes

20000

10000

push,push

52974 | 53131 | 53234 | 53286

GCC44GCC46GLCATELCA4BGLCAS GCLCS GCCE GCCT

20000
80000
70000
50000
50000
40000
30000
20000
10000

Opcodes

pop,pop

84776

45862 | 45682 | 45838

GCC44GCC46GCCATGCCABGLCAS GCCS GCCH GCCT

The barchart also shows that again push, push and
pop, pop bring the largest deviations. The 2-gram Z-
scores also looks somewhat similar to that of the 1-gram
Z-scores. For example, the cmpb opcode in figure 3 under
GCC 4.4 shows a large negative Z-score, which also holds
true for the cmpb—je combination in figure 5.

When comparing the differences in relative frequencies
between 1-gram and 2-grams, there seem to be larger vari-
ations with 2-grams compared to 1-grams. push, push
deviates more strongly (0.61) then the 1-gram push (0.49)
and other opcodes also show greater differences in relative
frequencies. Also, the Cramer’s V statistic is slightly
higher (0.037 vs 0.026), which indicates that there is
a larger relationship between frequency and GCC version,
even though overall it remains weak.

The Cramer’V of both the 1-gram and 2-gram tables are
>0.10, which indicates a moderate relationship between
opcode count and the optimisation flags.

C. Flags (1-gram)

Figure 6 and 7 show the results of the analysis of opcode
frequencies when compiling with different optimisation
flags. By looking at the Z-table for binaries that are not
optimised (flag -O0) it can be seen quite clearly that
the main optimisation lies with the mov opcode. Without
optimisation, the mov takes 50% of instructions. After
optimisation this is reduced to around 33%. Other opcodes
do increase in number but in absolute numbers, this is
less than what has been saved in the number of mov
opcodes (2093283 vs 1336385). The absolute numbers can
be found in the Appendix.

As expected, the differences in relative frequencies for
optimisation flags are much larger that of the GCC version
comparison. This is also reflected in the Cramers’V, which
is 0.136. A Cramer’s >0.10 indicates that there is a
moderate relationship between the number of opcodes and
the optimization flag used.

The greatest deviators were nopl, nopw, cmpb and
pop. By looking at the 2 greatest deviators (nopl and
nopw) we see a large difference between 0,1, s and
2,3, fast.

In the Z-table, the -Os flag (size optimisation) opcodes
stand out the most. Most of the opcodes deviate negatively
from the mean, with the exception of the or opcodes.

D. Flags (2-gram)

Figure 8 and 9 show the 2-gram analysis for the flags.
The differences between 1-gram and 2-gram are similar to
what has been observed with the GCC version dataset. The
differences in relative frequencies for 2-grams are larger
compared to that of the 1-gram opcodes frequencies. This
is reflected in the Cramers’V, which for the 2-gram is
slightly higher than that of the 1-gram table. The Z-scores
also look similar to that of the Z-scores of the 1-gram. F.g.
the 1-gram pop and push and the 2-gram pop, pop and

push, push both show strong deviations when the -O0
flag is used.

IV. DISCUSSION

In the related works section, we saw that opcode fre-
quencies can be used to detect if a binary belongs to
a certain malware class. The goal of this paper was to
determine if there is potential to apply the same techniques
for different GCC versions and optimisation flags.

The frequency tables and the Z-square tables show
visible patterns in the opcode frequencies. In other words,
some opcodes deviate more strongly than others, which
can serve as weights for machine learning training. I think
this shows that using opcode frequencies has potential
to detect different GCC versions and flags. However, in
the case of the GCC versions, this will likely be more
difficult. The Cramer’s V for the version matrices are poor
which means that there is a weak relationship between
opcode frequency and GCC version. Meaning the changes
between GCC versions are not so clear-cut and it remains
to be seen if a machine learning classifier can be accurate
in differentiating between GCC versions when supplied
with a binary.

The Flag matrices, on the other hand, show a moderate
Cramer’s V score. Meaning that detecting optimization
flags will be much more likely. But will this be enough
to successfully train a classifier? Opcodes can be used to
reliably identify certain virus families, but in the related
work of Austin et al. [5], opcodes were unable to reliably
distinguish between programs built from hand-written as-
sembly and compiled code.

In the related work on N-gram analysis by Kang et al.
[6] it was already pointed out that n-grams larger than 1
perform betten than 1-grams. This is also reflected in this
research. There is a higher Cramer’s V score for the 2-
gram matrixes (table I) compared to the 1-gram matrixes in
the results. This means that there is a stronger relationship
visible and so this would provide stronger detectable
variations. This, in turn, will improve the accuracy of the
classifier.

Chi-squared p Cramérs V
Dataset (GCC 5) | 184522.4 0 0.055
Versions 1-gram 116455.3 0 0.025
Versions 2-gram 146756.3 0 0.037
Flags 1-gram 668066.8 0 0.116
Flags 2-gram 570972.1 0 0.136

Table I: Analysis of matrixes

Improvement to this research would be the dataset. The
opcode contributions per application could have been more
evenly distributed. The pie-chart in figure 1 shows that
5 programs are responsible for 79% of all the opcodes
and this may have degraded the statistics. The results
would have been better if most applications provide an
equal share of opcodes. Still, this doesn’t take away from

Figure 6: Relative frequencies of opcodes for different Flags (1-gram).

