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Abstract

To maximize and ensure service availability, system and network administrators
need to know what the limits of the infrastructure supporting a service are. That
infrastructure often has to support multiple different services for users and systems,
the combined application demand placed on the infrastructure can result in parts
of that infrastructure reaching its (practical) limit. Generating packets in order to
test the full capacity of a link is not hard to accomplish. Especially for UDP traffic
since it does not provide session synchronization nor congestion control and does not
offer retransmission of data. TCP, due to its design and used techniques, prevent
the capacity of a network link or path from being overloaded.

This research however focuses on the testing of limits pertaining to the packets
per second rate and the number of concurrent sessions. This research investigates
the suitability of various load testing tools - with and without the use of the Data
Plane Development Kit - and apply these tools to various end-to-end network topolo-
gies and hardware systems that connect a client and a destination. The result of
this research is a set of proposed tests, making use of the most suitable tools, to
test an infrastructure up to application level. By using these proposed tests the
report demonstrates that the weakest links in the path can be identified and its load
tolerance limits can be found.
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Chapter 1

Introduction

This paper addresses and describes the path towards obtaining knowledge on the limi-
tations of hardware in the path towards a service, whilst accounting the full path from
client to application which operate in Open Systems Interconnect (OSI) layer 7. The
research considers and explains the importance of the end-to-end user experience.

Before an IT department offers new systems or applications to the users, system
and network administrators need to know the limitations of the hardware in the path
towards an application in order to set thresholds for monitoring alerts. These limitations
can be caused by any of the devices in the path towards an application. Routers and
switches are capable of forwarding packets at line rate, making sure the server running
an application receives all the data destined for the application without unnecessary
delays. The OS and the running application should be able to handle the inbound traffic
from the Network Interface Card (NIC). To provide more bandwidth to an application,
for example link aggregation can used to bundle multiple physical links to one logical
link.

Kernel based open source tooling capable of generating data to saturate links well
beyond 100Gb/s using UDP traffic, are available. Tools like iPerf1, hping3 and BoNeSi4

are kernel based and can be used to perform session based throughput tests up to OSI
layer 3. Utilizing TCP in order to guarantee data delivery can result in capacity problems
for both network infrastructures and applications.

Figure 1.1 provides an example infrastructure and a representation of testing at
different OSI layers. Testing at each and every layer can reveal different limitations in
the infrastructure.

SourceDestination FirewallNGINX
webservice

Layer 2

Layer 3

Layer 4

Layer 7

SwitchRouterRouter

Figure 1.1: Representation of the mentioned OSI layers in a network diagram.

A path towards an application could contain stateful devices like a firewall or a load
balancer. Stateful devices keep track of sessions, which evidently costs resources. These
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stateful devices in a path towards an application can become a bottleneck when their
resources run out and can cause unavailability of services. Alerting before resources
run out is needed to keep a network and the services available. Therefore, end-to-end
performance tests are needed from a client to a service in order to find the limitations
in the infrastructure providing the service.

Institutes like Nikhef (a tier 1 location for the large Hadron Collider (LHC) Com-
puting Grid) need to transfer large datasets from CERN. CERN produces around 30
petabytes annually10, which makes high-capacity links critical for Nikhef’s research pur-
poses. The Nikhef network is designed around a high-capacity core that contains only
stateless switching and routing devices. Distributed storage systems are directly con-
nected thereto (akin to Data Transfer Nodes (DTN) in a ScienceDMZ23). Nikhef is con-
stantly upgrading infrastructure devices to meet the increasing demands of bandwidth.
Besides capacity, data integrity is important, and therefore preferably TCP should be
used for data streams between Nikhef and CERN. Engineers at Nikhef have a need to
find the limitations of the infrastructure up to OSI layer 7, before they put the hardware
into production.

Testing the infrastructure using dedicated commercial equipment for every new ser-
vice is costly. Budget constraints do not allow for the procurement of special commercial
hardware or (expensive) tooling. Currently the engineers of Nikhef rely on the hardware
specification from the vendors.

The use of high capacity links and a need for session based application layer testing
requires a different approach for traffic generation over network paths.

The Data Plane Development Kit5 (DPDK) introduced by Intel offers a different ap-
proach for traffic generation, it does so without using the kernel network stack. Through
DPDK, Linux userland applications are able to bypass the kernel and communicate with
the network hardware directly. Memory, processors and interfaces have to be dedicated
to DPDK. Applications are then built on top of DPDK, utilizing DPDK’s functionality
to bypass the kernel (and the copying of memory regions inherent in such use). Moon-
Gen8, pktgen6, and WARP9 are designed based on different ideas offering the ability to
test up to layer 7 of the OSI model.

1.1 Terminology and abbreviations

The terminology used in this paper is based on RFC124228, with the most relevant terms
listed in table 1.1 for convenience. A list of acronyms used in this paper can be found
in appendix A.
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Term Explanation

Constant Load Fixed length frames at a fixed interval time.

Data link frame size

The number of octets in the frame from the first octet
following the preamble to the end of the Frame check
Sequence (FCS), if present, or to the last octet of the data if
there is no FCS.

Inter Frame Gap
The delay from the end of a data link frame,
to the start of the preamble of the next data link frame.

Overload behavior When demand exceeds available system resources.

Throughput
The maximum rate at which none of the offered frames, are
dropped by the device.

Table 1.1: Useful terminology
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Chapter 2

Scope

The availability of high capacity links going up to 100Gb/s require infrastructure providers
to maintain high capacity core networks in order to provide the increasing need for band-
width. An institute like Nikhef transfers a large volume of data and requires a reliable
data transfer between source and destination.

In order to guarantee system uptime and service availability, the limitations of the
hardware and services need to be known. In order to find the limitations, testing up to
the application layer (layer 7) using open source software is preferred. The engineers at
Nikhef never had the ability to perform high bandwidth applications tests at OSI layer
7.

This chapter presents the scope for the problem stated in chapter 1. The scope is
applicable for corporate networks in order to set the requirements for a set of tests during
the experimental phase in chapter 4. The scope and the problem lead to the research
question presented at the end of this chapter.

2.1 The reliability of TCP

When sending data over UDP, data gets generated and transported to the destination
without any form of transport reliability. If the destination UDP port is open the data
will be forwarded to the application listening on that specific port. When the destination
does not listen on that specific UDP port the data will be dropped. The protocol does
not provide feedback for any of the actions taken at the receivers side (except for ICMP
error messages).

TCP, in contrast to UDP, guarantees the delivery of the data as long as the session
is established between the end nodes. The session needs to be created before data can
be exchanged. A three way handshake between source and destination is performed in
order to synchronize TCP settings. Guaranteed delivery is realized by acknowledging
received data and resending unacknowledged data. Other techniques like flow control,
congestion control and fast retransmission of packets ensure that data is delivered in
time and offered to the higher layer protocol in the correct order. These techniques all
require resource reservation at the client and the server, and at stateful network devices
along the path between client and server.

