eBPF Based Container Networking

A Network Performance Comparison

Nick de Bruijn
July 4, 2017

University of Amsterdam

Introduction

Application
Architectures

Delivery Frequency

Operational
Complexity

Single Server
App

—

Yearly

]]
e]

Low

Figure 1: Microservices and Containers®

3-Tier App

LI

Monthly

Moderate

Distributed
Microservices

Thttps://www.slideshare.net/Docker /cilium-network-and-application-security-with-

bpf-and-xdp-thomas-graf-covalent-io

1/28

Introduction - Iptables

Iptables:

e $ iptables -A INPUT -p tcp -s 10.0.0.23 —dport 80 -m conntrack
—ctstate NEW -j ACCEPT

2/28

Research Goal

Research goal:

e Evaluate the usability of Cilium as a packet filtering system in a
container (Microservices) infrastructure.

3/28

Research Questions

e What throughput and latency we get in the case of using Cilium’s
eBPF program and Linux’s Iptables as packet filter?

e What effect does the number of security policies have on the
throughput and latency in both cases?

e Is there a turn point in performance when increasing the number of
security policies?

4/28

Background

5/28

Docker Networking

e Endpoints (Container eth0)

e Virtual Ethernet devices (veth)
e Bridge on the host (docker0)]

: eth0: 172.17.0.2 |
i I

! dockerQ L
i nar ce

I
i El:hO: 192.168.0.2 .

LFigure: https://success.docker.com/Architecture/Dockergeferencearchitecture

6/28

Docker Networking - Communication

e Endpoints (Container eth0)

e Virtual Ethernet devices (veth)
e Bridge on the host (docker0)]
Packet filtering: i

e On container

I
i El:hO: 192.168.0.2 .

7/28

Docker Networking - Communication

Components:

e Endpoints (Container ethQ)
e Virtual Ethernet devices (veth)

e Bridge on the host (docker0)
Packet filtering: [I

. i I
e On container |

) eth0:172.17.0.2 |

e On the bridge

- -
|

| pm [
ockerd

i = ! namespace
1 ;
7 3 |
I :
) I

i e:ho: 192.168.0.2)

8/28

Iptables - Performance penalty?

2
e Uses chains with rules I:/ chainl
e Each chain contains 0 or more rulel chain2
rules |: _ rulel
e Top down approach l: e |: rule2
e Checks until match is found I_: R |: rule3
e So placement is important |: rules (_|—|

2Figure: http://www.iptables.info/en/structure-of-iptables.html

9/28

What is Cilium?

e Opensource project O
e Adds a layer on top of the
existing container environment
e To improve container .
networking and policy
enforcement

L] |
e No Iptables / bridges CI | I U I I l

e Relies on eBPF programs

10/28

What is eBPF (extended Berkeley Packet Filter)?

eBPF is used to extend the functionality of the kernel at runtime.

e It's effectively a small kernel based machine

e 10 64bit registers
e 512 byte stack

e Data structures are known as maps

e Has a verifier to ensure the program is safe

e No loops, max 4k instructions, no more then 64 maps.

11/28

o B e, AR

Cod
~_ = N LLVM/clang - Userspace
-w =
Verifier
+IT

| Sackets | Kerne
e a3
E w3 I a3
twiork
netdevica £ "

netdevice

Figure 2: eBPF Overview?

3https:/ /www.slideshare.net/Docker/cilium-bpf-xdp-for-containers-66969823

12/28

extended Berkley Packet Filter - Functionality

1. Rewrite packet content

2. Extend/trim packet size

3. Redirect to other netdevices
4. Enforce policies

5. On the fly program generation

13/28

Cilium - Network with eBPF

o] &2 & B

Y
. Cilium Policy Cilium
BREins CLI Repository Monitor
! ')
Cilium H §
Cilium Layer Daemon s ceooooood ' '
N‘ Code Events :
Generation :' ==
1
Bytecode injection :
1
]
[

Figure 3: eBPF with Cilium*

14/28

4https://www.slideshare.net/Docker/cilium-bpf-xdp-for-containers-66969823

Cilium - Policies

[{
"endpointSelector”: {"matchLabels":{"id":"appl"}}.
“ingress": [{ Layer 3
"fromEndpoints": [
{"matchLabels":{"1d":"app2"}}
1
"toPorts": [{
"ports": [{"port": "B@", "protocol”: "tcp"}]. Layer 4
‘rules™:
HTTP™: [{
"method": "GET", Layer 7
"path": "/public
1]
}
1]
H
1l

