
An analysis of the scale-invariance of graph
algorithms: A case study.

July 10, 2018

Tim van Zalingen
University of Amsterdam

tim.vanzalingen@os3.nl

Supervisors:
Merijn Verstraaten (University of Amsterdam)

Ana Lucia Varbanescu (University of Amsterdam)

Abstract—Research in graph processing algorithms resulted
in many implementations that aim to make efficient use of
parallelism. Especially on GPUs, many implementations exist.
There is a lot of research into the relative performance of
GPU-based graph algorithm implementations for graphs with
differing topology. Knowledge on what algorithm implementation
to use can significantly speed up graph processing. In order
to benchmark real-world graphs with topological constraints,
but for different scales, a scaling mechanism has recently been
developed. This paper shows whether the relative performance
of Breadth First Search implementations on the GPU is scale-
invariant. First, we assess the scaling mechanism. Second, we
examine the relative performance of the Breadth First Search
implementations at different scales for a diverse set of graphs.
We find that the relative performance is stable, but not scale-
invariant and that one implementation shows better scalability
that the other implementations. Third, we investigate when this
implementation scales better than the others. This experiment
hints that such a transition point might be predictable. Lastly,
a comparison is drawn between the previous experiments, that
make use of scaled real-world graphs, and generated Graph500
graphs.

I. INTRODUCTION

The field of graph processing is ever expanding. From
research and networking to social media giants, graphs are
increasing in complexity. With the increase in data, the
processing of large graphs is becoming more relevant than
ever before. There are challenges in making efficient use of
parallelism for graph processing [1].

In order to speed up large graph processing, algorithms
have been developed that exploit Graphics Processing Units
(GPUs). Because computation power is cheap on GPUs, graph
processing can be more efficient. However, how much more
efficient the processing becomes depends on the implementa-
tion and type of graph.

The performance of graph algorithms is usually tested by
benchmarking public graph repositories, such as SNAP and
KONECT [2, 3], but these repositories are limited in size and
variety. When performing such benchmarks, we might be inter-
ested in graphs with specific topological properties. However,
these graphs might not be available in the required size. Too
large a graph might take too much time to benchmark. On
the other hand, we might be interested in the scalability of an
algorithm and would want to benchmark a graph on different
sizes.

In order to meet the demand in research, a mechanism
has been developed to scale graphs [4]. This allows graphs
to be scaled to the required size. The scaling mechanism,
developed by Musaafir, can create a family of graphs from an
original graph that is used as seed. This scaling method takes
samples from the original graph. This sampling preserves as
many graph properties as possible. If the graph needs to be
scaled up, these samples are combined to form the new, larger
graph. Musaafir shows that tweaking different parameters for
this combination effects the topology of the resulting graph.

It is also possible to generate graphs of a specific size [5–7].
However, generation with required topological constraints is
a challenge. There is no single framework that can generate
multiple classes of graphs and some classes of graphs can not
be generated at all. In addition, it can be a challenge to get
close to real life graphs.

The performance of different GPU-based graph algorithms
implementations depends on structural properties of the graph.
Examples of such properties are: Number of vertices, average
degree, cluster coefficient. These graph properties can be used
to predict the relative performance of graph algorithms [8–
10]. Verstraaten et al. compared different implementations and
variants of Breadth First Search (BFS) for different graphs
from the KONECT repository. Similar research was performed
by Merrill et al. Besides BFS, they also included the single-
source shortest path (SSSP) algorithm. Both used their findings
to predict what algorithm to use for a given graph, achieving
a significant performance gain.

During runtime the most efficient implementation, what
algorithm implementation performs best, changes. As such,
performance can be improved if the algorithm implementation
switches at runtime.

Knowing what algorithm implementation performs best is
especially relevant for large graphs, where processing times are
long. It is important to know what implementation performs
best for certain classes of graphs. Once an implementation is
chosen, will it perform well on similar graphs of other sizes?

This research focuses on whether the relative perfor-
mance of different graph algorithm implementations is scale-
invariant. In other words, if we scale a graph, we investi-
gate whether the relative performance-based ranking of the
different BFS algorithm implementations is preserved. While
scaling up graphs, other properties except for the size are

1



preserved. The scaling mechanism allows for different pa-
rameters. Does the scaling method affect the performance
at different scales? Different algorithm implementations are
tested. Does the relative performance stay the same? Instead
of using real-world graphs, generated graphs can also be used
to measure the impact of size on algorithm implementation
performance. Are there any significant differences between
scaling and generating graphs when examining the relative
performance of algorithm implementations over scale?