The techniques implemented in TCP require buffers to store data until the data
is acknowledged by the receiving end. The buffer sizes are reserved by the Operating
System (OS) per session and are negotiated during the three way handshake. When
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more new sessions are created than the number of sessions that get closed due to a
time-out or by terminating the session, eventually server resources will be depleted.

When it comes to layer 7 protocols like HTTP, even more resources need to be
reserved. HTTP sessions, HTTP state and application state need to be saved. HTTP
requests need to be processed, a response needs to be generated and sent over the session
to the user. Normally a web server will cache files that are requested for a specific time
using up memory. Hosting a dynamic web page requires the web server to generate the
page on request which makes the CPU utilization higher than just hosting static web
content.

2.2 Assumptions and constraints

In order to execute some experiments and interpret their results, specific technical con-
straints in the real world operating environment and several key implementation pa-
rameters are important for this research. The technical constraints are not specific for
Nikhef. The research is looking at a set of constraints that is applicable in corporate
networks in order to specify requirements for this research.

Overloading
All the built in techniques used by TCP ensure an IP path will not be overloaded. In
order to find the weakest link in the path from a client to a service, data should be sent
using the expected maximum capacity of the devices in the path. When client and server
are connected with 40Gb/s interfaces one should sent data using the maximum capacity
of the links. This could result in overloading a device in the path, which immediately
shows that the intermediate device is the weakest link.

When data can be sent at the link’s full capacity, there might be other hardware
limitation (maximum amount of packets per second or a maximum amount of session
per second) in the path to the destination. For network and systems administrators it
is important to know these limitation for monitoring purposes.

Throughput
The increasing need for bandwidth requires high capacity links between clients and des-
tination in order to minimize transfer times. A link’s throughput is the most significant
characteristic for generating load. This research considers links with a capacity of 40Gb/s
and up, as high bandwidth links. Therefor considered tools need to be able generate at
least 40Gb/s of throughput, this is the first requirement.

Frame size
Ethernet is used during this research, therefore all references to frame sizes are based on
Ethernet standards12 with IP and TCP headers included. Due to collision detection the
minimum payload inside an Ethernet frame is 46 bytes. The Ethernet frame and the
payload combined have a minimum size of 64 bytes, this does not include a 4 byte VLAN
tag. A packet is always preceded by an 8 byte preamble. A 12 byte Inter Frame Gap
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between frames is used to separate the frames. This makes a total of at least 88 bytes of
data from the beginning of a packet to the beginning of a new packet. A representation
of an Ethernet frame that is used in the report is given in figure 2.1.

Figure 2.1: Representation of an Ethernet frame.

Packet size
According to Murray et all.36 in 2012, 99% of the traffic inside the corporate networks
used during their research had an MTU size of maximum 1500 bytes. When using
Jumbo frames26 (best practice is an MTU of 9000 bytes towards clients17) the amount
of overhead is less because more data can fit in one packet. More data inside a packet
could result in less packets. Jumbo packets are helpful when large amounts of data
need to be transfered between 2 nodes. Jumbo packets are not used during the project
because according to Murray et all. less than one percent of transferred data has an
MTU larger than 1500 bytes. Exceptions can be made during a test to see if hardware
limits can be reached.

Packets per second
When a link has a capacity of 40Gb/s and packets have a minimum size of 88bytes
(which includes the inter frame gap, the preamble, the data link frame and a VLAN tag)
a maximum of 56.8 million packets per second (Mpps) can be transferred over the link
in one direction. When using a 100Gb/s line the theoretical maximum is 142 Mpps. The
research is focusing on 40Gb/s links and therefore the second requirement is that a tool
needs to be able to generate 56.8 million packets per second in order to be considered
for the proposed tests.

Sessions
A TCP session is a unique tuple of source IP, destination IP, source port and destination
port. An established session may be used to send more than one packet and can transfer
data bidirectional. The amount of sessions per second is a determining factor for the
availability of services behind stateful devices. A stateful firewall, for example, needs to
keep track of the states of the sessions from source to destination. When new sessions to
a server are opened, the firewall has to process them according to the rule base. When a
session is approved, most firewall vendors move it to fast-path processing. This is a table
with accepted sessions, allowing traffic in the same session to be handled in hardware.
This means that only the first packet of a new session is handled in the slow-path and
the limitations of a firewall can be found in the amount of new sessions per second. The
amount of sessions the tool is capable of generating is the third requirement this research
focuses on during the experimental phase.
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Application specific traffic
According to Sandvine21, a global communications solutions service provider that pub-
lished bi-annual traffic baseline reports, around 70% of the traffic on the Internet is
streaming audio and video. Dynamic Adaptive Streaming over HTTP (DASH)37 is used
to stream video and audio over HTTP. Netflix uses DASH to deliver content to the users.
Next to DASH, streaming video services like YouTube are also accessible over HTTP.
Although the traffic inside the Nikhef network is not HTTP based, HTTP is the protocol
that is the most used in the Internet. This makes HTTP a suited protocol to use for
layer 7 tests during the research.

End-to-end testing
Performing tests by generating traffic between two connected links at OSI layer 2 or 3
does not test the limitations of an application. The application and the kernel should be
tested using OSI layers above layer 4. When a server running an application is connected
with a 40Gb/s link, it does not mean that the application can process 40Gb/s. End-to-
end testing is a term used in this report to refer to tests that are application based. A
client sending application layer protocol requests and the server replying with application
layer protocol responses.

2.3 Research question

The problem statement and the specifications lead to the following research question.

What are the requirements to perform high bandwidth session based throughput testing
and how can this be applied to end-to-end application level testing?
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Chapter 3

Related work and available tooling

As described in chapter 2, the goal of this research is the study for the usability of
traffic generation tools in order to find the limits of an end-to-end path between a
client and a destination, possibly going up to the application layer. Techniques used by
TCP to prevent links being overloaded is a well researched topic. When looking into
limitations of an infrastructure using session based protocols, there is a limited amount
of related papers. In the field of end-to-end performance testing focusing on a minimum
bandwidth of 40Gb/s this research provides a beginning. Therefore this chapter will
focus on different tools that can be used for bandwidth generation up to layer 7 of the
OSI model.

3.1 Related work

The amount of related work for end-to-end testing is limited when using session based
protocols and trying to generate throughput over 40Gb/s. There is a prior research
performed by Emmerich et al. for generating throughput over 40Gb/s using DPDK and
a research is performed looking into application based throughput testing using DPDK
by Malakshmi et al.

Emmerich et al.32 published a paper about MoonGen in 2015, MoonGen is capable
of generating 120Gb/s and 178.5 Mpps (over multiple 10Gb ethernet interfaces using
twelve 2 GHz CPU cores) according to the developers. Exceeding the throughput cri-
teria and being session-based, it thus meets the requirements for this study. Therefore,
MoonGen will be used for OSI layer 2, 3 and 4 testing.

