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Introduction - Iptables

Iptables:

e $ iptables -A INPUT -p tcp -s 10.0.0.23 —dport 80 -m conntrack
—ctstate NEW -j ACCEPT
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Research Goal

Research goal:

e Evaluate the usability of Cilium as a packet filtering system in a
container (Microservices) infrastructure.
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Research Questions

e What throughput and latency we get in the case of using Cilium’s
eBPF program and Linux’s Iptables as packet filter?

e What effect does the number of security policies have on the
throughput and latency in both cases?

e Is there a turn point in performance when increasing the number of
security policies?
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Background
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Docker Networking

e Endpoints (Container eth0)

e Virtual Ethernet devices (veth)
e Bridge on the host (docker0) ]
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LFigure: https://success.docker.com/Architecture/Dockergeferencearchitecture
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Docker Networking - Communication

e Endpoints (Container eth0)

e Virtual Ethernet devices (veth)
e Bridge on the host (docker0) ]
Packet filtering: i

e On container

I
i El:hO: 192.168.0.2 .
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Docker Networking - Communication

Components:

e Endpoints (Container ethQ)
e Virtual Ethernet devices (veth)

e Bridge on the host (docker0)
Packet filtering: [ I
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Iptables - Performance penalty?

2
e Uses chains with rules I:/ chainl
e Each chain contains 0 or more rulel chain2
rules |: _ rulel
e Top down approach l: e |: rule2
e Checks until match is found I_: R |: rule3
e So placement is important |: rules (_|—|

2Figure: http://www.iptables.info/en/structure-of-iptables.html
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What is Cilium?

e Opensource project O
e Adds a layer on top of the
existing container environment
e To improve container .
networking and policy
enforcement

L] |
e No Iptables / bridges CI | I U I I l

e Relies on eBPF programs
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What is eBPF (extended Berkeley Packet Filter)?

eBPF is used to extend the functionality of the kernel at runtime.

e It's effectively a small kernel based machine

e 10 64bit registers
e 512 byte stack

e Data structures are known as maps

e Has a verifier to ensure the program is safe

e No loops, max 4k instructions, no more then 64 maps.
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Figure 2: eBPF Overview?

3https:/ /www.slideshare.net/Docker/cilium-bpf-xdp-for-containers-66969823
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extended Berkley Packet Filter - Functionality

1. Rewrite packet content

2. Extend/trim packet size

3. Redirect to other netdevices
4. Enforce policies

5. On the fly program generation
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Cilium - Network with eBPF
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Figure 3: eBPF with Cilium*
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Cilium - Policies

[{
"endpointSelector”: {"matchLabels":{"id":"appl"}}.
“ingress": [{ Layer 3
"fromEndpoints": [
{"matchLabels":{"1d":"app2"}}
1
"toPorts": [{
"ports": [{"port": "B@", "protocol”: "tcp"}]. Layer 4
‘rules™:
HTTP™: [{
"method": "GET", Layer 7
"path": "/public
1]
}
1]
H
1l

Figure 4: Cilium Policy Using Json

15/28



Approach
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Approach - Docker environment

| container

wwork namespace | i vork namespace |

container ! container

enp5s0: 10.0.0.1 . I enp5s0: 10.0.0.2
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Approach - Cilium environment

| enp5s0: 10.0.0.1

enpSs0: 10.0.0.2

18/28



Approach - Scenario

Performed tests on two scenarios:
e |ocalhost
e And Multi-host
For each scenario we are interested in:
e The throughput and latency with no additional policies/rules.

e The change in performance whenever we start to increase the
number of policies/rules.
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Approach - Experiments

Using Iperf3 to send a TCP_STREAM

Using Netperf to send a TCP_RR (Request Response)

Every test runs 1 minute. Every test is performed 10 times to
determine the variation

Every test runs with 0, 1, 5, 10, 25, 50, 100, and 200 policies
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Results
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Results - Throughput Localhost

TCP Throughput - Localhost
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Figure 5: Throughput - localhost (Higher is better)

e Cilium's eBPF approach outperforms the IPtable approach.
e Number of Cilium policies does not affect the throughput
e Number of no matching Iptables rules greatly affect the throughput 22/28



Results - Late Localhost

TCP Latency - Localhost
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Figure 6: TCP Latency - localhost (Lower is better)

e Same observation as the throughput

e Cilium's eBPF approach has a lower latency
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Figure 7: TCP Throughput - Remote Host (Higher is better)

e Different observation than on Localhost
e Cilium's eBPF seems to perform less

e Iptables show no performs penalty until 1000 policies
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Results - Late ote Containers

TCP Latency - Remote host
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Figure 8: TCP Latency - Remote Host (Lower is better)

e Same observation as the remote throughput

e Cilium's eBPF approach has a higher latency
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Conclusion
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Conclusion

Overal:
1. Cilium seems like a promising project.
2. We can define L3, L4, and L7 policies
Performance wise:

1. The performance is not influenced by number of policies.
2. Cilium shows to perform better in the situation of local containers.

3. Room for improvements for multi-host enviornments
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Open issues & Future work

e Test the VXLAN overlay overhead used by Docker and Cilium

e Do Kernel traces to get a better understanding of which path
packets take in the kernel.

e Optimize both approaches to see what the best possible throughput
and latency can be reached for each approach.

e Test Cilium using XDP to offload the system.
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Thank you for your attention,
Questions?



	Background
	Approach
	Results
	Conclusion