II. BACKGROUND

A. Definitions and concepts

1) Scale-invariance: If the performance-based ranking of
the algorithm implementations over different scales on the
same graph stays unchanged, we observe scale-invariance. On
the other hand, if the ranking of the algorithm implementations
does change, the behaviour is scale-variant.

2) Scalability: What happens to the performance of an
algorithm implementation once scaled is considered to be the
scalability of the implementation. If an implementation shows
to relatively perform better than another implementation on a
larger scale graph, it shows better scalability.

When a graph is scaled, the input size to the GPU increases.
As such, the number of threads in use rises. For these
implementations, as explained in section II-D, each individual
thread still handles the same amount of information. As such,
because the problem size per processor is fixed, we talk about
weak scaling.

3) Transition point: In this paper, we compare the per-
formance of graph algorithm implementations. It might be
possible that one implementation starts to outperform another.
Such an occurrence will be called a transition point.

B. GPU processing

The CUDA programming model allows for programmers to
utilise the GPU [11, 12]. Code runs parallel on a collection
of threads. These threads are grouped into warps. All the
threads in a warp execute the same instruction. This allows
for highly parallel processing of large regular data. While the
representation of graphs is regular, the graph itself might not
be. This can lead to workload imbalance. As explained in
section II-D, the efficiency of an algorithm implementation
depends on how well all threads in a warp are utilised. Not
being able to execute the same instruction within a warp,
leaves idle threads, resulting in a loss of performance.

C. Sample-based graph scaling

Sample-based graph scaling works by combining samples
of an original graph into a new larger graph. An example of
such a mechanism is shown in figure 1. First an input graph,
as shown in figure 1a, is required. From this input graph, a
sample is taken. Figure 1b shows a sample of 2

3 the number of
vertices from the original graph. Following the sampling, the
samples can be combined to form a new larger graph. Figure
1c shows how two of the earlier created samples are combined

(a) Original graph. (b) Graph sample.

(c) Scaled graph.

Fig. 1: An example of sample-based graph scaling. The
original graph is the input graph for the scaling mechanism.

Chain Ring Star Fully connected

Fig. 2: Illustration of the different topologies. Each polygon
represents a graph sample.

to form a graph of 4
3 the number of vertices of the original

graph.
The graph scaling mechanism, developed by Musaafir, takes

samples of the original graph and combines these into a larger
graph. These samples should preserve topological features of
the original graph or, in other words, the underlying structure
should be similar. Note that, unlike the earlier example in
figure 1, each sample can be different. One of the parameters,
the sample size parameter, determines how large the samples
are.

Several other parameters in the scaling mechanism can
be tweaked: The topology, type of bridges between graphs
and number of bridges between graphs. Because the scaling
mechanism is sampling based, these sample can be connected
in different ways. This is only relevant when a graph is scaled
up. When scaling down, the single sample does not need to
be connected to anything.

The topology determines how the different samples are
connected. The topologies are: Chain, ring, star and fully
connected. These topologies are illustrated in figure 2. In a
chain, each sample is connected to the next, except for the
last sample, forming a chain. For a ring topology, the samples
form a ring, each connected to the next. In a star, one central
sample is connected to all other samples. A fully connected

2



topology has each sample connected to every other sample.
Earlier results by Musaafir have shown that the topology

mainly has an effect on the diameter. A chain, for example,
tends to increase the diameter more than the other topologies.
This is because the only way to reach a vertex in the last graph
of the chain from the first, is by traversing all the other graphs.
This is not true for the other topologies.

We can either create a bridge between samples by randomly
selecting a vertex in each graph or by using vertices with a
high degree. A consistent finding in earlier experiments is that
picking high degree vertices decreases the average shortest
path in the graph. When a path is searched between two
samples, it is likely to be shorter if the samples are connected
by vertices with a high degree.

The last parameter allows for specifying the amount of
connections between samples. If we would connect samples
with only a single edge for each connection, the average degree
and density of the graph decreases. This problem is alleviated
by creating multiple edges for each connection between two
samples. Tweaking this setting has an effect on the average
degree, diameter and density of the graph.

D. BFS implementations

We use five main implementations of BFS: Edge-list,
reverse-edge-list (rev-edge-list), vertex-pull, vertex-push and
vertex-push-warp.

Both the edge-list and reverse-edge-list implementations
are edge-centric implementations, because they launch one
CUDA thread per edge. The edge-list uses the outgoing
edges, whereas the reverse edge-list uses the incoming edges.
Because every thread has the same amount of work, the
edge-centric implementations do not suffer from workload
imbalance. However, because a large amount of threads are
spawned, they result in many parallel updates and contested
atomic updates.