Pearson's chi-squared test (x2)
Cramér's V

668066.8
0.115758

Average

3.52%

4.06%

2.85%

movzbl
mavi

retg
movslg

0.87%

1.06% 1.06%

3s fast

push
lea
add
impg
pop

sub

imp

mavl
nopl
movzhl
movg
retg
movslg
cmpl
and
nopw
cmiphb

0.86

pushg

0.07

cmpq
movhb

jle
shl
or

-0.22

Differences in

0.34
0.19
0.35
0.44
0.45
0.26
0.85
0.57
0.32
0.37
0.53
0.85
0.46
0.61
0.10
1.00
0.81
0.21
0.32
0.18
0.81
0.27
1.00
0.90
0.26
0.62
0.48
0.36
0.65
0.68
0.19

relative frequencies

movl

imp

nopl

movzbl

retq

_—
movg -

cmpl
and

nopw

cmpb
pushg

cmpg

movb
jle
shl

ﬁ
E
;|

ar

OTHER

0.20 0.40 0.60 0.80 1.00

120

nopl

136 120
0 1 2 3 s fast
nopw
122 114
a 1 2 3 5 fast

Figure 8: Relative frequencies of opcodes for different Flags (2-gram).

Pearson's chi-squared test (x2) 570972.1
Cramér's V 0.13632
p 0

Opcode |Average

2

mov, mov 36.90%
mov,callg 8.30%

13.04%
5.17%

callg,mov 4.90% 3.62%

Jje,mov 4.80% 2.13% 2.14%

test,je 3.40% 2.38% 2.29%

mov, test 3.30% 1.79% 1.96%
3.10% 1.84%

pop,pop

3.10%
jne,mov 3.10%

mov, xor

1.55%

2.29% 2.00%

1.40%

callg,test 2.80%
push,push 2.70%
lea,mov 2.50%

1.52%

1.30%

1.61% 1.56%
1.72% 1.51%

2.33% 2.16%

1.26%

test,jne 1.70%

1.19% 1.32% 1.52%

push,mov 1.60%

1.40%

mov,lea 1.40%

cmp, je

xor,mav

mov,jmpg 1.00%

1.22%

0.93% 1.14%
1.43% 1.31%

0.72%

1.30% 1.00%
0.96%

1.13%

mov,add 1.00%

0.72% 0.87% 0.82%

0.99%

0.82%

sub,mov 0.80%

0.99%

0.85% 0.76%

0.76%

add,mov 0.70%

0.82%

jmpa.mov | 0.70%| _0.90%)

mov,cmp 0.70%
mov,sub 0.60%
cmp,jne

0.71% 0.68%

0.94% 0.71%

mov,push

jmp,mov
xor,callg
maov,jmp
pop.retq

0.70%

0.87%

0.68%

0.69% 0.71%

0.71% 0.65%

0.65%

0.67%
0.88% 0.71%

0.76% 0.60%

OTHER

40.04% 45.44%

0.67%

0.71%

__0.99%)

0.97%

Differencesin

relative frequencies

0.55
0.31
0.24
0.18
0.30
0.56
0.92
0.77
0.31
0.52
0.96
0.36
0.32
0.84
0.29
0.51
0.88
0.54
0.64
0.69
0.70
0.31
0.46
0.74
0.42
0.94
0.91
0.99
0.64
0.61
0.30

mov,maov
maov,callg
callg,mov
je.mav
test je
mov,test
pop,pop
maov,xor
jne,mov
callg,test
push, push
lea,mov
test.ine
push, mov
maov,lea
mp, je
Har,mov
mov,jmpg
mov,add
sub, mov
add, mov
impg,mov
mov,.cmp
mov,sub
cmp,jne
mov,push
jmp,mov
xor,callg
mov,jmp
pop.retg
OTHER

‘m

0.00 0.20 040 0.60 0.80 1.00 1.20

Figure 9: Z-scores and the 2 greatest deviators for different Flags (2-gram).

mov,callg
callg, mov
je.maov

test,je

mov,test

maov,xar

callg,test
push,push
lea,mov
test,jne

push,mov
mov,lea

X0r, mov
maov,add
sub,maov
add, mav

mov,sub

mav,push

wor,callg

-0.64

-0.29

-0.18

-0.34

-0.32

-0.43

-0.12

-0.67

0030 057

-0.85

-0.28

25000 -

20000

15000

Opoodes

10000

5000

146

xor,callg

40000
35000
30000
25000

20000

Opoodes

15000
10000
5000

37578

1 2 3 s fast

push,push

1 2 3 5 fast

the fact that changing GCC settings have an effect on
the opcode distributions and frequencies. And that this
creates an avenue for future research for applying machine
learning to detect compiler environments.

V. CONCLUSION

The opcode frequency distributions of binaries were
measured that were compiled with different compiler ver-
sions and optimisation flags. The Z-scores were measured
as well as the Cramers V. Also the differences between
I-gram and 2-gram opcodes were measured.

