
MSc System and network Engineering

Research Project 1

Techniques for detecting compromised
IoT devices

Project Report

Ivo van der Elzen
Jeroen van Heugten

February 12, 2017

Abstract

The amount of connected Internet of Things (IoT) devices is growing, expected to hit 50
billion devices in 2020. Many of those devices lack proper security. This has led to malware
families designed to infect IoT devices and use them in Distributed Denial of Service (DDoS)
attacks. In this paper we do an in-depth analysis of two families of IoT malware to determine
common properties which can be used for detection. Focusing on the ISP-level, we evaluate
commonly available detection techniques and apply the results from our analysis to detect
IoT malware activity in an ISP network. Applying our detection method to a real-world data
set we find indications for a Mirai malware infection. Using generic honeypots we gain new
insight in IoT malware behavior.

1 Introduction

September 20th 2016: A record setting Dis-
tributed Denial of Service (DDoS) attack of over
660 Gbps is launched on the website krebsonse-
curity.com of infosec journalist Brian Krebs [1].
A few days later, web hosting company OVH
reports they have been hit with a DDoS of over
1 Tbps [2]. These attacks were not only un-
precedented in volume [3], but were performed
using direct traffic without using any of the
reflection/amplification techniques commonly
associated with large-scale attacks [1].

DDoS attacks are not a new phenomenon. Be-
fore these events, most large-scale DDoS attacks
were performed using reflection/amplification of
UDP protocols such as DNS, NTP, SSDP and
others [1]. These attacks rely on the availability
of hosts serving vulnerable protocols to reflect
the attack to the victim, and also to amplify the
attack by increasing the volume. Two examples
of the most powerful of such attacks to date
were both described in detail by internet secu-
rity company Cloudflare [4] [5]. Although still a
significant source of DDoS traffic, those attacks
can be mitigated at the source by implementing
source address validation (BCP-38/84) [6] [7].
Efforts are underway to get these mitigating
factors implemented across the internet [8].

The attacks on krebsonsecurity.com and OVH
were leveraged using compromised Internet of
Things (IoT) devices like IP cameras and Digital
Video Recorder (DVR) boxes. The devices be-
came infected with malware by simple Telnet
dictionary attacks and were made part of a
botnet, after which they were used the DDoS
attacks. As direct connections were used, this
would suggest a large number of compromised
devices. This is because direct attacks do not
amplify their traffic using other hosts not di-
rectly compromised by the malware. A cou-

ple of days after the attacks, the source code
for the malware (dubbed “Mirai”) was pub-
lished [9] [10].

With the rise of these IoT based DDoS at-
tacks [11] it has become clear that this problem
will only become bigger in the future, unless
IoT device vendors accept responsibility and
provide a mechanism for automatic security up-
dates. Until such time that most vulnerable IoT
devices are updated, it is important for network
operators to have tools available to detect intru-
sion attempts and infected devices before they
participate in a DDoS attack or other malicious
activity. In this research we aim to determine
which techniques are available to an ISP, and
how they could be used to reach this goal.

1.1 Outline

Related work on the subject is outlined in sec-
tion 2. Section 3 details the malware analysis of
two leading IoT malware families; BASHLITE
and Mirai. Section 4 gives an overview of de-
tection techniques and it’s application to IoT
malware. Our experiments in applying the tech-
niques to real-world data are described in sec-
tion 5. Finally, our results are discussed and
concluded in section 6.

1.2 Approach

Our main research question is the following:

• Can leading IoT malware be detected us-
ing network-based techniques available to
ISPs?

To answer this question, several sub questions
have been formulated:

(A) What are important common properties of
leading IoT malware?

(B) How can these properties be used to detect
IoT malware activity in an ISPs network?

1

(C) Can generic honeypots be used to collect
properties of new IoT malware?

To answers these questions, we analyze existing
research on IoT malware available on various
blogs, websites and scientific resources. Our
goal is to learn about common properties of
IoT malware; what techniques they employ and
what their characteristics are. By analyzing
malware source code we find common proper-
ties that apply to multiple IoT malware families.

Based on this analysis we create a description
of the life cycle of an IoT malware infection.
The characteristics of this infection life cycle
are used to determine which techniques can
be used to detect infected devices or intrusion
attempts. We evaluate generic detection tech-
niques likely available to network operators;
such as NetFlow, packet capture analysis, hon-
eypot data, open/closed ports, Domain Name
System (DNS) analysis, etc.

We validate these techniques by applying them
to real data retrieved from NetFlow and darknet
packet captures. Additionally, we use honeypots
to gather new information about the changing
landscape of IoT malware.

1.3 Scope

In this research we describe several distinct
stages in the malware infection life cycle. We
focus on the early stages of the life cycle that
are relevant to the spreading of the malware.
These include scanning for other devices, attack-
ing these devices and infecting them with the
malware. Command and Control (C&C) traffic
and DDoS attacks performed by the malware
are not researched in any detail.
Due to the mercurial nature of IoT malware,
it becomes difficult to be comprehensive in de-
scribing the behavior in a generic way. When
the life cycle model is described in a broad man-
ner it would inevitably also describe other types
of malware. Or when described more narrowly
the model will describe only one or a few dif-
ferent IoT malware variants. We choose to keep
the model fairly narrow, but recommend to keep
updating it to remain relevant. This means that
when our approach is used in practice, the life
cycle model used needs to be continually up-
dated as well.

2 Related work

Various research has been done on the subject of
detecting IoT malware, but most of this research
is non-scientific (e.g. web logs, independent non-
professional researchers). Nevertheless, formal
research on IoT botnets has been done and is
still ongoing.

In August 2015, Pa Pa et al. published a paper
“IoTPOT: Analysing the Rise of IoT Compro-
mises” [12]. They analyzed Telnet based scans
in darknet, and used that information to create
a honeypot that emulates specific Telnet ser-
vices. With this honeypot they were able to
analyze ongoing attacks in depth. This research
shows that honeypots are a viable method of
gathering information about IoT malware, but
offers no opinion on how to use that information
to detect attacks on an ISP level.