The vertex-centric implementations, vertex-pull and vertex-
push, launch one CUDA thread per vertex. The pull implemen-
tation updates its own BFS level. The push implementation
updates the BFS levels of its neighbours. Because the vertex
degree in a graph varies, these vertex-centric implementations
suffer from workload imbalance, especially if vertices with
a highly varying degree are in the same warp. The pull
implementation only touches a vertex once, therefore no
atomic operations are performed. The frontier is the vertices
that the algorithm is currently searching in. If no neighbours
are in this frontier however, the neighbours are iterated for
nothing, wasting time. The push implementation prevents
processing irrelevant neighbours, but in turn requires more
atomic operations.

The vertex-push-warp implementation is based on the
vertex-push implementation. Instead of each vertex being
process by one thread, a group of threads is assigned a number
of vertices. Every edge in a vertex is processed by this group of
threads. When completed, the group of threads moves on to the
next vertex. This attempts to reduce the workload imbalance
present in the vertex-centric implementations.

III. RELATED WORK

A. Difference between algorithms

Foggia et al. have performed research into graph matching
algorithms. Despite the fact that these algorithms do not run on
a GPU, it does show some insight into the relative behaviour
of different graph algorithms. This research shows that the
relative performance is dependent on properties of the graph
and that some algorithms perform better on large graphs
than others [13]. When comparing two similar algorithms,
Cordella et al. show that one algorithm only outperforms
another when the graph is large enough [14]. Similar research
in this field by Carletti et al. compares several graph matching
algorithms [15]. The ranking of the algorithms stays the same
for different graph sizes, however, the behaviour under scaling
differs. Something similar is investigated by Voss and Subhlok,
finding that how well an algorithm scales also depends on the
topology [16]. One should note that the graphs used by these
researchers are orders of magnitude smaller than the graphs
from KONECT used in this paper.

Harish and Narayanan implemented several algorithms to
process graphs on the CPU and the GPU using CUDA [12,
17]. Besides confirming that the efficiency of an algorithm
depends on graph topology, they also compared the algorithms
on similar graphs of different sizes. The relative performance
appears to be quite stable or, in other words, the ranking stays
the same. However it is unclear what graphs are used in the
experiments. Once real world graphs are used, this stability
seems to diminish.

B. Generation of graphs

As an alternative to graph scaling, the required graphs could
be generated. We could attempt to control topological features
in the graph generation. In doing so, it might be possible to
generate similar graphs of different sizes. However, the current
graph generators are not flexible enough.

Miller, Joel C and Hagberg, Aric created a method for
random network generation. These networks can be created for
any given degree [6]. Milo et al. combine two existing methods
into a similar approach [18]. However, this approach is limited
to directed graphs. Because there is more to graph topologies
than just degree, utilising such an approach for performance
benchmarking would limit the generality and applicability of
these experiments.

Guo and Kraines have been able to generate graphs and tune
the degree, clustering coefficient and power law [19]. While
this approach is able to control multiple topological factors, it
is limited to small graphs and doesn’t cover all graph features
of interest. The authors conclude that generators that control
multiple topological constraints, in a similar manner, are rare.

There are also graph generation methods based on existing
graphs. Ying, Xiaowei and Wu, Xintao propose such a method
[5]. In order to create graphs, random edges of the original
graph are selected and switched. The authors note that it is
not possible to preserve multiple features at a time. Therefore,
utilising this method can not guarantee all the topological

3



constraints to be maintained. Besides, the size of the new
synthetic graph is limited to that of the original.

Using evolutionary computing, Verstraaten et al. have been
able to create a synthetic graph generator [7]. This method
allows for creation of graphs with topological constraints.
Graphs of thousands of vertices were created with this method
in minutes. The authors note that there are issues with the scale
of the generated graphs. It was not possible to scale the graph
generation to a sufficient size to do benchmarking [8].

In conclusion, graph generation shows significant limita-
tions. The methods that scale well, do not preserve multiple
topological constraints. The methods that do preserve such
constraints, can not scale to a significant size. As such, graph
generation does not suffice for benchmarking purposes when
comparing algorithms, where the topology of a graph is of
great importance. Compared to graph repositories, generated
graphs can be less noisy. This would be an advantage when
performing benchmarking [8].

IV. METHOD

In order to examine the scale-invariance of graph algo-
rithms, we adopted an empirical research method, based on
benchmarking. Specifically, we selected a set of graphs, scaled
them to various sizes and measure the execution time. This set
is comprised of graphs from the KONECT repository, used
by Verstraaten et al. in earlier work. We first investigate the
impact of using different scaling parameters.