The 2-gram opcodes (opcode pairs) show a slightly
stronger relationship then compared to single opcodes.
This confirms related work about n-grams.

Statistically, the relationships between opcode and GCC
versions are weak. The relationships between opcodes
and optimisation flags are moderate. But however weak,
patterns are visible and detectable differences do occur.
Looking at the success of detecting metamorphic software
using opcode frequencies, I believe that there is at least
ground for further research. By seeing if a machine
learning can be applied to detect compiler versions and/or
compiler flags. But this may only happen if a dataset large
enough can be created.

A. Future work

The challenge currently lies with the creation of the
dataset. There is plenty of related work for applying
machine learning on opcodes, but this requires a decent
dataset. There are large malware collections available, f.g.
the VX Heaven collection [25]. However, such collections
for different optimisations or GCC versions do not exist
yet. For this paper, the dataset was created manually, which
was quite labour intensive. Having an environment that
can automate this for a large set (around 200) applications
would be very useful, if not mandatory to train an accurate
classifier. Making use of existing reproducible build or
build automation tools might be the key to this.

After the dataset has been created, techniques can be
applied that proved to be successful for detecting malware.
F.g in the research of Hashemi et al [14] the opcodes
(2-gram) were transformed into graphs, which were then
turned into feature vectors. The feature vectors were then
used to classify between malware or benign.

Also, experimentation with different sorts of classifiers
can be done. To test the effectiveness of some of the more
successful classifiers that were mentioned in the related
works section (DT (Random Forest), BDT, PART, KNN,
BN, SVM and Adaboost).

Aside from using opcodes, exploring other artefacts of
the binary are also possible such as the appearance of
combinations of bytes or hexadecimals.

Currently, the measurements have been done on a col-
lection of binaries. But research can also be done on the
effects of different GCC flags and versions per application.

This to determine whether changes in the environment
would affect applications in the same manner.

VI. ACKNOWLEDGEMENTS

I would like to thank Armijn Hemel from Tjaldur Soft-
ware Governance Solutions for supervising this research
project and providing helpful feedback. Furthermore, I
thank my fellow students of OS3 for the moral support
and helpful discussions while working on this research
project.

REFERENCES

[1] G. Robles, J. M. Gonzalez-Barahona, and 1. Herraiz,
“An empirical approach to software archaeology,” in
Proc. of 21st Int. Conf. on Software Maintenance
(ICSM 2005), Budapest, Hungary, 2005, pp. 47-50.

[2] D. Bilar, “Opcodes as predictor for malware,” vol. 1,
01 2007.

[3] D. Bilar et al., “Statistical structures: Fingerprinting
malware for classification and analysis,” Proceedings
of Black Hat Federal 2006, 2006.

[4] L. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz,
C. Laorden, and P. G. Bringas, “Idea: Opcode-
sequence-based malware detection,” in International
Symposium on Engineering Secure Software and Sys-
tems. Springer, 2010, pp. 35-43.

[5] T. H. Austin, E. Filiol, S. Josse, and M. Stamp,
“Exploring hidden markov models for virus analysis:
a semantic approach,” in System Sciences (HICSS),
2013 46th Hawaii International Conference on.
IEEE, 2013, pp. 5039-5048.

[6] B. Kang, S. Y. Yerima, S. Sezer, and K. McLaugh-
lin, “N-gram opcode analysis for android malware
detection,” arXiv preprint arXiv:1612.01445, 2016.

[7] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G.
Bringas, “Opcode sequences as representation of
executables for data-mining-based unknown malware
detection,” Information Sciences, vol. 231, pp. 64-82,
2013.

[8] W. Wong and M. Stamp, “Hunting for metamorphic
engines,” Journal in Computer Virology, vol. 2, no. 3,
pp. 211-229, 2006.

[9] A. H. Toderici and M. Stamp, “Chi-squared distance

and metamorphic virus detection,” Journal of Com-

puter Virology and Hacking Techniques, vol. 9, no. 1,

pp- 1-14, 2013.

B. Anderson, D. Quist, J. Neil, C. Storlie, and

T. Lane, “Graph-based malware detection using

dynamic analysis,” Journal in computer Virology,

vol. 7, no. 4, pp. 247-258, 2011.

N. Runwal, R. M. Low, and M. Stamp, “Opcode

graph similarity and metamorphic detection,” Journal

in Computer Virology, vol. 8, no. 1-2, pp. 37-52,

2012.

[10]

[11]

[12] S. Deshpande, Y. Park, and M. Stamp, “Eigenvalue
analysis for metamorphic detection,” Journal of com-
puter virology and hacking techniques, vol. 10, no. 1,
pp. 53-65, 2014.

[13] M. E. Saleh, A. B. Mohamed, and A. A. Nabi,
“Eigenviruses for metamorphic virus recognition,”
IET information security, vol. 5, no. 4, pp. 191-198,
2011.