In January 2014, Lin, Chen, & Hung published a
paper [13] about detecting botnets with a com-
bination of an artificial fish swarm algorithm
(AFSA) and support vector machines (SVM).
This research focuses on identifying essential
botnet attributes by analyzing data with opti-
mized algorithms.

In August 2016, DARPA announced that it is
going to fund the CAMELIA project with $9.4
million [14]. This project focuses on detecting
IoT malware by analyzing the electromagnetic
emanations of IoT devices. By comparing them
with a database of signals of normal operation,
it would be possible to detect running malware.
However interesting, this approach is not prac-
tical for most network operators, as it requires
special equipment, and physical proximity to
the devices.

Other organizations, such as MITRE, are also
investigating ways to detect infected IoT de-
vices. In October 2016 they awarded a $50.000
bounty for this research [15], with the focus on
non-traditional means of detection. This shows
that this research subject is highly relevant.

3 Malware analysis

In this section we analyze the source code of two
leading IoT malware families, BASHLITE and
Mirai, to discover their common properties.

2

3.1 BASHLITE

BASHLITE is a type of malware that infects
Linux devices and uses these devices to launch
DDoS attacks. The malware is also known
as Gafgyt, Torlus, Lizkebab and some oth-
ers [16] [17]. It was created by a programmer
working under the pseudonym “Sinden” (among
other synonyms) [18].

The malware consists of server and client code.
The server code is designed to run on one or
more C&C servers. With those servers, the
botnet owner can control the herd of bots (in-
fected devices) running the client code. The
two communicate with each other with a cus-
tom protocol inspired by IRC.

3.1.1 Scan

The client code incorporates a Telnet scan-
ner “lel”, referring to the authors, the “leld-
dos” group [19]. The Telnet scanner generates
random /24 IP-subnets (256 addresses) [20].
Within those subnets, the malware scans the
addresses sequentially (starting with .1 and end-
ing with .255).

When generating the subnet, the malware
checks if the subnet is part of the IANA special
purpose addresses list (RFC 5735 [21]). If this
is the case, the subnet will not be scanned.

The scanner sequentially loops over the pre-
viously generated IP addresses and creates a
raw socket for each IP. There is no specific win-
dow size set, but the system default is used.
The destination port of the connection is port
23 (Telnet), which is hard coded in the malware.

If an IP-address has an open Telnet port, the
malware will try to login to the device using a
list of predefined username / password combi-
nations.

The first variant of the malware [23]
(ELF BASHLITE.A [24]) was first seen in
September 2014. This variant does not take
many actions once successfully logged into a
device: It checks whether the device runs a
BusyBox shell [25]. If this is the case it exe-
cutes a command to echo the string “gayfgt”,
as can been seen in appendix B.

A later variant (ELF BASHLITE.SMB [26]),

detected in October 2014, is more harmful.
This variant first downloads two scripts from
a remote server, as can be seen in Figure 3.
Those scripts are designed to gain full access
to the system by abusing the ShellShock ex-
ploit [23] [27]. One of the shell scripts (see
appendix A) downloads the malware for a wide
range of architectures using wget and executes
them all (hoping one will work).

Source: TrendLabs

Figure 3: BASHLITE infection and ShellShock
execution [28]

As the malware is self-replicating, the attacker
needs one or more compromised devices to start
with. This is achieved by using a Perl Telnet
bot to infect the first devices [29].

3.1.2 Attack

The “flooder” part of the malware incorporates
four DDoS attacks and a commented (not ac-
tive) e-mail function. The DDoS attacks are
UDP, TCP, Junk and Hold floods. In ap-
pendix C we see that the newer variant features
some extra control features and one new attack
“GETFLOOD”, which launches a HTTP GET
flood DDoS on the target [30].

3.1.3 More variants

We have discussed two variants of the
malware so far (ELF BASHLITE.A and
ELF BASHLITE.SMB). According to Level3
there are more than a dozen variants [17].

MalwareMustDie evaluated another three vari-
ants on their blog [29], which are listed in table
1. The “Qbot” [31] variant has many similari-
ties with the ELF BASHLITE.SMB version. It
is unclear if this is actually the same version,
but simply given a different name by Trend
Micro than MalwareMustDie. However, in the
Qbot source code [31] there does not seem to be
a DNS function, so they could be different.

3

version particulars

Qbot
A bug fix in the scanning module
Aimed at IoT devices 1

Private Lacks a scanning module [32]

BLJ 2
Implements encrypted C&C
connections and a persistent
client process

Table 1: BASHLITE variants analyzed by Mal-
wareMustDie

There are also versions aiming at web apps (e.g.
WordPress) and FTP logins [17].

3.2 Mirai

Mirai may be the most well-known IoT bot-
net because it was used in high-profile DDoS
attacks, showing unprecedented attack vol-
umes [1].

Mirai’s source code was released on hackfo-
rums and later mirrored on GitHub [10]. This
allows both source code analysis and behavioral
analysis. We apply these techniques to learn
the following behavior characteristics of Mirai:
How does it scan for potentially vulnerable de-

vices, how does it attack those devices, once
a device has been compromised, how does it
infect the device with Mirai and consequently
Mirai’s behavior once a device has been infected.

The following analysis is based mainly on this
leaked source code, our own experiments by
compiling and running the code and (non-
primary) research published by various security
researchers and companies.

Variants of Mirai have been reported with ad-
ditional functionality not present in this source
code [33]. Where possible, this analysis has
been updated with information regarding those
variants. However, much about the new vari-
ants is still unknown, because there have not
been any further public source code releases.

3.2.1 Mirai overview

A Mirai botnet consists of four distinct parts:
The C&C server, one or more loader(s), a report
server and finally the bots themselves, running
on devices infected with the malware. Figure 4
shows an overview.