The computation time of BFS depends on the vertex it starts
from, the root vertex. Because the scaled graph is different,
we can’t use the same root in the scaled versions. During
earlier experiments, this proved to make the performance under
different scales highly unstable. To mitigate this effect, the
experiment is repeated for a number of root vertices. Each
implementation on one scale starts from the same set of root
vertices. Additionally, the computation time can differ for each
run, so we average each traversal over a number of runs. The
exact number of iterations is explained in the results section,
see V.

A. Scaling

In order to tweak the scaling parameters, we scale 2 graphs
with 18 different scaling parameters and benchmark BFS
computations for all these graphs. A comparison between
the results, with differing scaling parameters, should show
the effect of the parameters on the relative performance
of algorithms on different scales. The parameters that best
show the expected behaviour of scale-invariance, are used in
further experiments. All four topologies, both random and high
degree connections and 1, 5 and 10 edges per connection are
considered.

B. Algorithm scalability comparison

Algorithm implementations may show different scalability.
This behaviour could depend on graph properties as well.
Therefore we benchmarked 5 different BFS implementations
on a diverse set of graphs. This set is scaled down to 0.5 and

TABLE I: Topological details on the Graph500 graphs.

Level Size
(vertices)

Volume
(edges)

12 3353 48358
13 6467 101959
14 12550 213088
15 24196 441406
16 46815 909601
17 90116 1864262
18 173692 3805027
19 335294 7740825
20 646127 15700394
21 2396657 64155735
22 4610222 129333677
23 8870942 260379520
24 17062472 523602831

scaled up to 2, 4, 8 and 16 times its original size with a sample
size of 0.5. The time it takes to process a graph also depends
on the starting root node. Because the root node changes when
a graph is scaled, we take an average over 20 different root
nodes for each individual scale. Depending on the results, we
may perform additional experiments to investigate anomalies
or scale-variant behaviour.

C. Graph500

In order to see the difference between scaled and generated
graphs, we run the same benchmarks as before on Graph500
graphs [20]. The Graph500 graphs are generated with a gen-
erator that is similar to the R-MAT generator [21]. Different
levels of the Graph500 graphs are available, each increase in
level doubles the size of the graph. Information on the graphs
is provided in table I. All Graph500 graphs are undirected.

V. RESULTS

A. Experimental setup

All experiments described in this paper we perform on the
DAS-5 cluster [22]. We use an Nvidia GTX TitanX Maxwell
generation cards with 12 GB of onboard memory [23].

We use the sample-based graph scaling mechanism devel-
oped by Musaafir, as mentioned in section II-C. We also use
the BFS implementations, as mentioned in section II-D, and
the GPU-based graph algorithm benchmarking framework that
were developed by Verstraaten et al.

Throughout this paper we make references to the structure
of graphs in order to interpret the results. Table II shows such
information on all the graphs that we use. Note that the graphs
have diverse properties.

B. The effects of scaling parameters

We used both the DBpedia and
actor-collaboration graphs for the experiments
investigating the effects of the scaling parameters. These
graphs are some of the larger graphs in the repository, but not
large enough to take extensive time to scale and benchmark.
We scale the actor-collaboration and DBpedia
graphs up to 4 times their original size.

4



TABLE II: Topological details on the graphs used in this research from the KONECT repository [24].

Code Name Type Edge weights Size
(vertices)

Volume
(edges)

Average
degree

Cluster
coefficient Diameter

CL actor-collaboration Undirected Multiple unweighted 382219 33115812 173.28 16.6% 13
TH arXiv hep-th Coauthorship Undirected Multiple unwieghted 22908 2673133 233.38 16.9% 9
GC Google.com internal Directed Unweighted 15763 171206 21.72 1.33% 7
DB DBpedia Directed Multiple unweighted 3966924 13820853 6.97 0.014% 67
DI Discogs Bipartite Multiple unweighted 3780417 14414659 - - 22
PL Prosper loans Directed Multiple unweighted 89269 3394979 76.06 0.31% 8
UC UC Irvine messages Directed Multiple unweighted 1899 59835 63.02 5.68% 8
ND Notre Dame Directed Unweighted 325729 1497134 9.19 8.77% 46
HUi Hudong internal links Directed Unweighted 1984484 14869484 14.99 0.35% 16
AS Route views Undirected Unweighted 6474 13895 4.29 0.96% 9
IN CAIDA Undirected Unweighted 26475 53381 4.03 0.72% 17
TH arXiv astro-ph Undirected Unweighted 18771 198050 21.10 31.8% 14
BK Brightkite Undirected Unweighted 58228 214078 7.35 11.1% 18

The results are shown in figures 6, 7, 8, 9, 10 and 11. We
see that the computation time does not scale linearly and that
the relative performance for both graphs appears not to change
ranking often. However, there are multiple points where two
algorithm implementations do transition.