Figure 4: Cilium Policy Using Json

15/28

Approach

16/28

Approach - Docker environment

| container

wwork namespace | i vork namespace |

container ! container

enp5s0: 10.0.0.1 . I enp5s0: 10.0.0.2

17/28

Approach - Cilium environment

| enp5s0: 10.0.0.1

enpSs0: 10.0.0.2

18/28

Approach - Scenario

Performed tests on two scenarios:
e |ocalhost
e And Multi-host
For each scenario we are interested in:
e The throughput and latency with no additional policies/rules.

e The change in performance whenever we start to increase the
number of policies/rules.

19/28

Approach - Experiments

Using Iperf3 to send a TCP_STREAM

Using Netperf to send a TCP_RR (Request Response)

Every test runs 1 minute. Every test is performed 10 times to
determine the variation

Every test runs with 0, 1, 5, 10, 25, 50, 100, and 200 policies

20/28

Results

21/28

Results - Throughput Localhost

TCP Throughput - Localhost

»
8

»
-]

|

w
8
L

— =
-
H
ml

-
8

Throuputh in Gbits/s
p P 2
8 8

| s
g

2.40
2.20

2.00
Entries 0 Entries 1 Entries 5 Entries 10 Entries 25 Entries 50 Entries 100 Entries 200

=——eBPF =Iptables - No matching rule Iptables - Top of chain matching rule

Figure 5: Throughput - localhost (Higher is better)

e Cilium's eBPF approach outperforms the IPtable approach.
e Number of Cilium policies does not affect the throughput
e Number of no matching Iptables rules greatly affect the throughput 22/28

Results - Late Localhost

TCP Latency - Localhost

\

T T i T
L 4L _______,...-#-—.__ R— =
= = T - T
I T +
Entries 0 Entries 1 Entries 5 Entries 10 Entries 25 Entries 50 Entries 100 Entries 200
— g BPF =—=|ptables - No matching rule Iptables - Top of chain matching rule

Figure 6: TCP Latency - localhost (Lower is better)

e Same observation as the throughput

e Cilium's eBPF approach has a lower latency

23/28

Results

a5
w g T - -
- - ;_:[_,_._L_ = S -
£ 35 ————— = T = T -_——
9 3
£
T 25 —_— I = - =
g 2 T + —
-=
@15
3
g 1
F os

Entries 0 Entries 1 Entries 5 Entries 10 Entries 25 Entries 50 Entries 100 Entries 200 Entries 1000

g BPF | ptab les - No matching rule Iptables - Top of chain matching rule

Figure 7: TCP Throughput - Remote Host (Higher is better)

e Different observation than on Localhost
e Cilium's eBPF seems to perform less

e Iptables show no performs penalty until 1000 policies

24/28

Results - Late ote Containers

TCP Latency - Remote host

~
w
Y

}
|

~
I~}

Latency inus
~
@
]

~
w

-
a

~
w

Entries 0 Entries 1 Entries 5 Entries 10 Entries 25 Entries 50 Enfries 100 Entries 200 Entries 1000

=———gBPF ==Iptables - No matching rule Iptables - Top of chain matching rule

Figure 8: TCP Latency - Remote Host (Lower is better)

e Same observation as the remote throughput

e Cilium's eBPF approach has a higher latency

25/28

Conclusion

26/28

Conclusion

Overal:
1. Cilium seems like a promising project.
2. We can define L3, L4, and L7 policies
Performance wise:

1. The performance is not influenced by number of policies.
2. Cilium shows to perform better in the situation of local containers.

3. Room for improvements for multi-host enviornments

27/28

Open issues & Future work

e Test the VXLAN overlay overhead used by Docker and Cilium

e Do Kernel traces to get a better understanding of which path
packets take in the kernel.

e Optimize both approaches to see what the best possible throughput
and latency can be reached for each approach.

e Test Cilium using XDP to offload the system.

28/28

Thank you for your attention,
Questions?

	Background
	Approach
	Results
	Conclusion