Credit: Level 3 Threat Research Labs

Figure 4: Mirai overview

1Multiple architectures, IoT usernames & passwords.
2BadLuckJosh

4

In the following sections we will discuss the life
cycle of Mirai in more detail.

3.2.2 Scanning for devices

Mirai bots include a scanning module that scans
for Telnet services on ports 23 and 2323. Ac-
cording to researchers at 360 Netlab there are
variants of Mirai that attack ports other than
23 and 2323, such as 23231, 5555, 6789, 7547
and 37777 [34] [33]. This was not present in
the code we analyzed. The scanner generates a
random IP, checks if it is inside a “bad” range
and if it is not inside that range, sends out a
SYN packet to that IP. The bad IP ranges are
summarized in table 2.

127.0.0.0/8 Loopback
0.0.0.0/8 Invalid address space
3.0.0.0/8 General Electric Company
15.0.0.0/7 Hewlett-Packard Company
56.0.0.0/8 US Postal Service
10.0.0.0/8 Internal network
192.168.0.0/16 Internal network
172.16.0.0/14 Internal network
100.64.0.0/10 IANA NAT reserved
169.254.0.0/16 IANA NAT reserved
198.18.0.0/15 IANA Special use
224.*.*.*+ Multicast

Source: Adapted from mirai/bot/scanner.c

Table 2: Mirai IP range exclusions

Due to a peculiarity in the code, the TCP header
is set up with a random window size per scan-
ning session. This allows us to differentiate be-
tween Mirai and other malware families when
analyzing incoming scans. This code can be seen
in figure 5.

// Set up TCP header
tcph−>dest = htons (23) ;
tcph−>source = s o u r c e p o r t ;
tcph−>d o f f = 5 ;
tcph−>window = rand next () &

0 x f f f f ;
tcph−>syn = TRUE;

Source: mirai/bot/scanner.c

Figure 5: Mirai TCP window size logic

Another peculiarity is the way which Mirai

chooses its destination ports. When scanning
90% of the packets have TCP port 23 as desti-
nation, but 10% have port 2323 as their desti-
nation. This is governed by the code as shown
in figure 6.

for (i = 0 ; i < SCANNER RAW PPS; i
++)

{
struct sockaddr in paddr =

{0} ;
struct iphdr ∗ iph = (struct

iphdr ∗) scanner rawpkt ;
struct tcphdr ∗ tcph = (struct

tcphdr ∗) (iph + 1) ;

iph−>id = rand next () ;
iph−>saddr = LOCAL ADDR;
iph−>daddr = get random ip () ;
iph−>check = 0 ;
iph−>check = checksum gener ic

((u i n t 1 6 t ∗) iph , s izeof (
struct iphdr)) ;

i f (i % 10 == 0)
{

tcph−>dest = htons (2323) ;
}
else
{

tcph−>dest = htons (23) ;
}

Source: mirai/bot/scanner.c

Figure 6: Mirai destination port logic

3.2.3 Attacking other devices

Once a host running a Telnet service has been
found, Mirai tries to log in using a random
choice out of a list of known default usernames
and passwords3.

If the login attempt succeeds, Mirai will attempt
to run the command “/bin/busybox MIRAI”,
and checks for the reply of “MIRAI: applet not
found”. If this is successful, the results are sent
to the report server and the next target will be
processed.

3A full list of usernames and passwords contained in the Mirai source code can be found in appendix D.

5

3.2.4 Infect

Successful logins from the scanning bots are
sent to the C&C infrastructure via the report
server. These are then used by the loader to log
into the newly discovered device and deliver the
malware.

Once the loader has logged in, a similar check is
performed, this time using “/bin/busybox EC-
CHI” as a command and “ECCHI: applet not
found” as a response. Figure 7 shows the code
snippet where these strings are stored in the
loader code. These strings are not obfuscated
because this code is not present in the malware
itself.

#define TOKEN QUERY
”/ bin /busybox ECCHI”
#define TOKEN RESPONSE
”ECCHI: app le t not found”

Source: loader/src/headers/includes.h

Figure 7: Token query and response

After verifying the login, the loader checks the
processor architecture of the target. If known
the loader serves a binary built for the target.
This is done via one of three methods: wget,
tftp or direct file transfer using echo commands
into a file over Telnet.

Mirai supports a large number of processor ar-
chitectures4. This may be indicative of the
malware author’s intent to target as many de-
vices as possible.

After delivering the payload, the loader runs
the malware, waits for the malware to output
the check string “listening tun0” and discon-
nects.

3.2.5 Infection characteristics

After successful execution of the malware, Mi-
rai removes its own binary and continues to run
only in memory. This could be an attempt to
evade detection or thwart analysis, but it also
means that a Mirai infection is not persistent.
Once a device has been rebooted the malware
will no longer be present.

Changes to device

Mirai attempts to kill any process bound to
ports 22, 23 and 80 and rebinds these ports
to itself. This prevents other attackers from
(re)gaining access to the device. Mirai also
binds to port 48101, however only on 127.0.0.1,
meaning that this will not be detectable from
the outside.

A rather aggressive approach is taken to re-
move other malware from the system that it
knows about. It does this by grabbing the path
of all executables from all running processes,
scanning the binaries for certain known strings
and when it finds one of the strings listed in
table 3, it kills the associated process.

Variable name Decoded string
m qbot report REPORT %s:%s
m qbot http HTTPFLOOD
m qbot dup LOLNOGTFO
m upx str \x58\x4D\x4E\x4E\x43\x50\x46\x22
m zollard zollard

Source: mirai/bot/killer.c and table.c

Table 3: Strings the killer searches for

Note that m upx str seems to be double-
encoded with the same XOR key. Once decoded
again, it becomes “zollard”. This seems to be a
mistake on the malware author’s part.