In 2016 research was performed by Malakshmi et al.35 on different DPDK appli-
cations with the purpose of creating a tool for layer 4 to layer 7 application testing.
The result of Malakshmi’s research is a tool called T-REX. Their project goal is to
generate stateful traffic up to 10Gb/s. However, the main T-REX functionality is Cisco-
proprietary and requires a Cisco device to run. The public (free) version is limited in
functionality to an extent that it is not applicable to this research.
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3.2 Tools

A lot of tools are available for bandwidth testing. The tools in table 3.1 each satisfy
one or more of the requirements mentioned in chapter 2. Specifically, we consider these
tools in order to assess the suitability of these tools for session based bandwidth testing
at high volumes.

iPerf3, hping and BoNeSi depend on kernel drivers and the kernel TCP stack. pktgen,
MoonGen and WARP use drivers and the TCP stack provided by DPDK.

Tool Session based TCP stack and drivers

iPerf31 Yes Kernel

hping3 Yes Kernel

BoNeSi4 Yes Kernel

pktgen DPDK6 Yes DPDK

MoonGen8 Yes DPDK

WARP9 Yes DPDK

Table 3.1: Packet generation tools

3.2.1 iPerf3

IPerf3 is a client-server based tool that allows packet generation. It needs a client and
server to generate traffic and it needs tweaking of kernel parameter to generate traffic
over 40Gb/s. Efforts have been made to make it available for DPDK33. Unfortunately
these efforts did not have the success the author was hoping for. A small test is performed
to see if the kernel based version of iPerf3 can be used to generate high bandwidth session
based traffic streams. The test and the results can be found in chapter 4.

3.2.2 hping

Hping was started in 2006. It is a command-line oriented TCP/IP packet assembler.
Hping is capable of sending crafted packets to a destination using spoofed IP addresses if
necessary. ICMP, UDP, TCP and raw IP modes are supported. Random source addresses
can be used to sent requests to simulate a DDoS attack. Tests will be performed to see
if hping is able to generate the bandwidth or packet and session per second needed for
this research.

3.2.3 BoNeSi

BoNeSi is ’the DDoS botnet simulator’ according to its developers. BoNeSi supports
ICMP, UDP and TCP (HTTP) flooding attacks from a defined botnet size. Source
addresses can be specified in a text file which is used as input. This makes it possible
to send crafted packets masquerading the original source of attack.
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3.2.4 Data Plane Development Kit

The Data Plane Development Kit5 (DPDK) was developed by Intel to provide the
ability to generate traffic from user space, bypassing the kernel and directly talking to
the network hardware. In order to make DPDK run, supported NICs11 needs to be used.
Applications can be created to run on top of DPDK. Pktgen, MoonGen and WARP are
three applications that are written on top of DPDK and should thus be able to generate
traffic in high volumes.

Pktgen

Pktgen for DPDK is available since May 2013. The developers from DPDK provide
Pktgen from the DPDK download page. This makes it a good option for a reference
experiment to assess the difference of DPDK compared to kernel-based tests.

MoonGen

MoonGen was initially released in October 2014. It is designed to generate packets at
high speed using a minimum amount of resources from the source. According to the
developers it is more efficient than Pktgen32. A 10Gb/s link can be filled using only one
core. MoonGen builds on libmoon7 by extending it with features for packet generators
such as software rate control and software timestamping.

WARP

Juniper WARP was released in May 2016. It allows users to execute performance testing
up to layer 7, where however currently only HTTP version 1.1 as a layer 7 protocol is
supported and only IPv4 is supported at layer 3. A server equipped with two Intel Xeon
E5-2660 v3 processor, 128Gb RAM and two 40 Gb Ethernet interfaces, is suggested
to be able to generate around 2 million sessions per second between client and server.
The performance graphs included in the packet source provide the idea that WARP can
generate high throughput and a high amount of sessions per second up to the application
layer.
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Chapter 4

Experiments

In order to find the limits and the usability of the tools in table 3.1 for high bandwidth
session based throughput testing, the tools are subject to various experiments. The
results the research is looking for:

• The capability of generating 40Gb/s of throughput.

• The maximum amount of packets per second.

• The maximum amount of sessions per second.

The kernel based tools are tested on top of two different kernels. FreeBSD 11.0 and
Ubuntu 16.04 are used to see if the kernel has any influence on one of the three items
stated above. The reason for using two kernels is that a preliminary test showed ma-
jor differences in generating UDP packets per second, these differences could also apply
for TCP packet generation. The DPDK tools are tested on top of the Ubuntu kernel
since FreeBSD does not support DPDK. All experiments described in this chapter are
executed in a test environment at Nikhef. The visualization of the test environment is
shown in figure 4.1.
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Figure 4.1: Environment used for experiments at Nikhef.

The figure shows five server systems, of which three identical servers (A, B and C in
table 4.1) are used to perform the tests, which results are described in this paper. During
the experiments 2 extra machines (D and E in table 4.1), both containing 100Gb/s
Mellanox NIC cards, have been introduced into the network to test links with a capacity
up to 100Gb/s to verify if reached limits are resource or hardware based. All servers
were connected to a Juniper QFX10002 (device S in Fig. 4.1), which provides 32 40Gb/s
QSFP ports, of which some are configured as a single 100Gb/s interface22.

Machine A & B & C D E

Cores / Threads 2 / 8 14 / 56 128 Threads

CPU
Intel(R) Xeon(R) CPU
E3-1230 v5 @ 3.40GHz

Intel(R) Xeon(R) CPU
E5-2697 v3 @ 2.60GHz

POWER8E

Memory 4x 16GB @ 2133 Mhz 24x 8GB @ 1067Mhz 2x 64GB

NIC
Intel XL710
40Gb/s

Mellanox ConnectX-4
100Gb/s

Mellanox ConnectX-4
100Gb/s

Table 4.1: Specifications from the machines used for experiments

Device A is always acting as the destination for traffic unless stated otherwise. De-
pending on the tests the source can be machine B, C or B and C together. This depends
on the capability of the tools tested at that moment. For testing beyond 40Gb/s, one
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of the 100Gb/s machines (D or E) can be used. Machine M is a Simple Network Man-
agement Protocol (SNMP) collector. This SNMP collector queries the test servers every
10 seconds for status. Packets per second and bits per second are retrieved from the
devices under test. Switch S is also added to the collector as a data source. SNMP is
active on the management interface of the devices. The high bandwidth interfaces are
connected to switch S in order to perform throughput tests. The SNMP collector polls
the servers through their management interfaces to make sure the SNMP data is not a
part of the collected measurements during the executed tests.

4.1 Standards and best practices

Multiple RFCs have been written that provide guidelines for throughput testing. This
research refers to RFCs that contain the information needed for the research. Some
terms from the mentioned RFCs are updated in a new RFC, but these new RFCs do not
contain the important information used by this research. The terminology from RFC
124228 will be used throughout this paper and techniques from RFC 254429 have been
taken into account during this research. However, the aforementioned practices and
benchmarks of RFC 2544 and 634931 are centered on traffic generation that overloads
network devices, which is detrimental to user network experience in production (shared)
networks, as was discussed in RFC 681530.