[14] H. Hashemi, A. Azmoodeh, A. Hamzeh, and
S. Hashemi, “Graph embedding as a new approach
for unknown malware detection,” Journal of Com-
puter Virology and Hacking Techniques, vol. 13,
no. 3, pp. 153-166, 2017.

[15] M. Eskandari, Z. Khorshidpour, and S. Hashemi,
“Hdm-analyser: a hybrid analysis approach based on
data mining techniques for malware detection,” Jour-
nal of Computer Virology and Hacking Techniques,
vol. 9, no. 2, pp. 77-93, 2013.

[16] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and
Y. Elovici, “Detecting unknown malicious code by
applying classification techniques on opcode pat-
terns,” Security Informatics, vol. 1, no. 1, p. 1, 2012.

[17] M. Fazlali, P. Khodamoradi, F. Mardukhi, M. Nos-
rati, and M. M. Dehshibi, “Metamorphic malware
detection using opcode frequency rate and decision
tree,” International Journal of Information Security
and Privacy (1JISP), vol. 10, no. 3, pp. 67-86, 2016.

[18] G. Shanmugam, R. M. Low, and M. Stamp, “Simple
substitution distance and metamorphic detection,”
Journal of Computer Virology and Hacking Tech-
niques, vol. 9, no. 3, pp. 159-170, 2013.

[19] I. Sorokin, “Comparing files using structural en-
tropy,” Journal in computer virology, vol. 7, no. 4,
pp- 259-265, 2011.

[20] gcc.gnu.org. Using the gnu compiler collection
(gce): Optimize options. [Online]. Available: https:
/lgcc.gnu.org/onlinedocs/gec/Optimize-Options.html

[21] “Standarding - Z Scores in Excel,” Feb 2018, [On-
line; accessed 10. Feb. 2018]. [Online]. Available:
https://www.youtube.com/watch?v=tkkxIPAysME

[22] “Excel - Pearson chi square test of
independence,” Feb 2018, [Online; accessed
10. Feb. 2018]. [Online]. Available: https:

/lwww.youtube.com/watch?v=dgjHsv8FBYU

[23] “Excel - Cramer’s V,” Feb 2018, [Online; accessed
10. Feb. 2018]. [Online]. Available: https://www.
youtube.com/watch?v=YXe51-N9xjM

[24] “Statistical Interpretation | Fort Collins Science
Center,” Jan 2018, [Online; accessed 24. Jan.
2018]. [Online]. Available: https://www.fort.
usgs.gov/sites/landsat-imagery-unique-resource/
statistical-interpretation

[25] “VX Heaven Virus Collection 2010-05-18,” Jan
2018, [Online; accessed 30. Jan. 2018]. [Online].
Available: http://academictorrents.com/details/

34ebed9ad48aa532deb9c0dd08a08a017aa04d810/
tech&dllist=1

VII. APPENDIX

The appendix contains the following items:

1y
2)
3)
4)
5)

0)

Figure 1: Relative frequencies of opcodes between
the individual applications of the dataset.

Figure 2: Absolute number of opcodes between the
individual applications of the dataset.

Figure 3: Absolute number of opcodes for different
GCC versions (1-gram).

Figure 4: Absolute number of opcodes for different
GCC versions (2-gram).

Figure 5: Absolute number of opcodes for different
optimization flags (1-gram).

Figure 6: Absolute number of opcodes for different
optimization flags (2-gram).

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.youtube.com/watch?v=tkkxIPAysME
https://www.youtube.com/watch?v=dgjHsv8FBYU
https://www.youtube.com/watch?v=dgjHsv8FBYU
https://www.youtube.com/watch?v=YXe51-N9xjM
https://www.youtube.com/watch?v=YXe51-N9xjM
https://www.fort.usgs.gov/sites/landsat-imagery-unique-resource/statistical-interpretation
https://www.fort.usgs.gov/sites/landsat-imagery-unique-resource/statistical-interpretation
https://www.fort.usgs.gov/sites/landsat-imagery-unique-resource/statistical-interpretation
http://academictorrents.com/details/34ebe49a48aa532deb9c0dd08a08a017aa04d810/tech&dllist=1
http://academictorrents.com/details/34ebe49a48aa532deb9c0dd08a08a017aa04d810/tech&dllist=1
http://academictorrents.com/details/34ebe49a48aa532deb9c0dd08a08a017aa04d810/tech&dllist=1

Figure 1: Relative frequencies of opcodes between the individual applications of the dataset.