As can be seen in figure 8, Mirai also searches
for binaries with “.anime” in their path. When
found the process gets killed and the binary
deleted. Anime is a competing IoT malware
family [35].

// I f path co nta ins ” . anime” k i l l .
i f (u t i l s t r i s t r (rea lpath , r p l e n
− 1 ,

t a b l e r e t r i e v e v a l (
TABLE KILLER ANIME, NULL))
!= −1)

{
unl ink (r ea lpa th) ;
k i l l (pid , 9) ;

}
Source: mirai/bot/killer.c

Figure 8: Anime killer

The killer process keeps running while the

4A full list of architectures supported by Mirai can be found in appendix E.

6

malware runs, continually killing the competi-
tors it finds.

C&C traffic

Certain C&C traffic happens in an early stage
before attack commands are issued.

Mirai uses three C&C addresses that are hard
coded in the source:

• CNC

• SCAN CB

• FAKE CNC

The CNC is the C&C domain used for get-
ting commands for DDoS attacks etc. The
SCAN CB is the scan callback or “report”
server used to report scanning results. Both
of these are stored in obfuscated form. The
FAKE CNC is a hard-coded IP-address that
the malware performs a reverse DNS lookup on,
but it is not actually part of the C&C infrastruc-
ture. According to the malware’s author this
is intended to fool researchers, law enforcement
and competing botnet operators [36]. Figure 9
shows the location of some of these constants in
the code. A full list of decoded string constants
is included in appendix F.

Both the FAKE CNC lookup and the CB lookup
happen during the spreading phase of the mal-
ware’s life cycle. This could be used to detect
Mirai infections in an early stage.

#define FAKE CNC ADDR
INET ADDR(65 ,222 ,202 ,53)
#define FAKE CNC PORT 80

Source: mirai/bot/includes.h

Figure 9: Fake C&C domain and port

According to researchers at 360 Netlab, newer
Mirai variants exist that use a Domain Gener-
ating Algorithm (DGA) to communicate with
their C&C infrastructure [37]. This means that
the C&C addresses are no longer present in the
binary, but are generated dynamically instead.

Spreading

Once an infection has taken place, it exhibits
the same scanning behavior as described in sec-
tion 3.2.2. However, Mirai excludes local5, link-
local6 and a number of other networks from its
scanning. As such a Mirai infection does not
attempt to scan inside a network if the network
uses RFC1918 [38] addressing internally.

If a network uses a different addressing scheme
which is not explicitly excluded by Mirai, it is
possible for Mirai to attempt to infect additional
devices in the network. However, these devices
would also need to have internet connectivity
in order to join the botnet because the mecha-
nism for infection relies on the loader server to
deliver the malware, which delivers its payload
from the internet. This means that there is no
additional risk for a device to become infected
if it isn’t already exposed to the internet.

Mirai does not seem to be designed to gain
a foothold inside a network and then spread
further inside that network. In fact, quite the
opposite seems to be the case as evidenced by
the exclusion of internal addresses when scan-
ning.

DDoS attack

There are 9 known attack types implemented in
Mirai, these are listed in table 4.

Attack Description
UDP UDP flood
VSE Valve Source Engine query flood
DNS
water
torture

Recursive DNS query attack

SYN SYN packet flood
ACK ACK packet flood
STOMP ACK flood with STOMP
GRE IP GRE flood
GRE
Ether-
net

Ethernet encapsulated inside
GRE flood

Plain
UDP

UDP flood optimized for speed

HTTP HTTP layer 7 flood

Table 4: Mirai DDoS attack types

510.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16, see RFC1918 [38]
6169.254.0.0/16, see RFC3927 [39]

7

Because this research focuses on the early stages
of IoT the details of these attacks were not in-
cluded in our research. However, it is worth
mentioning that the GRE attack had not previ-
ously been seen [1].

3.3 Common properties of IoT
malware

In our analysis of Mirai and BASHLITE we
have shown many similarities like the different
stages in their life cycle and their actions within
those stages.

However, none of these characteristics are new
or exclusive to IoT malware. Scanning, dic-
tionary attacks and vulnerable devices with
exposed Telnet interfaces are all well-known
problems that have plagued the security of the
internet for decades. What makes IoT malware
unique is the type of devices it targets. By tar-
geting embedded Linux-based devices of many
different processor architectures using simple
methods like weak credentials or known vulner-
abilities, IoT malware can be very successful.

Based on the analysis of the BASHLITE and
Mirai malware, we have identified four separate
stages in the life cycle of IoT malware: Scan,
Attack, Infect and Abuse. In the paragraphs
below the common properties of IoT malware
are described per life cycle stage.

3.3.1 Scanning

One common behavior seen in all types of IoT
malware we have researched is scanning for po-
tentially vulnerable hosts. This is usually imple-
mented by a scanning engine that scans random
IPv4 addresses or subnets. The ports targeted
vary, but mostly focused on ports known to be
running a Telnet daemon, commonly 23 and less
commonly 2323 [40]. In the case of specific ex-
ploits being used, ports are scanned that run the
vulnerable service [33] [34] [41].

3.3.2 Attacking vulnerable hosts

The most common attack method is a Telnet
dictionary attack using known usernames and
passwords. These credentials can be generic
such as “root/root” or “admin/admin”, but also
specific passwords such as “7ujMko0admin”,

“xc3511”, “juantech” which are specific to cer-
tain hardware vendors. Some malware variants
will use known exploits to gain entry, such as
the TR-064 and TR-069 exploits that plagued
routers last year [41]. These remain relatively
specific and are not applicable to IoT devices in
general. One commonality across all IoT mal-
ware variants we investigate is that they target
embedded devices running Linux and busybox.