For the DBpedia graph the fully connected topol-
ogy, or “Full”, experiences multiple such transition points.
It does so more often than the star topology. On the
actor-collaboration graph, the full topology shows
heavy performance drops. Such drops can be seen around
scale 1.5 in figure 6 and scale 1.7 in figure 7. Therefore we
are reluctant to use the fully connected topology in further
experiments.

In the DBpedia graph, implementations can be seen to

compute faster for scale 4.0 when compared to smaller scales.
We observe that this behaviour is almost absent for the star
topology with random bridges in figure 9 and figure 7 for
n = 1 and n = 5, respectively. This is also true for the fully
connected topology in figure 11.

With the actor-collaboration graph, we observe
that n = 1 in figure 6 shows more points of transition than
n = 5 and n = 10 in figures 7 and 8, respectively. Especially
the star with random bridging topology for n = 5 shows less
transition points. Similarly n = 5 appears to have the least
transition points for the DBpedia graph.

We also see that, for the actor-collaboration graph,
the vertex-push implementation experiences the highest num-
ber of transition points. Comparable to that, the vertex-push

Fig. 3: A comparison of the relative algorithm performance under scaling for different graphs. Each experiment is repeated 5
times for 20 different root vertices. Vertical axis range zoomed to best fit the results. Vertical axis range from 100 shown in
appendix A figure 12.

5



implementation switches ranking for all experiments for the
DBpedia graph, except for the ring with random bridging
topology in figure 11. Because these experiments solely focus
on different scaling parameters, these observations are inves-
tigated in section V-D.

There appears to be no clear pattern in the differences
between different scaling parameters from these experiments.
Because the star topology with a random bridge and 5 inter-
connections shows the least number of transition points and
appears most stable in terms of scalability, we chose these
parameters for further experiments.

C. Algorithm comparison for different graphs

Figure 3 shows how the performance of different implemen-
tations scales for different graphs. We see that performance-
based ranking is preserved over scales. However, there are a
lot of points where the ranking switches.

The actor-collaboration graph only allowed to be
processed up to and including scale 8. Similarly the Discogs
and Hudong graphs could not be processed above scale 2. We
observe that these three graphs are the largest we have taken
from the repository. Therefore the inability to benchmark these
graphs is likely size related. The GPU is not able to process
graphs of such size.

We also observe that the performance difference be-
tween algorithm implementations for different graphs can
be as high as an order of magnitude. This highlights the
relevance of being able to employ the best implementa-
tion. The actor-collaboration and arXiv hep-th
Coauthorship graphs show a ranking similar to each other.
The graphs are similar: The cluster coefficients are 16.6% and
16.9%, the diameters 13 and 9 and the average degrees 173.28
and 233.38. Both graphs are undirected and unweighted. We
expect that the similarity in ranking is due to these topological
details.

Besides the ranking, the scalability of the algorithms is
also similar for the actor-collaboration and arXiv
hep-th graphs. The vertex-push implementation, in both
graphs, starts in a worse ranking and, for larger scales,
is only outperformed by the vertex-push-warp implemen-
tation. This phenomena occurs at a smaller scale for the
actor-collaboration graph. This likely happens at a
smaller scale because the actor-collaboration is the
larger of the two and as such does not need to be scaled up
as much before that effect to occur.

We also observe a difference in the number of transition
points per graph. For example, the prosper loans and UC
Irvine messages graphs experience more such transition
points than others. The actor-collaboration, arXiv
hep-th and Google.com graphs experience less of such
transition points. Because this is different per graph and sim-
ilar graphs, like the actor-collaboration and arXiv
hep-th graphs, experience a similar number of transition
points, we conclude that this behaviour has to do with the
properties of the graph itself.

Fig. 4: Mean performance of algorithm implementations on
topologically similar graphs over 20 different root vertices and
5 runs per root vertex. Vertical axis range zoomed to best fit
the results. Vertical axis range from 100 shown in appendix A
figure 13

.