Pearson's chi-squared test (x2) 184522.4 GCC: (Ubuntu 5.4.1-2ubuntu1™16.04) 5.4.1 20160904
Cramér's V 0.054752
p (]
Opcode | Average | barcode bash ‘ p | enscript | find ‘ _| gealztxt ‘ git git-shell | lighttpd | locate
mov. 34.00%| 31.20% 31.80% 34.70% 30.80% - 0.70%| 33.90% 33.60% 33.30% 35.80% 29.80%
callg 8.30% 7.30% 7.60% 8.80% 7.20% 9.20% 8.40% 7.90% 6.90%
test 4.90%) 4.80% 4.60% 6.20% 4.50% 3 5.40% 5.30% 4.80% 4.40%
je 4.90% 5.60%, 4.50% 4.60% 5.30% 4.40%
xor. 4.80% 4.60% 4.30% 4.60%
pop 3.30% '4‘.16%_ 3.10%
cmp 2.90% 3.10% 3.60% 3.80%
jne 3.20%) 2.60% 3.70% 3.30% 2.80% 3.70% 3.50% 2.70% 3.40%
lea 3.00%| 6.20%] 240% 230% 5.60% ; 3.80% 3.50%[0 2.30% 3.10%
impgq 3.00%) 3.40% 3.80% 4.60% 4.60% 4.00% 2.60% 2.60% 3.50% 5.10%
push 3.00%| 2.70%| 2.40% 2.70% [0 3.00% 2.90% 3.30% 3.00% 2.60%
add 2.80% 4.30% 2.70% 2.80% 3.20% 2.70% 2.70% 3.00% 3.10% 3.00%
nopl 2.20%) 1.80% 2.70% 2.40% 1.40% 2.20% 2.40% 2.20% 2.40%
sub . 3 . Z . .10 . . . 1.50% X
nopw . 5 . 4 ¢ 4 - 4 i 1.50%_
retq . 40% | 10% 1.70% ! . % .
movl 2 4 & X . B 4 . g . a £ .
T . ; : . . B o. : ; L0 DA
movg d : ¢ 2.20% . K g .
movzbl
and
movslg
cmpb
jle
movb
shr
movzwl
nop
cmpg 0.30% 0.50% 0.30%
shl 0.70 0.20% 0.30% 0.30%
OTHER . ,90%)| o X R X 10.70% X 5.40% 3 X 10.30% 7.30% 11.20%

The relative frequencies of the opcodes for each application of the dataset. The applications in this table are compiled using GCC 5
with no additional flags. The cells have been coloured based on size for each row. Green indicates the largest value and red visa versa.
Above the table are the results of the statistical analysis. The leftmost column holds the total average for each row.

Figure 2: Absolute number of opcodes between the individual applications of the dataset.

Opcode[Total barcode | bash | cp | enscript| find | gap geal | gealzixt | git | gitshell| lighttpd | locate | s | mv__ | openssl | posigres [sha2s6sum| shazs4sum| units | vim | pMean | std. Dev.
TOTAL _ |3480062 | 8784 168498 22156 20586 31184 358026 147410 1331 380193 209955 43218 10814 19240 22281 523024 1009098 8535 9720 12936 473073] 174003 25775
mov 1182654 | 2454 5% 7043 716 9608 126294 59938 451 127844 69895 15481 3233 5643 7063 171813 364577 2797 3240 3703 141939] 59133 sos27
callg 285090 537 14253 1681 1820 2233 22115 g 133 34837 17583 3415 743 1146 1695 33350 95477 357 357 1257 37243 14405 23266
test 171085 415 1om9 1026 1279 1399 16755 3035 30 20630 11181 2068 477 842 1026 26031 42935 173 173 765 30389] 85%4] 12445
Je 162022 338 o812 053 1145 1412 s 3005 5 17145 %576 2982 a7 Bl 117 a9 4z 183 183 712 25110] si01] 11929
xar 161214 287 5542 1055 835 1503 11369 5984 58 18424 9620 1850 97 801 1091 29459 50991 575 1022 495 1848|8061 12897
op 119301 336 s5e7 863 352 1272 12006 3335 0 1481 8747 1868 331 593 863 1653 3683 206 206 517 15208] 5965 o8
cmp 115549 196 5382 850 454 135 1s7s0 3135 7 10916 6505 1545 a1 991 899 12195 2873 213 210 a0 21873] 577] sao7
jne 109689 228 5176 736 s68 939 16385 2287 39 13970 7344 1180 a7 505 738 11295 27403 178 178 419 1seas] sasa| 7oua
lea 106653 541 3978 511 1150 775 12195 3239 37 18513 7432 1007 330 35 a9 15082 2078 306 264 1038 14035 5333 7807
jmpg 105581 295 616 1010 951 1241 10917 2830 113 9872 sasd 1435 555 537 1026 14882 27366 2953 253 542 1963|273 754
push 103661 224 202 o2 288 947 7975 1082 51 10923 7022 1287 283 510 so8 12072 29366 160 160 4ss 10837 5183 7589
add 99024 381 572 617 559 844 11469 4927 10 10122 6237 1335 322 555 515 16715 24306 510 776 310 13740] 4951] 6852
nopl 76695 162 623 535 295 536 5005 1071 2 8338 503 567 262 98 554 10523 a1s% 138 139 316 11471] 3835 5745
sub 54054 202 2239 235 241 541 581l 4610 e 5524 3780 565 165 235 28 7011 13497 & 81 162 7a7s] 2703 3688
nopw___|a7578 % 780 s 151 522 5527 61 5 5281 3226 586 165 362 353 725 13135 82 8 187 esas] 2379 3528
retq 33870 55 250 w09 a1 523 3614 a9 10 4165 2749 5 115 230 313 025 11874 70 70 139 si76] 1944|3015
movl 35544 51 288 130 134 52 503 1518 i 528 1m 57 57 109 128 a5 %807 76 3 157 sem| 1797 2870
jme 34158 100 1997 208 135 201 3306 377 u 4334 2618 389 104 250 199 4513 9508 a a 126 ss00] 1708|2554
movg _ |33006 39 108 200 55 313 a4 453 0 s0s 2723 369 150 119 06 ass 708 50 2] 53 2687 1650 2568
movabl__|30581 55 1739 236 130 265 1 s 1 74 lese 215 159 252 31 s w72 76 7 52 535|149 2551
and 23749 85 123 o 87 25 2 10 3 2553 153 207 18 148 224 saL so8 24 29 25 2325 1187 1892
movslg__|22287 & 2085 1 340 162 400 526 1 2018 1399 EB 37 3 19 2360 7798 3 3 57 4s41) 1115 1985
cmpb___|20106 s P 57 279 212 258 4 2258 1199 136 129 21 299 57 5355 i 7 81 3530 1005 1929
jle 16343 a1 572 14 104 45 1567 576 4 1238 703 109 10 35 20 2971 433 4 4 9 3615 17| 1327
movb 16113 57 1193 256 140 238 450 281 3 1538 857 7 314 228 22 955 7082 % S S0 1739 806 1564
shr 14518 28 25 57 8L 38 2895 56 1 1043 509 61] 57 57 1330 3361 121 156 3 787 75| 1365
movawl__|13004 23 4 15 1 36 5378 2 0 193 170 170 9 fr) 19 523 5008 3 3 0 279 550 1745
nop 12875 % 702 7 a5 122 1332 149 3 1333 812 165) & 70 6% 3453 2 1 % 1 o] 9%
cmpq 12533 25 508 93 S0 101 3037 91 2 1125 560 341 16 56 107 1830 2387 12 12 57 2089 627 540
shi 12167 2 202 61 27 7 2603 2 0 1130 600 127 2 33 61 12 343 1 8 1 1628 508 1031
OTHER __|240439 1134 8951 1616 1715 2641 20645 1575 97 18857 11365 2638 855 1581 1634 58406 62288 1085 1407 o1 oeaes] 12022] 18313