3.3.3 Infection

After a vulnerable device has been found, the
malware will attempt to infect the device. This
is done by downloading a compiled C binary of
the malware itself. There are several ways this
could be done:

• echo over Telnet

• TFTP

• HTTP download (wget)

• DHT/uTP7 [43]

Whatever delivery method it uses, the malware
will be available for many different processor
architectures, ensuring the maximum possible
amount of successful infections. This targeting
of many processor architectures is a common
factor in IoT malware.

Some malware is highly territorial and will at-
tempt to remove other malware it encounters on
the device. It will also close and rebind certain
ports to make it harder for competing malware
to attack the device.

3.3.4 Abuse

Currently most IoT botnets are used to mount
DDoS attacks, mostly the typical attacks such
as SYN or SYN/ACK floods, HTTP attacks,
UDP floods etc. As we have seen, very pow-
erful DDoS attacks can be performed with a
large IoT botnet using only direct traffic. Tra-
ditional large DDoS attacks were mounted using
spoofed traffic and some kind of protocol that
provides reflection/amplification (DNS, NTP,
SSDP, chargen etc.) Not so with IoT botnet
attacks, this makes IoT botnets unique: sheer
volume of traffic.

There have not been any recorded applications

7Distributed Hash Table (DHT) and Micro Transport Protocol (uTP), a BitTorrent-like protocol [42]

8

for IoT botnets other than DDoS attacks, al-
though they could be used for almost anything.
One special case bears mentioning: Hajime has
not exhibited any malicious behavior as of yet,
it is unclear what the purpose of this botnet
is [43].

4 Detection techniques

In this section we evaluate generic detection
techniques likely available to network operators.
We specifically do not focus on techniques that
require installation on end user devices, because
network operators (e.g. ISPs) typically do not
have access to them.

4.1 NetFlow

NetFlow, a network protocol originally devel-
oped by Cisco [44], can be used to collect IP
traffic metrics on a router/switch. NetFlow has
become a generic industry-wide term for traffic
analysis. Nowadays, many hardware vendors
support NetFlow [45] and/or similar technolo-
gies (e.g. sFlow, jFlow and NetStream).

NetFlow is able to characterize traffic flows
up to (and including) layer 4 [46]. Network
administrators use NetFlow to understand traf-
fic patterns and monitor network bandwidth
utilization. It is also used to locate network
abusers and for several other things [47].

As previously stated, NetFlow characterizes
traffic flows, which are then aggregated into
entries in NetFlow packets. A flow is a uni-
directional sequence of packets that share com-
mon properties. This in such a way that the
sequence of packets are related. The exact def-
inition of a flow in the context of NetFlow is
defined in RFC3954 and 6437 [48] [49].

The “common properties” mentioned in the
RFCs depend on the specific flow export proto-
col and version. The properties include at least
(in this case NetFlow version 5) [46]:

• Source interface

• Source & destination IP address

• Layer 4 protocol

• Source & destination port number

• Type of service value (DSCP)

As soon as one of those variables changes, a new
flow is created [50].

Many network administrators use “Random
Sampled NetFlow” [51] nowadays. This ran-
domly selects packets passing the monitored
interface(s) in an interval of n packets. A typi-
cal sample ratio would be 1 in 1000 [52], where
roughly every 1000th packet will be analyzed.
Because of this, NetFlow is less suitable for de-
tecting short communication streams, as they
are easily overlooked when using sampling.

Network administrators can analyze NetFlow
data with a flow analysis application (like Nfsen
and Ntop). In the most used NetFlow versions
(5 and 9), only limited data is available (e.g.
window size is not included).

4.2 Packet analysis

Packet analysis (also known as packet-sniffing)
describes the process of capturing and interpret-
ing data that flows through a network.

Well known packet capture tools are “tcpdump”
and “Wireshark” [53]. They allow the user
to choose one or multiple network interfaces.
The interface is then put in promiscuous mode,
which passes all the receiving frames to the
CPU instead of only the frames addressed to
it [54]. This is particularly useful when using
port mirroring, because as nearly none of the
frames are addressed to the watched interface,
they would have been dropped before reaching
the capture tool.

In comparison with NetFlow, more data (e.g.
window-size) from the header is available for
analysis. Besides that, NetFlow data is only
based on header information, and not the pay-
load. With packet capture tools, it is possible
to inspect the payload as well.

Most of the tools can be used to analyze data
in real-time or from previously captured data
(pcap files). The data is first dissected, which
means its part of the protocol is decoded and the
data structured according to the specifications
in the corresponding RFC [55]. Then, most of-
ten the data is filtered using a combination of
zero or more selectors specified by the user to

9

enable the user to only select the information
they need.

Use for darknet monitoring

When monitoring a darknet8, incoming pack-
ets could be represented in any number of ways.
However, to fully utilize the available informa-
tion, a full packet capture is most useful. This
allows a researcher or IT professional to ana-
lyze all the properties of the incoming packets,
as other representations of packet information,
such as NetFlow, are incomplete.

4.3 Honeypots

Honeypots are systems designed to entice at-
tackers to attempt to gain access to these sys-
tems [56]. To achieve this, the systems simulate
some kind of vulnerability (e.g. weak password
or software vulnerability) and they are usually
designed to look important as to present an al-
luring target. The main goal of a honeypot is to
analyze the techniques used by the attacker [57].

Honeypots are often classified by their inter-
action level, which is scaled from low (no in-
teraction, just logging), medium (some inter-
action, but no arbitrary code executed) to full
interaction, where the honeypot is basically a
jailed environment capable of offering almost
the same features as the real device. The secu-
rity risk grows with the interaction level [58].

In our experiments, we create multiple hon-
eypots with the Cowrie software [59]. Cowrie is
a medium-interaction SSH & Telnet honeypot,
written in Python. It is based on the Kippo
honeypot but offers some extra features.