A quick list with guidelines from these RFCs is as follows:

• Throughput tests should have a minimum runtime of 60 seconds

• The environment cannot be a production environment

• Devices Under Test (DUT) will possibly be overloaded

• Tests should be done 3 times and the average should be taken from the results.

4.2 Kernel based tools

All the kernel based tools from table 3.1 are tested running on top of Ubuntu and
FreeBSD. All the tools were used to find its limits for bandwidth generation, maximum
amount of packets per second (pps) and maximum amount of sessions per second.

iPerf3
Machine A is set up as a server running on default TCP port 5201, machine B is setup as
a client connecting to the server. Tests are executed from the client side on a FreeBSD
and Ubuntu server and the performance differences were minimal. The initial tests were
performed sending 46 byte of data, which concluded in a minimal Ethernet frame of
88 bytes as described in chapter 2.2 . The practical maximum amount of 42Mpps was
not reached until 6 threads were utilized to generate traffic (the practical maximum
amount of packets is explained in section 4.3.1). The link capacity was filled using 16
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threads and a 1500 bytes of data in an Ethernet frame. iPerf3 starts a TCP session per
running thread. This makes it less useful for this project since we explained already that
maximizing bandwidth utilization is not enough to reach the performance limitations.

Hping
Hping is used to sent spoofed traffic to a server. It does not need a server side application
running on server A. Therefore only the client side was tested on top of FreeBSD and
Ubuntu. Both kernels were capable of sending a maximum of 13Gb/s of SYN packets
towards a server padded up to 9000 bytes. Although it has features to craft packets
and probably has the capacity to overload certain small environments, the maximum
bandwidth is far under the limits this research is looking for.

BoNeSi
The maximum output that was produced with BoNeSi was 300Mb/s and 500Kpps on
an Ubuntu kernel. The FreeBSD kernel was capable of generating the same values. The
reached limits are not sufficient for this project and therefore BoNeSi will not be used
for further experiments.

4.3 Tools using the Data Plane Development Kit

The Data Plane Development Kit (DPDK) enables fast packet generation and trans-
portation inside a system. Tools are available to generate raw IP packets. A recent tool
is introduced that offers HTTP v1.1 packet generation. The tools tested during these
experiments are: pktgen, MoonGen and WARP.

4.3.1 pktgen

For this experiment server B is the source which is generating the traffic. Servers A
and B are identical as seen in table 4.1. Pktgen is not a client-server based application.
While server A is idle, B will generate traffic in the form of TCP messages padded to
the desired size where only the ACK flag is set. This means that pktgen is sending
TCP packets but it is not setting up sessions to the destination. To find the hardware
limitations one can send small packets of 64 bytes at a high rate which should show
the hardwares capabilities of generating packets or one should generate larger packets
of 1500 bytes (not considering jumbo frames) to fill up link capacity.

When sending small packets to the destination the maximum amount of packets per
second peaked at 42Mpps where the expected amount of packets is 56Mpps unidirec-
tional. Additional configuration was necessary in order to reach the expected amount
of packets. The DPDK website offers a guide15 to setup the system in order to get the
maximum performance out of the Intel XL710 40Gb/s card. Flashing a new firmware
version into the card was the first step. After following the DPDK guide the result
remained the same and according to conclusions drawn out of a report from Chelsio34
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the PCI express bus (V3.0, 8.0GT/s, 8 lane) is capable of transferring 70Mpps bidirec-
tional. Unidirectional it can reach a maximum of 42Mpps. Both the Chelsio24 and the
Intel25 card use the PCIe v3.0 (8.0 GT/s) 8 lane interface to connect to the main board.
The limitation caused by the PCI express bus gives the research a new practical maxi-
mum amount of 42 million pps that can be transferred by a host in the experimentation
environment.

Ramping up the packet size, starting at 64 bytes and adding 16 bytes per test round
up to a maximum of 1024 bytes resulted in finding the optimal packet size of 400 bytes.
This packet size is the optimal packet size since it generates a bandwidth usage of
39.8Gb/s and a total of 11Mpps.

4.3.2 WARP

In order to get to know the capabilities of DPDK in combination with WARP on top of
the hardware in the experimentation environment a benchmark was run on server B. A
machine running WARP as a client needs a service to respond to SYN packets, otherwise
sessions are not opened and there will not be any traffic flowing between client and server.
Appendix B.2 displays the benchmark script used for this test. The benchmark script
was provides in the application source. For this benchmark the server B will be acting
as the client and as the destination for the traffic, both client and destination are using
a dedicated NIC. An extra Intel XL710 card is added to machine B since the XL710
card (which is a NIC providing two ports) can not utilize both ports in one slot at their
full capacity16. The second port on the card is designed as a fail-over interface. Port
A from card one and two are connected to switch S. Traffic is generated from port A of
NIC 1 to port A of NIC 2. All of the machine’s CPUs and memory will be dedicated to
this test. The benchmark first does the tests for raw TCP, where after it will perform
the tests using HTTP.

The client side of the benchmark attempted to open 4 million session although not
all of the sessions succeed. The amount of sessions per second, packets per second and
the used bandwidth is registered along with the time spent until all sessions are tried.
When a TCP session is opened between client and server, the tests will request a file or
send a raw TCP packet. The raw TCP reply is a TCP packet, for the HTTP file request
a padded 200-OK message is returned. The goal for this test is to find the capabilities
of the server while it is running WARP therefore the guidelines for bandwidth testing
regarding runtime from RFC2544 are not applicable.

The first test is raw TCP. As seen in figure 4.2 the client attempts to open about one
million sessions per second. When the packet size goes up the amount of sessions per
second drops slightly. The succeeded sessions use up some of the link’s total capacity
as is displayed in figure 4.3. This means that the sessions that succeed are capable of
filling 50 % of the link capacity.
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Figure 4.2: Amount of requested session per second from the client to the server for
raw TCP (amount of requested sessions versus the request(Rx) and respond(Tx) size)

Figure 4.3: Link usage for raw TCP (percentage of link usage versus the request(Rx)
and response(Tx) size)

The second test contains a HTTP file request. The server responds with a 200-(OK)
message using a configured file size. The server is able to generate around one million
sessions per second as seen in figure 4.4 but not all of the sessions were answered in time.
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Figure 4.5 shows the bandwidth usage for HTTP traffic for the established sessions is at
most 50%.

Figure 4.4: Amount of requested sessions per second from the client to the server for
HTTP (amount of requested sessions versus the request(Rx) and respond(Tx) size)

Figure 4.5: link usage for established sessions at HTTP (percentage of link usage
versus the request(Rx) and response(Tx) size)

From the figures we can see WARP is capable of generating 1 million sessions per
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second for both raw TCP and HTTP traffic. It can fill up half of the link capacity when
large packets are generated.

