
Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Low-level writing to NTFS file systems

Rick van Gorp1

1System and Network Engineering
Faculty of Science

July 3, 2018

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 1 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Introduction

Red teams: Unwriteable files or Endpoint Security

Windows API allows interaction of user-mode with kernel-mode functions

Endpoint security could monitor and block I/O activity

Low level-writing to NTFS drives: Bypass NTFS access lists and software hooks

Allows user to overwrite or falsify data

Research Question

In what way can data be written to an NTFS filesystem, such that hooks in write
operations in Windows are bypassed?

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 2 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Related work

Joseph Bialek (2015) - Created Invoke-Ninjacopy1 that opens a read handle to
an NTFS volume and parses the NTFS volume to retrieve files.

Cloudburst Security (2016) - Shellcode in malware bypasses Anti-Virus (AV)
hooks by overwriting a function prolog the AV used to hook into the function.

Blackhat USA, Udi Yavo and Tomer Bitton (2016) - Identified security issues in the
Windows hooking methods and described different hooking engines.

1https://github.com/clymb3r/PowerShell/tree/master/Invoke-NinjaCopy

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 3 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Methods

Research environment:

Windows 10 - Home Edition x64

Windows 7 - Home Edition x64 (Virtualbox and VMWare instance)

Methodology:

Desk research: Gather information regarding the Windows API and NTFS

Static analysis with IDA Free edition: Analyse Windows API user-mode and
kernel-mode

Write experiments: Test whether we can write directly to a raw disk or NTFS
volume

Attempt to verify the found implications

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 4 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Windows API - Write function

Figure 1: Windows API call follow-up scheme: user-mode and kernel-mode

1IRP = Input Output Request Packet

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 5 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Windows API - Storage driver stack

Figure 2: Processing of IRP from the filter driver by storage class driver (Microsoft 20172)

2https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts
2SRB = SCSi Request Block

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 6 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Hooking - User-mode

Listen to or modify the behavior of a process by intercepting an instruction of a
program

DLL-injection: Inject code into another process
Import Address Table: Change memory address of target function
Inline hooking:

Figure 3: Inline hooking example of NtCreateFile (UserPC.net 20173)

3https://userpc.net/wp-content/uploads/2017/12/InlineHook.png

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 7 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Hooking - Kernel-mode

System Service Dispatch Table: Replace pointers for Nt-functions with pointers to
own code.

SYSENTER_EIP: Replace register address with address of detour function.

Interrupt Service Routines: Map interrupt with response. Replace address of
response with hooking function.

IRP Major Function: Driver object contains function pointers, that are called from
other drivers through IoCallDriver. Other drivers could replace those pointers to
its own functions.

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 8 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

File system filter drivers

Log, monitor, modify or prevent I/O operations related to the file system.
Priority controlled by altitudes: Multiple Endpoint security companies are
registered with Microsoft 4.

Figure 4: Simplified I/O Stack with filter manager en three filter drivers (Microsoft, 2017 5)

4https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/allocated-altitudes
5https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/filter-manager-concepts

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 9 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Write experiments - Setup

Attempt to write to NTFS boot sector, Master File Table and file system space

Experiment 1

User-mode application6: Opens write-handle to volume/physical disk with
CreateFile and WriteFile.

Experiment 2

Kernel-mode driver6: Open write-handle to volume/physical disk with
NtCreateFile and NtWriteFile.

Experiment 3

Kernel-mode driver6: Write directly to storage class driver with IRP_MJ_WRITE and
flag SL_FORCE_DIRECT_WRITE.

6https://github.com/rickvg/low-level-ntfs

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 10 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Write experiments - Results 1 & 2

Handle to volume Handle to harddisk
Write to file system 7 7

Write to NTFS boot sector 3 7

Write to Master File Table 7 7

Alert by Endpoint security 7 3

Table 1: Results of write experiments sorted by writing to volume and harddisk

Handle to volume Handle to harddisk
Write to file system 7 7

Write to NTFS boot sector 3 7

Write to Master File Table 7 7

Alert by Endpoint security 7 7

Table 2: Results of write experiments sorted by writing to volume and harddisk

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 11 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Write experiments - Results 3

IDE SATA SCSI SAS
Write to file system 7 7 3 3

Write to NTFS boot sector 7 7 3 3

Write to Master File Table 7 7 3 3

Alert by Endpoint security 7 7 7 7

Table 3: Results of write experiments while directly communicating with the storage class driver, sorted by storage
technology

SATA & IDE: Invalid SCSI block request: No proper translation between IRP and
SRB.

Possible solution: Communicate with storage port drivers directly using own SRBs.