By analyzing honeypot logs (and collected files),
it is possible to gather a lot of valuable infor-
mation about botnets/malware. Depending on
the malware behavior and the interaction level
of the honeypot, it is possible to gather infor-
mation such as:

• new malware families,

• variants in malware families,

• malware code,

• targeted type of devices (e.g. based on
username:password combinations),

• address information (IP addresses / host
names / port numbers) of command &
control servers, attackers, targets, etc.

4.4 DNS analysis

DNS [60] is commonly used by malware to look-
up the IP address of the C&C server. It is often
used instead of a hard-coded IP address to offer
the hacker the ability to change C&C servers
when one is taken offline. Another use case is
when the hacker wants to use fast-flux DNS to
hide the C&C servers’ real IP address. This
technique abuses the load balancing system in
the DNS by adding & removing multiple IP ad-
dresses behind a single domain name very often
(e.g. every 5 minutes) [61].

Companies and institutions that operate large,
internet-scale DNS servers, such as for example
Google and OpenDNS [62], could monitor the
amount of queries for specific domain names.
Domain names that are used by C&C servers
often show a large peak in the amount of lookups
in a relatively short time frame.

Some malware uses the DNS as the main com-
munication protocol between infected devices
and the C&C server to avoid detection [63].
The messages are hidden in the the DNS ques-
tions and answers.

Blocking malicious DNS servers can be diffi-
cult due to the design of the DNS protocol. The
DNS request is forwarded by recursive name
servers until the authoritative DNS server is
reached [63]. The client does not communicate
directly with the authoritative server in most
cases.

Some malware uses DGA, which enables the
attacker to switch domain names often (e.g. ev-
ery day) [64]. This will prevent the attacker
from losing control over the botnet when the
domain name is taken offline / sinkholed 9.

8Darknet being defined as a public network segment without any systems connected.
9Sinkholing is when a domain is taken over by researchers or law enforcement but kept operational to gather

information about the infected devices connecting to the domain.

10

By analyzing DNS queries it is possible to clas-
sify suspicious requests. For example requests
with very large request / answer sections might
include communication between malware and a
C&C server [63]. The IP addresses and domain
names involved in the DNS traffic can then be
used for further investigation. An advantage of
this type of analysis is that it does not matter
if the communication is encrypted or not [61].

4.5 Application of techniques

We have described several commonly available
techniques which could be used for malware de-
tection on an ISP-level and we have analyzed
leading IoT malware. In this section we will
evaluate each detection technique with respects
to detecting IoT malware activity.

4.5.1 NetFlow

NetFlow is a very useful tool for detecting activ-
ity in certain phases of the malware life cycle,
depending on certain factors. Certain limita-
tions exist that limit its usefulness however.

Flow sampling
NetFlow is often configured using a flow sam-
pling of one in N packets, common values for N
are 100, 500, 1000, etc. This means that the ap-
plication of NetFlow for detecting IoT malware
has limitations. Given that a single infected
device will only send a single TCP SYN packet
per scanning session, the chance of capturing
this single packet is low, namely the same as
the NetFlow sampling rate, such as 1 in 100.
This means that in a typical configuration Net-
Flow is not very useful for detecting incoming
scans from the internet.

TCP header fields captured
NetFlow only captures a subset of the header
data and no packet contents. One property of
Mirai’s scanning behavior in particular, as dis-
cussed in section 3.2.2, is that a random TCP
window size is set each scanning session. Typi-
cal NetFlow configurations do not capture this
information. Therefore, it would not be possible
to distinguish between Mirai and other families
of IoT malware.

Use in forensic analysis
One of the benefits of NetFlow is that it is much
more storage-efficient than full packet captures.

Storing historic data is therefore far more vi-
able compared to other solutions. This means
that historic data is often available for some
time and can be analyzed when information
about new threats becomes available. When
faced with a compromised device inside one’s
own network, NetFlow can be useful to capture
scanning behavior because even though only a
subset of outgoing packets is captured, the scan-
ning behavior of IoT malware is such that many
packets will be generated and thus captured by
the NetFlow sampling. If the scanning behav-
ior is consistent, certain patterns will appear
in the statistical sample that can be compared
with scanning behavior of known malware. We
demonstrate such a scenario in our experiments.

4.5.2 Packet capture

A full packet capture of traffic has the most
detailed information available from the men-
tioned detection techniques. Header data that
is missing in NetFlow (e.g. window size) is
available, but also inspection of packet payload
is possible. This means that all network-based
properties of IoT malware can be detected and
analyzed. However, this comes at a certain
cost. For large networks with high amounts of
bandwidth, many resources are needed to in-
spect (and store) all packets that go through
it. Care should also be taken to avoid privacy
concerns associated with deep packet inspec-
tion and long term storage of packet contents.
This makes packet capture especially useful for
live (or short time) captures of packets to/from
specific hosts, but due to the aforementioned
concerns often no historical data is available.

Darknet
When capturing packets from a darknet, full
packet capture is a possibility, since the vol-
umes are much lower and the privacy concerns
are alleviated due to the fact that no legitimate
traffic is present on a darknet. Darknet traffic is
especially useful for detecting scanning behav-
ior from all kinds of botnets, not in the least of
which IoT botnets. In our experiments we will
show that a darknet is a useful tool in analyzing
the scanning behavior of IoT malware.

11

4.5.3 Honeypots

In this section we discuss the applicability of
honeypots for detecting IoT malware.

Use for IoT malware
Because IoT malware mainly targets Linux-
based devices over telnet, a generic linux tel-
net honeypot can be used to gather informa-
tion about IoT malware without much work
in adapting the honeypot specifically for IoT
use. Depending on the type of honeypot (low,
medium or full interaction) they can be used to
capture data about all phases of the malware
life cycle.

Tracking variants
Honeypots are an excellent source of informa-
tion about new malware families and new vari-
ants in existing families. This is because they
log commands issued and binary files down-
loaded, allowing analysis to be done on the
behavior of the malware. In our experiments we
show an example of how the “busybox strings”
can be used to differentiate between certain IoT
malware families.