WARP is capable of generating 1 million sessions per second for raw TCP and HTTP
traffic towards a destination, when the packet size increases it can generate 20Gb/s of
application layer data. For stateful devices in a path to a server, the amount of sessions
can be problematic. Overload behavior is expected from stateful devices in a path when
WARP is used for limitation testing. This makes WARP useful for application level
testing purposes.

4.3.3 MoonGen

MoonGen offers benchmark scripts to determine the machines capabilities. The bench-
mark script used for the tests can be found in appendix B.2 and is also provided with the
application source. A single machine (B) is connected to the switch using two 40Gb/s
ports at 2 separate cards (similar to the setup of the WARP test), both connected to
switch S (one NIC for the server part and the other for the clients part of the bench-
mark). Sending UDP traffic with a size of 1500 bytes resulted in a maximum of 24
Gb/s. When the smallest possible Ethernet frames of 64 bytes are sent over the line a
maximum of 15Mpps is reached. When TCP is used on the same machine (B) connected
to the switch using two interfaces, a maximum of 10Gb/s was reached. These low values
did not make MoonGen interesting enough since Pktgen is capable of reaching hardware
limits.
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Chapter 5

Methodology

From the results of the preliminary conducted experiments in chapter 4, two of the DPDK
tools reached hardware limits and have provided the possibility to go up to application
layer testing. to answer the underlying research question ”how can this be applied to
end-to-end application level testing”, the research produced some tests using the most
adequate tools from the experimental phase. Executing the proposed tests can pinpoint
the limits of an infrastructure up to application level. The product of this research
is presented in this chapter in the form of a set of tests using open source applications
which enables network and system engineers to perform tests up to the application layer.

5.1 Tests

Table 5.1 displays four tests, all serving a specific purpose. Test 1 is performed to find
the hardware limits of the NIC and the host that generates the traffic. When these limits
are known, one can choose to use more sources to generate traffic if necessary. Test 2 is
to find the limits of the switching and routing hardware in the path between the client
and the server. Test 3 will find the client and server limits up to layer 4. To handle
TCP sessions, resources need to be allocated at client, server and other stateful devices
in the path from client to server if present. Test 4 will find the limits of an application
running on top of a kernel. This test should be performed as an end-to-end test.

Tests 1 and 2 will show possible limitation at OSI layer 2 and 3. Tests 3 and 4 are
meant to test the entire path from a client to a server over a production network, that
might include a stateful firewall, aggregated links and redundant systems. The tests will
stress the weakest link in the infrastructure towards the server. It should be noted that
monitoring is a necessary part of the test in order to determine which device in the path
is the ’weakest’ and to find the threshold for a device before it starts to fail or exhibit
other non-characteristic behavior.

5.1.1 T1 Bandwidth Generation

In paragraph 2.2 it is stated that a 40Gb/s card needs to be able to handle 56 million
packets per second with a size of 88 bytes in a unidirectional stream of 40Gb/s. In chapter
4 it is explained that the new practical maximum of 42 million packets per second can be
reached during this research due to the limitations of the PCI express bus. Using pktgen
on top of DPDK, Ethernet frames with a minimum size of 64 bytes containing TCP
traffic (without inter frame gap, preamble and VLAN tag) can be created. To reach the

20



NR Tests DUT Goal

T1
Traffic
generation

Client
The goal is to see if the client is capable
of filling up the link and to reach the
maximum amount of pps

T2 Throughput Switch/router
Generate the maximum amount of data in both ways
to make sure the hardware is able to forward
at line rate

T3 TCP based Client/Server
Get the limitations of the systems
regarding memory and CPU usage

T4 Application
Server and
intermediate devices

The clients will try to overload the
server with requests at application level

Table 5.1: Performance tests

40Gb/s, larger packets have to be created. When the packet size is set to 1500 bytes, 3.3
Mpps saturates the link. When 9000 byte packets are used only 555 Kpps are needed to
saturate the link. Using pktgen on top of DPDK allow numbers like these to be reached
for TCP traffic. When DPDK is used, the kernel network stack does not communicate
with the devices anymore since the interfaces are claimed by DPDK. Therefore traffic
statistics cannot be read from the kernel and DPDK does not offer an straight forward
method of reading these statistics either. Monitoring on the switch ports connecting the
servers is needed. For this test the clients should try to generate the maximum amount
of packets per second using Ethernet frames of 64 bytes. Section 4.3.1 explained that an
optimum of maximum throughput and 11 Mpps can be sent by the client using a frame
size of 400 bytes. This needs to be done during the second phase of the test to see if the
required maximum bandwidth can be generated.

5.1.2 T2 Throughput

The backplane of a switch should be able to forward traffic from one port to another at
line rate. This should also be possible when the traffic is routed from one VLAN to the
other. Routers should be able to route packets at line rate. To test this a client and a
server need to be connected to two different ports of the router in a different segment
or VLAN and the links maximum capacity should be filled. Frames of 400 bytes or
more should be generated from the client to the server and vice versa, preferably the
maximum link capacity. Monitoring the ports of the switch using SNMP should show
the same input rate on port 1 compared to the output rate of port 2.

5.1.3 T3 TCP Based

To determine the limitations of the server hardware when TCP is used, we have shown
that the kernel has to be bypassed to reach the requirements this research was looking
for. The combination of DPDK and WARP are capable of finding the limits of the
hardware under load as seen in the experiments in chapter 4. The benchmark that was
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run on a single machine, running both as client and server, shows the ability to generate
1 million session requests per second from the client side, which generated a maximum
of 20Gb/s of raw TCP traffic from the server to the client. Two useful tests can be
derived from the results at the experimentation section: a raw TCP test between two
different machines, and a test between client and server using the HTTP v1.1 protocol.
WARP is capable of sending HTTP GET requests and it is capable of responding with
a 200-OK message. WARP offers the possibility to set a session per second limitation
for the clients. By ramping up the amount of sessions the load tolerance limits can
be found. Monitoring of the amount of successful and failed session has to be done on
both the client and server. When the API is used, detailed results can be retrieved as
shown during the experimentation phase. Otherwise the maximum amount of sessions
per second has to be throttled by the client.

5.1.4 T4 Application

End-to-end testing means testing from a client to a server application running on top
of an OS. Running a web server offering files to clients, using HTTP request to retrieve
files (since HTTP is the protocol that is used to distribute audio and video streaming)
is a representative test. HTTP GET requests can be generated by WARP at a high
rate (1 million session per second). The client will use WARP to generate HTTP GET
requests for a web page hosted by the destination server. The web server can provide
some files of different sizes. WARP has to send a request for a certain file using a request
size determined by the user (the content of the requests will be padded to generate the
configured frame size). Resources of the client, the web server and stateful devices on the
path towards the server will be claimed opening up the sessions. By sending a million
requests per second the machines will be experiencing a Denial of Service (DoS) like
attack.

