
eBPF Based Container Networking

A Network Performance Comparison

Nick de Bruijn

July 4, 2017

University of Amsterdam



Introduction

Figure 1: Microservices and Containers1

1https://www.slideshare.net/Docker/cilium-network-and-application-security-with-

bpf-and-xdp-thomas-graf-covalent-io

1/28



Introduction - Iptables

Iptables:

• $ iptables -A INPUT -p tcp -s 10.0.0.23 –dport 80 -m conntrack

–ctstate NEW -j ACCEPT

2/28



Research Goal

Research goal:

• Evaluate the usability of Cilium as a packet filtering system in a

container (Microservices) infrastructure.

3/28



Research Questions

• What throughput and latency we get in the case of using Cilium’s

eBPF program and Linux’s Iptables as packet filter?

• What effect does the number of security policies have on the

throughput and latency in both cases?

• Is there a turn point in performance when increasing the number of

security policies?

4/28



Background

5/28



Docker Networking

• Endpoints (Container eth0)

• Virtual Ethernet devices (veth)

• Bridge on the host (docker0)

1Figure: https://success.docker.com/Architecture/DockerReferenceArchitecture

6/28



Docker Networking - Communication

• Endpoints (Container eth0)

• Virtual Ethernet devices (veth)

• Bridge on the host (docker0)

Packet filtering:

• On container

7/28



Docker Networking - Communication

Components:

• Endpoints (Container eth0)

• Virtual Ethernet devices (veth)

• Bridge on the host (docker0)

Packet filtering:

• On container

• On the bridge

8/28



Iptables - Performance penalty?

• Uses chains with rules

• Each chain contains 0 or more

rules

• Top down approach

• Checks until match is found

• So placement is important

2

2Figure: http://www.iptables.info/en/structure-of-iptables.html

9/28



What is Cilium?

• Opensource project

• Adds a layer on top of the

existing container environment

(Docker)

• To improve container

networking and policy

enforcement

• No Iptables / bridges

• Relies on eBPF programs

10/28



What is eBPF (extended Berkeley Packet Filter)?

eBPF is used to extend the functionality of the kernel at runtime.

• It’s effectively a small kernel based machine

• 10 64bit registers

• 512 byte stack

• Data structures are known as maps

• Has a verifier to ensure the program is safe

• No loops, max 4k instructions, no more then 64 maps.

11/28



eBPF

Figure 2: eBPF Overview3

3https://www.slideshare.net/Docker/cilium-bpf-xdp-for-containers-66969823 12/28



extended Berkley Packet Filter - Functionality

1. Rewrite packet content

2. Extend/trim packet size

3. Redirect to other netdevices

4. Enforce policies

5. On the fly program generation

13/28



Cilium - Network with eBPF

Figure 3: eBPF with Cilium4

4https://www.slideshare.net/Docker/cilium-bpf-xdp-for-containers-66969823
14/28



Cilium - Policies

Figure 4: Cilium Policy Using Json

15/28



Approach

16/28



Approach - Docker environment

17/28



Approach - Cilium environment

18/28



Approach - Scenario

Performed tests on two scenarios:

• Localhost

• And Multi-host

For each scenario we are interested in:

• The throughput and latency with no additional policies/rules.

• The change in performance whenever we start to increase the

number of policies/rules.

19/28



Approach - Experiments

• Using Iperf3 to send a TCP STREAM

• Using Netperf to send a TCP RR (Request Response)

• Every test runs 1 minute. Every test is performed 10 times to

determine the variation

• Every test runs with 0, 1, 5, 10, 25, 50, 100, and 200 policies

20/28



Results

21/28



Results - Throughput Localhost

Figure 5: Throughput - localhost (Higher is better)

• Cilium’s eBPF approach outperforms the IPtable approach.

• Number of Cilium policies does not affect the throughput

• Number of no matching Iptables rules greatly affect the throughput 22/28



Results - Latency Localhost

Figure 6: TCP Latency - localhost (Lower is better)

• Same observation as the throughput

• Cilium’s eBPF approach has a lower latency

23/28



Results - Throughput Remote Containers

Figure 7: TCP Throughput - Remote Host (Higher is better)

• Different observation than on Localhost

• Cilium’s eBPF seems to perform less

• Iptables show no performs penalty until 1000 policies

24/28



Results - Latency Remote Containers

Figure 8: TCP Latency - Remote Host (Lower is better)

• Same observation as the remote throughput

• Cilium’s eBPF approach has a higher latency

25/28



Conclusion

26/28



Conclusion

Overal:

1. Cilium seems like a promising project.

2. We can define L3, L4, and L7 policies

Performance wise:

1. The performance is not influenced by number of policies.

2. Cilium shows to perform better in the situation of local containers.

3. Room for improvements for multi-host enviornments

27/28



Open issues & Future work

• Test the VXLAN overlay overhead used by Docker and Cilium

• Do Kernel traces to get a better understanding of which path

packets take in the kernel.

• Optimize both approaches to see what the best possible throughput

and latency can be reached for each approach.

• Test Cilium using XDP to offload the system.

28/28



Thank you for your attention,

Questions?

28/28


	Background
	Approach
	Results
	Conclusion