Gathering IP addresses
Collecting IP addresses of compromised devices
is also possible with honeypots, because they log
IP information about any attack logged against
the honeypot. This IP information can then
be used to inspect network traffic for malicious
activity from these hosts or to notify ISPs and
system owners about malicious activity in their
networks. This information is more detailed
than from capturing scanning behavior alone.

Updating analysis
Combining the aforementioned information can
lead to new insights into IoT malware activity.
This can be used to further tweak the detection
methods to more effectively detect IoT malware.

4.6 DNS analysis

DNS analysis has a stronger focus on detect-
ing C&C communication. C&C communication
often happens after the infection has already
taken place i.e in the abuse phase. As a result,
DNS analysis is not useful for detecting most in-
trusion attempts, only established malware. It
also does not work when malware communicates
to IP addresses directly.

5 Experiments

In our experiments we apply the characteristics
from the malware analysis to the discussed de-
tection techniques.

5.1 Mirai scanning behavior

In this section we discuss our experiments that
focus on the scanning behavior of Mirai.

5.1.1 TCP window size

Our analysis of Mirai shows that Mirai uses a
randomized window size in it’s scanning behav-
ior. This is discussed in section 3.2.2. The TCP
window size is a 16-bit field in the TCP header.
This means that the window size value in the
TCP header has an upper bound of 65335 [65].
A window scale option can be used to extend
this, but Mirai does not use this so it has not
been taken into consideration.

The goal of this experiment is to compare the
window size values generated in Mirai’s scan-
ning module with real world TCP window sizes.
To achieve this we take two steps: First, we
take six 5-minute samples of all incoming SYN
packets on a /15 darknet (131072 IP addresses)
and measure the TCP window sizes of those
packets. This is to get a sample of all differ-
ent window sizes one might expect to see on
a darknet. We do the same but only for TCP
SYN packets destined for port 23. This port
is selected because it is a port that shows the
most IoT scanning activity, as well as non IoT
malware scanning activity.

The 5-minute samples are combined and the
frequency of occurrence of each window size
value is counted. In this way over 5 million
TCP SYN packets were captured, of which over
3 million were destined for TCP port 23.
Figure 11 and 12 show a top 10 tally of the
results of these measurements.

12

Figure 11: Darknet window size graph

Figure 12: Darknet port 23 window size graph

These figures show that in real-world darknet
data, a clear preference is seen for a few popular
window sizes, meaning that the distribution of
window sizes is not uniform. This is true for
the packets destined for port 23, as well as the
packets destined for other ports. A difference
is seen between which window sizes are popular
in the port 23 data and the other data, but
in both cases it can clearly be seen that the
distributions of window sizes are not uniform.

This means that when capturing packets from
a darknet, we expect to see a non-uniform dis-
tribution of window sizes.

Next, we attempt to determine if Mirai’s win-
dow sizes when scanning are distributed uni-
formly across the entire 0-65535 region. The
goal of this was not to determine the relative
quality of Mirai’s PRNG, but to create a sam-
ple to compare the real-world data from the
darknet against. For this we take the code that
generates the window sizes and create a stand-
alone implementation to generate an arbitrary
number of TCP window sizes. This simulates
Mirai’s scanning behavior without having to
rely on capturing actual Mirai scans. The mod-
ified source code is included in appendix G.

Result

Figure 13 shows a comparison of the the real-
world data of TCP SYN packets destined for
port 23 on the darknet, compared with the gen-
erated window sizes from Mirai. The graph
plots the number (count) of occurrences (in log
scale) of each window size in the overall darknet
(blue) and Mirai (red) samples.

Figure 13: Darknet v.s. Mirai comparison

The comparison shows that Mirai’s TCP win-
dow sizes are indeed distributed very evenly over
the possible range of 0-65535. It also shows that
this is not at all the case for real-world TCP
SYN packets that are captured by the darknet.

This means that any SYN packet with an un-
common window size, destined for a port that

13

Mirai scans on, can at least be suspected to be
a scanning attempt from a Mirai bot.

5.1.2 Distribution of destination ports

This variant of Mirai has a very specific dis-
tribution of destination ports of 90% port 23,
and 10% port 2323 when scanning. We verify
this by modifying Mirai’s code to only scan a
single IP under our control, and to not take any
further action. The code that determines the
destination port is left intact. In this manner we
capture a sample of 1300 destination ports. The
packet capture for scanning sessions using this
modified code shows a clear 90/10 distribution
as expected. This means that it is possible to
detect Mirai’s outgoing scanning behavior from
NetFlow data or other sources such as packet
captures or firewall logs.

To verify the effectiveness of this detection tech-
nique we analyze the historical NetFlow data of
a device suspected to be infected with Mirai.
This data is available to us because the ISP was
previously notified about a possible Mirai infec-
tion inside their network. To mitigate the risk,
the ISP blocked outgoing traffic for the device’s
IP at the network’s edge. However, the malware
was left active on the device and still able to at-
tempt outgoing scans. These scanning attempts
are picked up by the NetFlow collector on the
router before the traffic is dropped. This means
that only outgoing traffic data is available, but
it is still a very valuable sample of data to test
against.

This sample consists of over 58 hours of Net-
Flow data using 1 in 100 sampling. In total
14597 packets out of 1459700, giving a mar-
gin of error of 0.48%. Figure 14 and table 5
show the result of this analysis (as reported by
nfdump). It is clear that the distribution of
destination ports matches the expected value
closely.

Port No. of packets Percentage
23 1304100 89.3
2323 155600 10.7

Table 5: Aggregate NetFlow data

Figure 14: NetFlow data comparison

5.2 Honeypot data

We set up two Telnet honeypots using Cowrie10

on two separate public IP addresses. The honey-
pots listen to port 23 and accept the username/-
password combinations that were included with
the Mirai and BASHLITE source code. The
goal of this experiment is to see if a generic
Telnet honeypot could be adapted to track vari-
ants of IoT malware by capturing the “busy-
box” check strings. Over a period of a week
we capture many reconnaissance and infection
attempts. To determine number of unique vari-
ants we count the number of unique “busybox”
check strings per IP. This results in the data
shown in table 6.