5.2 Real world scenario

The tests mentioned in section 5.1 need to be performed in a real world scenario to see if
they can find limitation in the design of the environment. Therefore the infrastructure of
a company was used to test this method, keeping in mind the guidance from section 4.1 on
the use of production networks. Figure 5.1 shows the simplified infrastructure for the test
between client and server. It is displaying the main equipment in the path from the client
to the destination, including aggregated links, an upstream Internet provider, a stateful
firewall and a data center layer using an overlay technique. The tests are performed
during a maintenance window at the side of the destination, downtime for the tested
part of the infrastructure was allowed during this window. All tests were generating and
sending traffic for 90 seconds, with a gap of 30 seconds to let buffers be depleted before
the next step of the test started in the same category. The monitoring system used at
company x collects the links usage every minute. A 2 minute interval between the tests
is 2 collection cycles and should provide the correct feedback. The server is connected to
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Figure 5.1: Simplified Infrastructure of the real world scenario for the real world test.
The server on the left-hand side is the HTTP server.

a Data Center Interconnect (DCI) switch where an overlay technique (Ethernet Virtual
Private Network (EVPN)) is used to guarantee service uptime.

5.2.1 T1 Bandwidth Generation

Using pktgen on top of DPDK with an Ethernet frame size of 64 bytes generated a
maximum of 42 Mpps towards the server during the experimental phase. Pktgen only
sends from one source to one destination, also using just one source and destination port.
Appendix B.3 contains the script used for this test. The plan was to ramp up the frame
size from 64 bytes to 400 bytes. The link from the switch to the router at the client side
is an aggregated link built up from 4x 10Gb/s interfaces. Hashing algorithms14 decide
what physical interface of the aggregated link is used per stream. A switch’s default
hashing algorithm uses layer 2 addresses as input in this case causing all the traffic to
end up in a single 10Gb/s link towards the destination. Even when a different hashing
algorithm was used the link would have been the same since source and destination
address and port are the same in this test. To reach the network of company x, the
data had to flow over the production network at Nikhef. Hashing algorithms could not
be altered during the tests since hashing algorithms affect every aggregated link on the
device. Using extra sources to generate traffic, using different IP addresses could produce
a higher amount of throughput because the hashing algorithm would choose a different
link per server (depending on the chosen algorithm).

5.2.2 T2 Throughput

Due to the hashing settings that could not be changed without affecting Nikhef’s pro-
duction environment, the result of the second test is predictable and will be 10Gb/s
(capacity of the single link used). Using four servers as a traffic source could generate a
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total throughput of 40Gb/s. Since the test environment had only 2 servers left (one was
acting as the destination in the data center of company x), the link limitations could
never be reached.

5.2.3 T3 TCP Based

Sending raw TCP sessions between 2 servers using WARP with different packet sizes
should provide a good representation of the capabilities of the servers and the inter-
mediate devices in the path from source to destination. The server should be running
WARP, acting as a raw TCP server listening on 100 ports, and sending responses of
a specified size when requests come in. The client should be configured to use 40.000
ports for the requests, targeting the 100 ports at the server side. This makes a total of
4 million possible flows between client and server. Request and response sizes can be
equal at every run. Chosen TCP packet sizes are, 64, 256, 512, 1024 and 2048 bytes
since utilization of the link is only 10% of the 40Gb/s connection when a TCP packet
size of 256 bytes is used, since the test is looking for limitations, some load was neces-
sary. Packets with a size of 2048 bytes take up 50% of the links capacity. The source
and destination ports were changing at every session, therefore we expected to generate
traffic up to a link capacity of 20 Gb/s.

Appendix B.3 displays the script that was used for this test. WARP was started
using 8 CPU’s and using all the memory. Server A from the experimental phase was
used as the server side. Server B was used as the client generating the requests.

5.2.4 T4 Application

A web server needs to be set up offering a couple of different files. The files must be
hosted in memory (on a RAM disk) to make sure disk IO will not become the bottleneck
for the tests. Caching was disabled to make sure the performance of the web service
was tested. Using WARP at the client side requesting the files from the web server.
NGINX2 was used as the web service for this test. The performance tuning page from
NGINX was used to set the correct settings for the tests20. The amount of maximum
available sockets was set to 50.000. This test will show the limits of the infrastructure
towards the destination or from the server running the web application. WARP can be
used as a web server responding with an HTTP 200-OK message, padded to enlarge the
Ethernet frame to match the configured size. Testing application layer protocols using
WARP as a client can result in more throughput and more sessions per second then
during normal usage in a real life scenario. Pushing the amount of sessions up could
stress the intermediate hardware to their limits.
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Chapter 6

Results

Real world tests proposed in chapter 5 are executed from within the network of Nikhef
to the network of company x during a maintenance window. For the methodology
containing the use cases DPDK was used as a framework to find the limitations of the
hardware in the path. Pktgen was used for T1 and T2. WARP was used to get the
results for T3. A combination of WARP and NGINX was used to get the results for T4.

6.1 Infrastructure

The network at company x as it is shown in figure 5.1 is a simplified representation. The
detailed infrastructure used during the real world test is displayed in figure 6.1. Since
all the network hardware is redundant and a single device failure cannot result in total
downtime the network and therefore the monitoring gets more complicated. The server
is connected to a data center layer that is spread over two physical locations, one serving
as the active and the other as the passive environment. To minimize broadcast traffic
between the data centers an overlay technique is used. This overlay blocks broadcast
storms at one location spreading to the other location. During the tests we did not reach
hardware limits based on capacity. Therefore, the overhead from the overlay technique
is not a problem during these tests. The network is not in production and the server
used for the tests is the only server connected to the data center switches. When traffic
does not arrive at the destination, detailed measurements are needed at every device for
every link to determine where the traffic gets dropped.
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Figure 6.1: Detailed visualization of real world scenario.

6.2 Monitoring

During the test cases, we executed the tests while monitoring all of the interfaces used
for the path from client to destination. The experimental environment was monitored
using the SNMP collector. SURFstat monitors the link utilization between Nikhef and
company x. Company x used an SNMP collector to monitor all the links from the In-
ternet Service Provider to the destination of the test. Interfaces from possible backup
paths were monitored as well. Due to the complexity of the network, graphs displaying
multiple links are created to present a total picture of the used bandwidth during the
maintenance window. Figures shown in this chapter display the graphs of the through-
put that was sent out of the aggregated interfaces connecting router1 to the firewall
cluster and the links connecting the firewalls to the DCI switches inside the data center.
SURFstat provided figure 6.2 displaying the generated throughput between source and
destination networks. This figure is used to see if the measured incoming throughput
was the same as the measured outgoing bandwidth from Nikhef’s network.
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Figure 6.2: Bandwidth utilization of real world tests from Nikhef to company X during
the time window the use cases were executed (figure provided by SURFstat).