Another recurrent phenomenon we observe is the better
scalability of the vertex-push implementation. This basically
means that the vertex-push implementation switches rank-
ing or starts to relatively perform better. In figure 3 this
happens for the actor-collaboration graph, arXiv
hep-th, Google, DBpedia, UC Irvine and Notre
Dame graphs. Only the Prosper loans graph definitely
shows no such behaviour. This raises the question, does vertex-
push scale better than other algorithms? If so, can a transition
point be determined? We investigate this further in section
V-D.

D. The transition point of vertex-push

We ran further experiments in order to investigate the
better scalability of the vertex-push implementation. These
experiments include graphs that are topologically similar or, in
other words, have a similar underlying structure and attempt
to find out whether such transition points lie close together for
similar graphs. The results are shown in figure 4.

The route views and CAIDA graphs show that the
vertex-push implementation heavily switches ranking at some
scales. It is unclear to us why exactly this happens. The
scalability of vertex-push appears to be unstable.

The route views and CAIDA graphs are slightly
smaller and have less edges per vertex, whereas the arXiv
astro-ph and Brightkite graphs are larger and have
more edges per vertex. All graphs are undirected and un-
weighted. The arXiv astro-ph graph has an average
degree of 21, whereas the other graphs have an average degree
of around 5.

6



We can see that the route views and CAIDA graphs
show no lasting transition points for the vertex-push imple-
mentation. Instead, the implementation is most efficient from
the start, except on 2 scales for the route views graph
and 4 scales for the CAIDA graph from the 11 scales for each
graph in total. The opposite is true for the arXiv astro-ph
and Brightkite graphs, where vertex-push only starts to
outperform other implementations on larger scales.

While similar in size, in terms of vertices, the arXiv
astro-ph and Brightkite graphs have several times
more edges when compared to the other two graphs. We
expect that this has an effect on the relative performance of
the algorithms and on the better scalability of vertex-push.
We also observe that the Brightkite graph shows better
scalability than the arXiv astro-ph graph. The ranking
switches earlier for the Brightkite graph, despite the
Brightkite graph having more edges and vertices. The
arXiv astro-ph graph has more edges per vertex. We
expect that the amount of edges per vertex plays a role in
the scalability of vertex-push.

We also observe that the route views and CAIDA
graphs show a similar ranking of the implementations.
The same can be said for the arXiv astro-ph and
Brightkite graphs. We expect that this is because of the
topological similarities in the graphs. This confirms that the
relative performance of the BFS implementations is indeed
dependent on graph properties.

E. Comparison to Graph500

The results of the benchmarks for the Graph500 graphs
are shown in figure 5. We observe that the experiments on
the Graph500 graphs show the same pattern of preservation
of performance-based ranking over scale. The differences in
computation time between the algorithms are, similarly to
earlier experiments, multiples of each other.

Except for the vertex-push implementation, no other imple-
mentations have any transition points between them. On level
12, the vertex-push implementation starts as second to last. On
level 24 however, vertex-push is fastest. This further confirms
the better scalability of the vertex-push implementation.

Besides that, we observe that the scalability of the
algorithm implementations appears smooth. There are
no sudden drops in performance. This is similar to
the actor-collaboration and arXiv hep-th
Coauthorship graphs, but different to, for example, the
Prosper loans and Notre Dame graphs in figure 3.

VI. DISCUSSION

We show that the relative performance of BFS implemen-
tations is stable under scaling, not showing many transition
points. However, the relative performance is not fully scale-
invariant. Within a few multiples of scale, we expect the
relative performance to stay unchanged. When a graph is
scaled to multiple times its original size, one implementation
can start to outperform another. This is similar to the results

Fig. 5: Mean performance of algorithm implementations on
the Graph500 graphs over 20 different root vertices and 5
runs per root vertex. Vertical axis range zoomed to best fit
the results. Vertical axis range from 100 in figure 20 and both
axes zoomed to highlight lower levels in figure 21 shown in
the appendix A

found in earlier research mentioned in section III-A that
compares graph isomorphism algorithms.

The set of graphs used in this research however, is quite
topologically diverse and limited by what KONECT has to
offer.

We also show that tuning the scaling parameters has little
effect on the scalability of algorithm implementation perfor-
mance. However, these experiments are limited to 2 graphs
and a single scaling mechanism.

We also note that the vertex-push implementation shows
better scalability than others. Further experiments confirm this
and show that the better scalability is indeed dependent on
topology. The experiments also show that the transition point
occurs around the same size for graphs that are topologically
similar. This transition point also correlates with the number
of edges per vertex.

Performing the same benchmarks on different levels of
the Graph500 graphs shows the same general increase in
computation time. We observe that only the vertex-push im-
plementation switches in performance-based ranking.