The absolute values of the opcodes for each application. The rightmost two column hold the mean and the standard deviations, which
are used for calculating the Z-scores.

Figure 3: Absolute number of opcodes for different GCC versions (1-gram).

Opcode Total GCC4.4 | GCC4.6 | GCC4.7 ‘ GCC 4.8 ‘ GCC4.9 ‘ GCC 35 | GCCH | GCC7 pMean | o Std. Dev.
TOTAL 27444775 3392321 3360524 3353191 3413109 3475608 3480062 3473506 3491454 [3430537 57501
mov 9584697 1247531 1228735 1214602 1169725 1179637 1182654 1185099 1176714 (| 1193087 28445
callg 2275685 279013 283234 278324 280166 288731 288030 283411 289690 284461 4304
test 1362558 167599 171673 168097 168868 169086 171085 172107 174043 170320 2250
je 1292616 160951 161700 162672 159732 159033 162024 162362 164142 161577 1642
xor 1249100 149826 156482 148695 151830 161130 161214 159554 160369 156138 5267
cmp 910733 113023 111314 112561 112815 114416 115549 114331 116224 113842 1676
jne 843922 93233 100720 100558 102471 109465 109683 109645 112141 || 105430 5214
jmpg 828846 102477 97340 103844 103713 104936 105581 105265 105124 103606 2343
lea 813129 88951 91193 96360 106133 108272 106653 106351 109216 101641 8167
pop 807013 69445 69674 70419 125242 120315 119301 116201 116416 100877 25847
add 803482 101245 105546 103506 97940 100008 99024 93812 97401 100435 2340
push 659402 52495 52906 53288 86302 104466 103661 103225 103059 82425 25146
nopl 630254 86398 75638 77608 79475 77385 76635 76379 80676 78782 3493
sub 415062 51213 30871 50885 43164 33873 54034 34854 35148 52383 2463
nopw 383949 47854 46339 48307 48147 48304 47579 47471 49948 47994 1017
retq 306300 36258 36272 37414 41542 38965 38870 38366 38613 38288 1709
movl 299461 39660 39715 39414 40335 35474 35944 35943 32970 37433 2691
jmp 267430 34837 30835 33321 33881 33865 34158 33672 32911 33435 1194
movg 262221 32379 32514 32617 32731 32432 33006 33008 33534 32778 388
movzhl 238713 33356 31987 31212 31750 31770 30981 34034 31623 323339 1530
and 182921 22026 21313 22246 22602 23458 237439 23927 23600 22865 954
movslg 178054 22874 21607 22297 22744 22033 22297 22277 21925 22257 415
cmpb 158016 18318 20043 19987 20089 20335 20106 19741 19391 19752 645
jle 129059 16415 15983 15834 16246 16181 16343 16259 15798 16132 233
movh 126753 15706 16060 16117 16351 15956 16113 16030 14420 15344 603
shr 111433 12711 12951 13693 14502 14393 14618 14534 13973 13323 731
nop 109664 15887 13670 13873 14163 12929 12875 12742 13525 13708 1018
movzwl 103344 12687 13250 12710 13026 12857 13004 12885 12925 12918 182
cmpg 100827 12875 12613 13581 12443 12564 12533 12582 11624 12603 537
shl 100454 13623 12802 12615 12462 12930 12167 11836 11969 12557 586
OTHER 1885627 233449 225018 226534 227507 240253 240433 240047 252340 || 235703 9332

The absolute values of the opcodes for different compiler versions. The rightmost two column hold the mean and the standard
deviations, which are used for calculating the Z-scores.