6.3 Data Plane Development Kit based tools

The results of the DPDK based applications pktgen and WARP are explained during
the performance tests in the real world scenario.

6.3.1 pktgen

Due to hashing algorithms used inside the core network of Nikhef, the real world test
using pktgen could never reach more than 10Gb/s. The production network of Nikhef
could not be altered during the tests.

The hashing algorithm used by the switch should be configured to divide the load
coming in from the internal network. When most of the traffic is generated by one source
to one destination using a single session, the throughput for a single flow will never reach
above 10Gb/s in the network setup used during the tests. Knowing the traffic patterns
during the design phase of a network can overcome these issues. Using multiple streams
between client and server can improve the performance but this cannot be achieved using
pktgen. Multiple clients generating traffic towards one destination can fill the capacity
of multiple links to reach 40Gb/s.

6.3.2 WARP

From the benchmark results performed on WARP in chapter 4 it is known WARP is
capable of generating a million session per second for raw TCP and HTTP requests.
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WARP was used to run three tests. WARP needs to be commanded using its own
syntax. The command file that was used for the NGINX server test and the WARP
HTTP server test can be found in appendix B.3. As WARP runs on top of DPDK, the
DPDK commands point to resources that will be claimed by DPDK. As an example:

./build/warp17 -c ff -n 4 -m 32768 -- --qmap-default max-c \

--tcb-pool-sz 32768 --cmd-file test-client-nginx-http.txt

DPDK is started using 8 cores and 4 memory channels loading 32GB of memory, a
default optimal mapping for CPU to NIC binding is chosen and the 32MB of memory
is used per TCP control block size and a command file is used to start WARP.

Figure 6.3 shows the results of the three experiments executed with the use of WARP,
to get the results for use cases three and four. Measurements were taken at the interfaces
used to handle the data from the client going into the network towards the destination
during the three upcoming tests. A first test where WARP was used to retrieve a 500
Kbyte file from an NGINX web server running on server A was executed. This NGINX
server was tuned for performance20. The file was placed on a RAM disk to make sure
disk IO would not be the bottleneck during the performance tests. The first test is
executed starting at 20:50 and it ran until 21:00. The request size is increased every 90
seconds with an interval of 30 seconds between the tests. During this test the following
request sizes where used: 64, 256, 512, 1024 and 2048 bytes. Figure 6.4 shows that the
amount of traffic leaving the server goes above 4Gb/s while only 0.6 Gb/s of requests
are coming in on the receiving end. This matches the values shown in figure 6.3.
A choice to rate limit at the NGINX server at the receiving end (allowing the server to
accept a maximum of 50.000 concurrent sessions) was made to restrict the service from
being overloaded by the client. Although the server was limited to 50.000 concurrent
sessions, all the available sessions were used by WARP which made the service unavail-
able for other users. This proves the infrastructure and the application are capable of
handling 50.000 sessions.
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Figure 6.3: Time line of the performed tests using WARP displaying the bandwidth
usage over time

Figure 6.4: Bandwidth utilization server A during NGINX test, measurements from
servers perspective

At 21:20 test 2 was started, to determine the limitation of handling layer 4 data
as detailed in paragraph 5.2.4. Generating a maximum amount of raw TCP session
from client to server both running WARP and using 32GB of memory and all cores
to generate traffic. Request and response sizes chosen for this tests are: 64, 256, 512,
1024 and 2048 bytes. The bandwidth utilization measurements are from the uplink and
downlink interfaces of the devices in the path as shown in figure 6.1 represented by
”AE112” and ”AE113”. Two separate graphs are displayed for these links, figure 6.5
shows all the interfaces connected to firewall1 and figure 6.6 shows all the interfaces
connected to firewall2. The graphs display traffic that went out of one interface and
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is expected to come into the interface at the other side when the firewall forwards the
traffic, when this does not happen white gaps can seen as marked with the red arrow in
figure 6.5. The blue line represents data that left the router interface and the green bar
represent the data that was received by the data center switches. These white gaps in
the graph represent the data that got lost due to failing hardware during the execution
of the tests. Data points above zero represent data that went from server to client and
data points below zero represent data from client to server.

Firewall sessions statistics were not registered due to logging problems in the firewall
environment that we were not able to repair before the end of the maintenance window.
Chapter 4 shows that the benchmark value of 1 million sessions per second can be
generated, where only small differences are observed at different packets sizes. The
graph in figure 6.5 doesn’t display any traffic at the start of this second test at 21:20.
This is the moment the raw TCP test was started while figure 6.2 displays traffic towards
the tested network.

Figure 6.5: Bandwidth utilization of links between router1, firewall1 and DC1 during
the time window of the tests, spikes represent an executed test.
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Figure 6.6: Bandwidth utilization of links between router1, firewall2 and DC2 during
the time window of the test, the spike represents the moment of a fail over to the

secondary machine.

The graph in figure 6.6 displays the generated traffic. When the test started, the
active firewall crashed and a failover to the passive machine is the result. Log messages
retrieved from connected routers also display BGP session failures from the formerly-
active firewall. This graph also displays the difference between traffic sent from the
router to the firewall and the traffic received by the downstream switch. Input is 3Gb/s
and output is in the range of 200 - 300 Mb/s. The firewall was configured to accept all
the traffic from the source range of the test server inside the network.

The firewalls are not capable of handling this amount of sessions per second. Due
to time restrictions this test could not be performed again to pinpoint the maximum
number of sessions. When the test was finished, the firewalls recovered.

At 21:40 the third and last test is started between server and client, again both
running WARP. Generating the maximum amount of HTTP sessions using 32GB of
memory and all available cores. Generating a GET request and responding with a 200-
OK message from the server running WARP instead of NGINX. From the experimental
phase of this research it is known that WARP is capable of handling more requests per
second than NGINX can. This last test is executed to find the limits of intermediate
hardware when HTTP sessions are opened up in a fast rate. Message sizes for this tests
are : 64, 256, 512, 1024 and 2048 bytes. Request and response size are equal. With
the information from the benchmark in chapter 4 the limitations of client and server are
known. From test two it is known the firewalls cannot handle the load when to many
sessions per second come in. The same behavior is expected during this last test. Figure
6.5 shows 4Gb/s going into the firewall and only 500Mb/s of HTTP traffic arriving at
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the other side. This means that the firewall was not able to handle the amount of new
sessions per second which caused it to stop functioning13. Management sessions broke
down and traffic got lost as the figures display.

In a real world scenario like the one we used in these test, limitations can be revealed
by executing the test described in chapter 5. The unexpected fail over of the firewall
when one million session were sent to the destination server is a perfect example of finding
the weakest link in the chain. It was not the bandwidth nor the amount of packets per
second that made the firewall crash, but the amount of sessions are the limitation for
tests two and three.