The Graph500 results are similar to that of the scaled real-
world graphs. However, the Graph500 levels do not show
sudden drops and increases in performance that the scaled
real-world graphs do. These anomalies might be caused by
improper scaling of the graphs. If the scaled graph is topo-
logically similar to the original, one would not expect such
sudden performance drops or increases

7



Future Work

This work has focused on BFS, but there are many other
graph algorithms where the same problem of relating im-
plementation performance to topological properties matters.
Future research into the scale-invariance of other graph algo-
rithms might find different classifications.

Merrill et al. describe multi-GPU graph traversal [9]. It
would be interesting to investigate the scale-invariance of such
a mechanism when comparing algorithm implementations.

We have only used 5 BFS implementations. More imple-
mentations and variants exist. Naturally, the results should be
extended if these are used in future research.

Instead of comparing diverse graphs, the relative perfor-
mance under scaling for similar graphs should be examined.
We briefly looked into this in section V-D. However the
experiments are limited to several graphs of only one class.
The field of graph generation might aid in creating repositories
of similar graphs. These repositories would be constrained, as
explained in section III-B.

We have shown that the transition points for topologically
similar graphs occurs around the same size. Is it possible to
determine, in detail, where transition points may occur for
different graphs? If this is possible, one might be able to
predict when one algorithm starts to outperform another.

REFERENCES

[1] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry,
“Challenges in parallel graph processing,” Parallel Pro-
cessing Letters, vol. 17, no. 01, pp. 5–20, 2007.

[2] J. Leskovec, “Stanford Network Analysis Platform
(SNAP),” Stanford University, 2006.

[3] Kunegis, Jérôme, “Konect: the koblenz network collec-
tion,” in Proceedings of the 22nd International Confer-
ence on World Wide Web, ACM, 2013, 1343–1350.

[4] A. Musaafir, “Shrinking and Expanding Graph
Datasets,” Master’s thesis, University of Amsterdam,
the Netherlands, 2017.

[5] Ying, Xiaowei and Wu, Xintao, “Graph generation with
prescribed feature constraints,” in Proceedings of the
2009 SIAM International Conference on Data Mining,
SIAM, 2009, 966–977.

[6] Miller, Joel C and Hagberg, Aric, “Efficient generation
of networks with given expected degrees,” in Interna-
tional Workshop on Algorithms and Models for the Web-
Graph, Springer, 2011, 115–126.

[7] M. Verstraaten, A. L. Varbanescu, and C. de Laat,
“Synthetic graph generation for systematic exploration
of graph structural properties,” in European Conference
on Parallel Processing, Springer, 2016, 557–570.

[8] ——, “Using Graph Properties to Speed-up GPU-based
Graph Traversal: A Model-driven Approach,” arXiv
preprint arXiv:1708.01159, 2017.

[9] D. Merrill, M. Garland, and A. Grimshaw, “Scalable
GPU graph traversal,” in ACM SIGPLAN Notices, ACM,
vol. 47, 2012, pp. 117–128.

[10] D. Li and M. Becchi, “Deploying graph algorithms on
gpus: An adaptive solution,” in Parallel & Distributed
Processing (IPDPS), 2013 IEEE 27th International
Symposium on, IEEE, 2013, pp. 1013–1024.

[11] S. Hong, S. K. Kim, T. Oguntebi, and K. Oluko-
tun, “Accelerating cuda graph algorithms at maximum
warp,” in ACM SIGPLAN Notices, ACM, vol. 46, 2011,
pp. 267–276.

[12] P. Harish and P. Narayanan, “Accelerating large graph
algorithms on the GPU using CUDA,” in International
conference on high-performance computing, Springer,
2007, pp. 197–208.

[13] P. Foggia, C. Sansone, and M. Vento, “A performance
comparison of five algorithms for graph isomorphism,”
in Proceedings of the 3rd IAPR TC-15 Workshop on
Graph-based Representations in Pattern Recognition,
2001, pp. 188–199.

[14] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,
“An improved algorithm for matching large graphs,” in
3rd IAPR-TC15 workshop on graph-based representa-
tions in pattern recognition, 2001, pp. 149–159.

[15] V. Carletti, P. Foggia, and M. Vento, “Performance
comparison of five exact graph matching algorithms
on biological databases,” in International Conference
on Image Analysis and Processing, Springer, 2013,
pp. 409–417.

[16] S. Voss and J. Subhlok, “Performance of general graph
isomorphism algorithms,” PhD thesis, Citeseer, 2009.