Figure 4: Absolute number of opcodes for different GCC versions (2-gram).

Opcode Total GCCc4.4 | GCC4.6 ‘ GCC4.7 ‘ GCC4.8 | GCC4.9 ‘ GCC3 | GCCH ‘ GCC7 1 Mean | o Std. Dev.
TOTAL 27444639 [3392304 3360507 3353174 3413082 3475591 3430045 3478489 3491437 | 3430580 57501
mov,mov_|4254141 594883 579058 568760 506657 501511 504420 504760 484092 | 531768 41458
mov,callg |1507749 188639 187041 187749 188178 189389 188644 188525 183584 | 188469 828
callg,mov_|1083722 137868 138293 134663 137028 135490 135497 134873 136010 | 136215 1363
mov,xor 599399 69571 74314 68223 68793 79403 79367 79392 79736 74925 5265
test,je 578598 70495 71716 72046 70998 70841 73880 73904 74718 72325 1621
je,mov 573559 73346 72236 72974 70612 70355 71378 71430 71228 71695 1070
pop.pop 340956 45862 43682 45838 84776 81296 80672 78336 78474 67620 18181
mov,test |442855 53742 52682 53717 56054 56047 57162 57347 56104 55357 1740
callg,test 429928 53887 54319 55024 52835 53483 53260 53415 53705 53741 679
xor,mov__ |397703 49734 47746 47642 46480 50818 50977 52020 52286 49713 2183
test,jne 351550 43031 43711 43381 43725 44256 45014 44635 43797 43944 654
jne,mov_ |336187 40766 41910 40728 41282 42081 42940 43008 43472 42023 1051
lea,mov 317622 34979 36690 39186 41586 41434 41330 41018 41339 39703 2549
mov,jmpg |309865 37093 35081 37507 39136 39854 40345 40300 40549 38733 1975
push,push |307297 21428 20300 21033 31911 52374 33131 33234 33286 38412 16171
xor,callg |291240 34443 39732 35064 34740 36733 36687 36794 37041 36405 1639
cmp,je 2390811 34424 36328 37456 36385 35993 36941 36740 36539 36351 854
push,mov |259813 22537 23889 22421 40185 39157 37561 37033 37020 32477 7974
nopl,mov 252938 33927 31339 31930 30109 31019 30953 30647 33014 31617 1280
mov,add | 244404 37567 37072 36772 26246 26643 27199 26839 26061 30551 5469
test,mov |237724 29077 32202 28951 29471 29962 28133 29257 30671 29716 1249
mov,lea 228584 24558 23860 23572 30789 31074 30671 30907 31153 28573 3273
impg,nopl |223756 29473 27027 27501 27930 27212 27313 27078 30216 27970 1209
jmpg,mov 205286 26105 23865 26038 26097 26046 26668 26702 23763 25661 1171
add,mov_ {190093 21471 23829 22368 23240 24321 24086 24383 23801 23762 1126
pop,retqg 183509 17597 18066 13401 29803 26743 26436 25828 26623 23689 4344
mov,je 186497 21804 24091 22930 23165 23714 22785 23329 24679 23312 875
sub,mov__ |179750 20932 20541 20393 17813 24502 24364 25132 25167 22469 2879
mov,sub |178252 24575 24029 23120 18252 22454 21737 21893 22152 22282 1918
cmp,jne 162239 18403 18595 19691 20596 20660 20926 20847 22521 20280 1348
OTHER 12086606 [1480075 1454663 1465495 1516198 1539610 1539068 1538863 1552634 | 1510826 38441

The absolute values of the 2-gram opcodes for different compiler versions. The rightmost two column hold the mean and the standard
deviations, which are used for calculating the Z-scores.

Figure 5: Absolute number of opcodes for different optimization flags (1-gram).