This proves that DPDK and WARP can be utilized to perform end-to-end application
layer testing. WARP can generate the load to a service in order to see if the service
can handle the expected load. WARP can also be used to find the limitation of the
infrastructure towards an application.
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Chapter 7

Conclusion

From the tool assessment performed in chapter 4 and the tests described in chapter
5, results are gathered and described in chapter 6. The results, executed according to
current standards and best practices, allow to draw conclusions on tool suitability and
the necessary characteristics of high-bandwidth session based throughput tests in a real-
world environment.
When it comes to generating session based high bandwidth throughput testing, DPDK
should be used in combination with pktgen in order to reach hardware limitations.
Using DPDK in combination with WARP creates the possibility to generate traffic at
the application layer. The kernel based tools could not provide the results this research
was looking for.

During this research, the limitations of the hardware used in the experimental setup
were found by executing the tests. The tests can be used as a guideline to find the
hardware limits in the path from client to server. T1 revealed a limitation for the amount
of packets per second in the PCI Express bus. T2 was used to get the maximum possible
throughput from client to server, the hashing settings were shown to be a limitation in the
setup as expected. T3 revealed the hardware limits for client and server with regards to
the amount of sessions and bandwidth usage. Next to the hardware limits T3 revealed a
limitation of a stateful firewall in the path towards the destination, the overload behavior
of the firewall is also known by executing this test.
T4 stressed an application to get the performance limits for this specific application.

These tests should be used to get a better insight in the limitations of an infras-
tructure that is used to provide services. Combining DPDK with pktgen and WARP
can reveal the limits of an infrastructure. To perform high bandwidth session based
throughput tests up to layer 3, pktgen on top of DPDK is capable of reaching hardware
limits. For application layer link testing, WARP is the framework to use. Support for
other applications must be added to WARP in order to improve the employability, but
the start looks promising. The use of different kernels did not show any major differences
in the results of executed kernel based application tests during this research.

The exact limit of the firewall was not found, it is only known that one server using
WARP can generate the amount of sessions per second to make the system fail. By
increasing the amount of sessions step by step we could have pinpointed the amount of
sessions where the firewall started failing.
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7.1 Suitability of the Data Plane Development Kit

The Data Plane Development Kit is still a work in progress, and today we see only
the beginning of its potential being harnessed for network load testing. New tools that
use the power of DPDK are introduced every year: Pktgen (2013), MoonGen(2014),
T-rex (2015), WARP(2016). The possibilities to test up to layer 7 in the OSI model
are now becoming available to system and network administrators. Current tooling
is capable of generating a million sessions per second using simple server hardware.
DPDK applications supporting IPv6 and multiple application layer protocols are needed
to improve infrastructures in order to offer services.

7.2 Future Work

The hashing algorithm used at Nikhef’s core network limited the performance tests to
10Gb/s. Using 4 clients or changing the hashing settings should result in more bandwidth
utilization. By doing this, the other limitation this research was looking for such as the
amount of packets per second being a bottleneck can be reached. Further analysis on
the Data Center Infrastructure layer at company x can be performed.

During this project an attempt was made to use an IBM Power8 machine (server E)
to generate traffic at 100Gb/s. Because of problems during compilation and memory
allocation this attempt had to be abandoned due to time constraints.

This project used HTTP version 1.1 for application testing. Support for more proto-
cols need to be added to WARP to make it more powerful. Currently WARP supports
IPv4 only. When IPv6 is supported, the performance should be tested using IPv6. Mon-
itoring in WARP should be improved, currently the API provides the only way of getting
detailed results. NGINX was made available for DPDK recently. Running WARP to-
wards a DPDK NGINX server should provide the capabilities of NGINX when it does
not rely on kernel interrupts.

DPDK supports multiple NICs. During the project an effort was made to start
generating traffic over 100Gb/s Mellanox cards. This was successful up to 60Gb/s TCP
traffic, until the system crashed for reasons that could not be determined within the
scope of this project. The proposed tests in this research paper need to be run using
the Mellanox cards. Support and limitations for different 100Gb/s cards need to be
researched.

The Generation 3, 8 lane PCI express cards are a limiting factor as shown in this
paper. Further investigations could look into the limitations of 16-lane PCIe and its
associated scaling behavior.

Intel offers a guide to improve the throughput for the XL710 40Gb/s card for the
Linux kernel16. This guideline provides kernel settings that might improve the results
for the kernel based tools. During this research the guideline was not used to improve the
kernel settings, the reason for this is that the settings are dependent on the application
that is ran on top of the kernel. This research, due to time constraints focused on the
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DPDK tooling. Tweaking the kernel for all the tools in table 3.1 is out of scope for this
research while it would be very interesting to know if the proposed settings from the
guide will impact the performance of the kernel based tools.
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Appendix A

Acronym Definition

DTN Data Transfer Node

CLI Command Line Interface

PPS packets per second

Gb/s Gigabit per second

DPDK Data Plane Development Kit

ISP Internet service provider

QSFP Quad Small Form-factor Pluggable

DOS Denial Of Service

DDOS Distributed Denial Of Service

FCS Frame check sequence

MTU Maximum Transmission Unit

OSI Open System Interconnection

NIC Network Interface Card

TCP Transport Control Protocol

UDP User Datagram Protocol

ICMP Internet Control Message Protocol

OS Operating System

LAN Local Area Network

VLAN Virtual LAN

IP Internet Protocol

HTTP Hyper Text Transport Protocol

MTU Maximum Transmission Unit

SNMP Simple Network management Protocol

RFC Request For Comment

DUT Device Under Tests

CPU Central Processing Unit

UC Use Case

API Application Programmable Interface

EVPN Ethernet Virtual Private Network

DWDM Dense Wave Division Multiplexing

Table A.1: Used Acronyms



Appendix B

B.1 Software

Software used during research:

• Ubuntu 16.04 LTS

• FreeBSD 11.0

• DPDK 16.11

• pktgen(dpdk) 3.3.4

• WARP 1.4

• Moongen

• iPerf 3.1.3

• hping 3

• Bonesi V0.3
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r
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=
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r
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=
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r
t
=
1
,
i
n
t
f
_
i
d
x
=
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c
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c
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c
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r
e
s
p
_
s
i
z
e
)

i
f
w
a
r
p
1
7
_
c
a
l
l
(
’
C
o
n
f
i
g
u
r
e
T
e
s
t
C
a
s
e
’
,
s
c
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c
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c
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i
e
n
t
_
p
o
r
t
(
w
a
r
p
1
7
_
c
a
l
l
,
p
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c
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r
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=
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=
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r
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=
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=
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r
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=
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=
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c
n
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c
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c
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r
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i
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p
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r
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c
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d
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c
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c
l
i
e
n
t
t
e
s
t
c
a
s
e
’
)

d
e
f
r
u
n
_
t
e
s
t
(
p
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:

e
n
v
=
W
a
r
p
1
7
E
n
v
(
p
a
t
h
=
’
.
/
t
e
s
t
_
2
_
p
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.
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p
i
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=
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i
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p
u
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/
t
e
s
t
_
2
_
p
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=
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c
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r
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