[17] P. Harish, V. Vineet, and P. Narayanan, “Large graph
algorithms for massively multithreaded architectures,”
International Institute of Information Technology Hy-
derabad, Tech. Rep. IIIT/TR/2009/74, 2009.

[18] R. Milo, N. Kashtan, S. Itzkovitz, M. E. Newman, and
U. Alon, “On the uniform generation of random graphs
with prescribed degree sequences,” arXiv preprint cond-
mat/0312028, 2003.

[19] W. Guo and S. B. Kraines, “A random network gener-
ator with finely tunable clustering coefficient for small-
world social networks,” in Computational Aspects of
Social Networks, 2009. CASON’09. International Con-
ference on, IEEE, 2009, pp. 10–17.

[20] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A.
Ang, “Introducing the Graph 500,” Cray User’s Group
(CUG), vol. 19, pp. 45–74, 2010.

[21] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT:
A recursive model for graph mining,” in Proceedings
of the 2004 SIAM International Conference on Data
Mining, SIAM, 2004, pp. 442–446.

[22] Bal, Henri and Epema, Dick and de Laat, Cees and van
Nieuwpoort, Rob and Romein, John and Seinstra, Frank
and Snoek, Cees and Wijshoff, Harry, “A medium-
scale distributed system for computer science research:
Infrastructure for the long term,” Computer, vol. 49,
no. 5, 54–63, 2016.

8



[23] DAS-5. (2012). Accelerators and special compute
nodes, [Online]. Available: https://www.cs.vu.nl/das5/
special.shtml (visited on 07/07/2018).

[24] KONECT. (2017). Networks, [Online]. Available: http:
/ / konect . uni - koblenz . de / networks/ (visited on
07/07/2018).

9

https://www.cs.vu.nl/das5/special.shtml
https://www.cs.vu.nl/das5/special.shtml
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/


Fig. 6: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
actor-collaboration graph. Number of interconnections is 1. Vertical axis range zoomed to best fit the results. Vertical
axis range from 100 shown in appendix A figure 14.

Fig. 7: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
actor-collaboration graph. Number of interconnections is 5. Vertical axis range zoomed to best fit the results. Vertical
axis range from 100 shown in appendix A figure 15.

10



Fig. 8: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
actor-collaboration graph. Number of interconnections is 10. Vertical axis range zoomed to best fit the results. Vertical
axis range from 100 shown in appendix A figure 16.

Fig. 9: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the DBpedia
graph. Number of interconnections is 1. Vertical axis range zoomed to best fit the results. Vertical axis range from 100 shown
in appendix A figure 17.

11



Fig. 10: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
DBpedia graph. Number of interconnections is 5. Vertical axis range zoomed to best fit the results. Vertical axis range from
100 shown in appendix A figure 18.

Fig. 11: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
DBpedia graph. Number of interconnections is 10. Vertical axis range zoomed to best fit the results. Vertical axis range from
100 shown in appendix A figure 19.

12



APPENDIX A
PLOTS WITH VERTICAL AXIS RANGE STARTING FROM 100

Fig. 12: A comparison of the relative algorithm performance under scaling for different graphs. Each experiment is repeated
5 times for 20 different root vertices.

Fig. 13: A comparison of the relative algorithm performance under scaling for different graphs. Each experiment is repeated
5 times for 20 different root vertices.

13



Fig. 14: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
actor-collaboration graph. Number of interconnections is 1.

Fig. 15: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
actor-collaboration graph. Number of interconnections is 5.

14



Fig. 16: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
actor-collaboration graph. Number of interconnections is 10.

Fig. 17: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
DBpedia graph. Number of interconnections is 1.

15



Fig. 18: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
DBpedia graph. Number of interconnections is 5.

Fig. 19: Comparison of mean algorithm computation time over 20 different root vertices for differing topologies on the
DBpedia graph. Number of interconnections is 10.

16



Fig. 20: Mean performance of algorithm implementations on the Graph500 graphs.

Fig. 21: Mean performance of algorithm implementations on the Graph500 graphs. Vertical and horizontal axes range zoomed
to highlight the lower levels.

17


	Introduction
	Background
	Definitions and concepts
	Scale-invariance
	Scalability
	Transition point

	GPU processing
	Sample-based graph scaling
	BFS implementations

	Related Work
	Difference between algorithms
	Generation of graphs

	Method
	Scaling
	Algorithm scalability comparison
	Graph500

	Results
	Experimental setup
	The effects of scaling parameters
	Algorithm comparison for different graphs
	The transition point of vertex-push
	Comparison to Graph500

	Discussion
	Appendix A: Plots with vertical axis range starting from 100