Opcode |Total 0 | 1 ‘ 2 ‘ 3 ‘ 5 | fast KMean | oStd. Dev.
TOTAL 10620513 | 2093283 1510912 1552447 2044109 1335385 2044377 | 1770086 329385
mov 3918043 1045048 562815 521510 675712 436830 676074 653008 213015
callg 880297 158245 139514 131332 163006 125204 162996 146716 16820
je 519586 74237 74563 79616 111070 68953 111141 88598 19281
test 513724 67338 67058 85469 116481 60922 116456 85621 25267
cmp 365857 45764 55733 56137 80956 46227 81034 603786 16133
jne 355218 55414 54085 54713 71934 47160 71912 59203 10289
xar 328627 15356 12327 63431 83059 65438 83016 54771 32501
push 328131 41141 54488 54395 58331 61443 58327 54689 7154
lea 326650 48627 51239 43480 66053 45033 66158 54442 9262
add 295688 65485 43142 46592 57143 26125 57195 43281 13316
impg 287308 33106 34110 52645 69319 28938 69150 47885 18456
pop 269530 11285 39072 54086 58139 43827 58121 44922 17966
sub 178050 39524 29230 27730 33762 13946 33798 29675 8739
jmp 173746 48408 37229 16866 15701 31871 19671 28958 12437
movl 146338 30853 22047 21166 27325 17623 27324 24390 4913
nopl 121116 136 120 35370 42671 144 42675 20186 22128
movzbl 112437 34536 15986 13832 21926 4259 21948 18748 10113
movg 109933 18588 17016 16901 21740 13938 21750 18322 3048
retg 108453 24565 16938 17420 16734 16043 16743 18076 3210
movslg 82703 14935 13148 11545 16267 10523 16285 13784 2441
cmpl 77409 23682 20415 4223 5388 13314 5387 12902 8834
and 72521 15307 8414 9332 15050 8151 15067 12087 36830
nopw 70451 122 114 21772 24183 125 24170 11749 12768
cmpb 60111 1569 11207 10691 13982 8683 13973 10013 4p12
pushg 49673 10507 7575 7523 8366 7337 8365 8279 1178
cmpg 49205 18311 5808 5292 7120 5552 7122 8201 5015
movh 48278 5797 7801 7587 10854 5323 10916 8046 2403
ile 47475 6835 6912 7418 10441 5433 10435 7913 2065
shl 38481 13098 4710 4340 6711 2903 6719 6414 3589
or 36091 5125 3964 4511 6172 10139 6180 6015 2205
OTHER 649287 119739 94066 92862 124502 93895 124223 108215 16095

Figure 6: Absolute number of opcodes for different optimization flags (2-gram).

Opcode |Total 0 | 1 | 2 | 3 | 5 | fast 1 Mean | o std. Dev.
TOTAL 10620429 2093269 1510898 1592433 2044095 1335371 2044363 | 1770072 329385
mov,mov (1775471 584083 275932 207719 270184 167040 270513 295912 147739
mov,callg |617091 140608 110293 82276 103289 77311 103314 | 102849 22614
callg,mov 411222 85624 71132 57717 73119 50520 73110 68537 12508
je.mov 238289 48860 32112 34059 48559 26154 48545 39715 10134
test,je 237936 36445 35917 36524 51036 265970 51044 39656 9531
mov, test |191456 29031 27038 31143 45602 13056 45586 31909 12350
pop,pop |182677 4287 27759 36491 40931 32291 40918 304456 13792
mov,xor |182107 12616 9554 37155 44216 34388 44178 30351 15447
jne,mov_ |160128 39694 23386 20805 28621 18994 28628 26688 7502
callg,test |157274 20771 19713 25641 31793 27554 31802 26212 5222
push,push |155508 2219 37578 27414 30942 26416 30937 25918 12252
lea,mov_ |152462 40309 22943 19688 25721 18041 25760 25410 7941
test,jne 148826 24919 19917 24275 32617 14553 32545 24804 7074
push,mov |121901 29228 4902 20623 20380 26389 20379 20317 8414
mov,lea 112305 25482 19620 14719 19639 13185 19660 18718 4357
cmp,je 106273 12541 14073 18176 25162 11146 25169 17712 6235
xor,mov (104585 4088 3147 22742 26761 21105 26742 17431 10932
mov,jmpg |101706 14713 10852 18021 25278 7562 25280 16951 7351
mov,add |99154 33176 10873 13932 16785 7597 16791 16526 8897
sub,mov_ |99078 32898 14935 13508 15598 06541 15598 16513 8730
add,mov_ |93338 34801 12427 11365 13997 6759 13989 15556 9798
jmpqg,mov |90200 18882 14551 12430 17754 8811 17772 15033 3884
mov,cmp_ |86290 23785 14227 9830 14585 9249 14614 14382 5208
mov,sub |83140 31726 5961 11299 13271 7595 13284 13857 9252
cmp,jne 79373 14428 16531 10165 13718 10809 13722 13229 2369
mov,push |74772 13075 1239 14080 14477 17427 14474 12462 5687
jmp,mov_ |74703 31753 22628 2074 2661 12936 2651 12451 12457
xorcally |71647 146 287 16134 20285 14508 20287 11941 9364
mov,jmp (70731 22523 15738 6684 7840 10129 7817 11789 6181
pop,retg |65426 6913 10604 12173 12242 11261 12233 10504 2065
OTHER 4475362 673645 605023 723571 937032 595070 937021 | 745894 155038

	Introduction: motivation
	Research questions
	Related work

	Methods
	Chosen applications
	Compiler versions
	Compiler optimisation flags
	Statistical Analysis:

	Results
	GCC versions (1-gram)
	GCC versions (2-gram)
	Flags (1-gram)
	Flags (2-gram)

	Discussion
	Conclusion
	Future work

	Acknowledgements
	Appendix