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 12 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Writing to files on an NTFS volume

Experiments: Raw disk access possible

Objective: Locate the data linked to files

Open a read handle to the raw disk and read its contents

Locate the NTFS volume: Identified by hex-string EB 52 90 4E 54 46 53

Parse the boot sector to identify the location of the Master File Table

Parse the Master File Table (MFT) to locate the data in the volume using data runs

Overwrite the file data at the location specified

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 13 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Writing to files on an NTFS volume - Parsing the boot sector

Data in table 4 resides in the BPB-section7 of the boot sector, starting at offset 0xB

Offset (hex) Length Value
0x0B 2 bytes Bytes per sector (Sbytes)
0x0D 1 byte Sectors per cluster (Csectors)
0x28 8 bytes Total amount of sectors
0x30 8 bytes Logical cluster number of MFT (MFTclusterloc )
0x38 8 bytes Logical cluster number copy MFT
0x40 1 byte Clusters per MFT record
0x44 1 byte Clusters per index buffer

Table 4: Sector and Cluster information and MFT location information offsets within BPB of NTFS bootsector

Calculate MFT position in bytes: ByteLocMFT = Sbytes ∗ Csectors ∗ MFTclusterloc

7Bios Parameter Block

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 14 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Writing to files on an NTFS volume - Parsing the MFT (1)

Check whether file is deleted or still available

Get location of attributes and find filename and data

Offset (hex) Length Value
0x0 4 bytes FILE, if invalid BAAD
0x14 2 bytes Attribute offset
0x16 2 bytes 00 00 = Deleted

01 00 = Allocated
02 00 = Directory deleted
03 00 = Directory allocated

0x18 4 bytes Actual record size
0x1C 4 bytes Physical record size

Table 5: Relevant entries of an MFT-record that point to the filename and data of file and contain length data

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 15 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Writing to files on an NTFS volume - Parsing the MFT (2)

First four bytes: Attribute type (30 00 00 00 for filename) (80 00 00 00 for data)

Attribute contains resident or non-resident header

If attribute does not match: Get attribute length at offset 0x4 and skip attribute

Offset (hex) Length Value
0x0 1 byte Header
0x1 Defined by first 4 bits of header Cluster count
Unknown Defined by last 4 bits of header LCN8 Offset

Table 6: NTFS Data run structure repeated x times and terminated by 00, where the actual location of the data is
shown at LCN offset

Data at location of LCN offset(s) can be overwritten, which results in overwriting
file data

8Logical Cluster Number

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 16 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Discussion

Access to raw disk, without communicating to the file system driver, results in
bypass of NTFS permissions: Write data to any file on the system.

Endpoint security software that blocks write operations at minifilter driver level can
be bypassed in that function, since the IRP does not pass the minifilter driver.
Malicious code can be written to any location on the disk.

Possible to intercept IRP_MJ_WRITE with an IRP hook, attached to the storage
class or storage port driver.

Kernel mode drivers unsigned: On x64-systems load after disabling driver
signature enforcement (DSEFix9).

Endpoint security might detect loading of unsigned kernel mode drivers.

9https://github.com/hfiref0x/DSEFix

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 17 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Conclusion

From user-mode: the location pointer to the Master File table can be changed
using write handle to volume

From kernel-mode: Raw write access to the disk is possible by building an IRP.
Bypass NTFS Access lists
Bypass Endpoint security that operates at minifilter driver level
Bypass software hooks on write operations higher than the storage class layer
SL_FORCE_DIRECT_WRITE flag must be set.
User-mode application could send data to the driver to write

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 18 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Future work

Research lower level methods that directly communicate with the storage port
drivers. Requires specific commands for ATA and IDE based harddisks.

Verify whether the writing methods bypass Endpoint security solutions that might
be hooked to write-related functions on a lower level than storage class.

Research new techniques for loading unsigned kernel mode drivers or methods
that use vulnerabilities in already signed drivers to communicate with the storage
drivers.

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 19 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Bonus - Detection rates of Internet Security Solutions

Results: Detection of several Internet Security solutions

Default settings: Writing detection only happens when an on-access feature is
enabled

Worm: Loveletter.vbs

1 2 3 4 5 6
Regular write 3 3 3 3 3 3

Loading driver 7 7 7 7 7 7

Communication with driver 7 7 7 7 7 7

DSEFix activity 7 7 7 7 7 3

Write from kernel driver to disk 7 7 7 7 7 7

Table 7: Detection of writing malicious code to the disk by Internet Security solutions from user-mode and kernel-
mode

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 19 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Bonus 2 - Use cases

Write malicious content:

Situation: Defense has Endpoint security running that uses minifilter driver as
lowest level protection and has real-time protection enabled.

Load kernel mode driver and write malicious content to disk, without the real-time
protection blocking the write operation.

Become domain administrator:

Situation: Attacker is in position of performing a Remote Code Execution attack on
a Domain Controller.

Access Active Directory Database (ntds.dit), which is always locked.

Change password of Domain Administrator or create new Domain Administrator
and operate from that user.

Future research: Since we write directly to the file and not through Active
Directory functions, would performing this action appear in the Windows logging
and alert system administrators?

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 19 / 19



Introduction Related work Methods Windows API Hooking Write experiments Writing to files Discussion & Conclusion Future work

Bonus 2 - Use cases 2

To be verified:

Bypass Windows audit logs on important change or addition events?

Manipulate evidence by unnoticed writes?

Rick van Gorp University of Amsterdam Low-level writing to NTFS file systems July 3, 2018 19 / 19


	Introduction
	Related work
	Methods
	Windows API
	Hooking
	Write experiments
	Writing to files
	Discussion & Conclusion
	Future work