In our malware analysis we only find two strings:
MIRAI and ECCHI. As can be seen from our
honeypot data, even though these two strings
are common, there are many more strings that
we have not seen in our analysis such as MA-
SUTA and OBJPRN. These malware variants
could only have gained access to our honeypots
by using the same default credentials used by
Mirai. However, not only Mirai has gained ac-
cess to our honeypots. In all we find 8 new

10https://github.com/micheloosterhof/cowrie

14

busybox strings, and we find that there are one
or more variants that use a random 5-character
string every time.
This shows that a generic Telnet honeypot can
be used to learn about new IoT malware vari-
ants.

MIRAI 3147
MASUTA 1835
MM 309
OBJPRN 215
MEMES 29
THTC 18
ECCHI 18
TERROR 5
LLDAN 2
TASKF 2
FBI 2
Subtotal 5582

5 random characters 7624
Total 13224

Table 6: Unique IP/string combinations seen

6 Discussion & Conclusion

In this section we discuss the results of our re-
search, its limitations and identify possible av-
enues of future research.

6.1 Limitations

We have identified some limitations in our re-
search. The sample size of the darknet data
might be considered low. However, due to the
random nature of IoT botnet scanning behavior
that we observe, there should not be any dif-
ference in scanning activity over time. Further-
more, smaller samples keep the file size of the
packet captures more practical. Another limita-
tion is restricting to Telnet-based services. Cer-
tain variants of Mirai also target other ports.
However, port 23 is associated with all known
families of IoT malware. Also, according to our
darknet data, and by Internet Storm Center’s
port report [66], port 23 is still the most pop-
ular target out of the ports known to be tar-
geted by IoT malware. One last limitation is
a lack of results showing IPv6 malware activ-
ity. Now or in the future there may be many
IoT devices directly connected to the internet
via IPv6. However, IoT malware relies on IP
scanning. Currently, scanning the entire IPv4

address space is quite fast and can be done in
about two hours [67]. Scanning the IPv6 address
space using the traditional brute-force means,
employed by IoT malware, is not considered fea-
sible due to a greatly increased search space of
128 bits as opposed to IPv4’s 32 bits [68].

6.2 Research questions concluded

Internet of Things (IoT) malware is prevalent
and a major source of DDoS traffic [1]. Cur-
rently, most IoT device vendors do not provide
a mechanism to update devices in the field au-
tomatically. Because of this, and the increase
in IoT devices connected to the internet, this
problem will likely continue to grow [69]. To
combat this threat and mitigate the associated
risks, feasible techniques for detecting IoT mal-
ware activity on an ISP network are needed.

To achieve this goal, common properties of IoT
malware have to be found to be able to detect
this activity. This is the subject of research
sub question A. In section 3 we analyze leading
IoT malware and extract common properties
of IoT malware. We summarize and describe
these properties in a life cycle model in section
3.3. Common properties include the targeting
of internet-connected embedded Linux devices
such as DVRs, IP cameras, etc. Other com-
monalities lie in the methods used in attacking
and infecting other devices. Different methods
of spreading exist, but the main method is by
using default credentials via telnet.

Using these properties to detect IoT malware
is the subject of sub question B. In section 4.5
we show how techniques available to ISPs such
as NetFlow and packet analysis can be used to
detect IoT malware activity in their network.
Our experiments with TCP window size analy-
sis and dark web scanning behavior as outlined
in section 5.1 show that these techniques are
indeed effective.

Often malware source code is not available for
analysis. This means that gathering properties
of new IoT malware requires a different tech-
nique than malware analysis. Sub question C is
about using generic honeypots to gather insight
into the development of IoT malware without
having new source code available. In section
4.3 we show what types of properties can be
gathered using honeypots. In the experiment

15

outlined in section 5.2 we apply this technique
and find new busybox check strings. These
strings are different that the strings we find in
our analysis of the Mirai malware. This shows
that a generic Telnet-based honeypot can be
used to gather properties of new IoT malware.

Our analysis of two leading IoT malware fam-
ilies resulted in properties that can be used to
detect their activity on a network level. Their
scanning behavior is such that outgoing scans
can be detected using NetFlow, and incoming
scans can be detected using a suitably-sized
darknet. Both these techniques are available to
ISPs. This means that leading IoT malware be
detected using network-based techniques avail-
able to ISPs.

The detection of IoT malware depends on the
known properties of the malware. Many sim-
ilarities exist between IoT malware families.
However, there are also differences, such as us-
ing known vulnerabilities instead of Telnet brute
forcing. In order to combat IoT malware a clear
picture of these differences and commonalities
is needed. This means methods of gathering in-
sight into IoT malware and how it evolves over
time are needed. Techniques such as honeypots
and malware analysis, possibly supported by
darknet analysis, are crucial to gather this in-
formation and complete the picture.

In summary: Network-based detection tech-
niques can be effective in detecting IoT mal-
ware activity on an ISP level, when applied
with knowledge of malware gained from sources
such as honeypots and malware analysis.

6.3 Future work

We have identified several avenues for future re-
search on this topic.

• In this research project we analyzed two
malware families: BASHLITE and Mirai.
To improve the reliability of our life cy-
cle model for IoT malware detection, more
malware families would need to be ana-
lyzed. Families we would suggest to ana-
lyze are Hajime, NyaDrop and LuaBot.

• Because the short release cycle of malware
variants, constant analysis work is neces-
sary to be able to detect the latest vari-
ants. Future research could look into au-

tomated updates of the model, by auto-
matically parsing honeypot logs and auto-
matically analyzing new malware samples
in a sand-boxed environment.

• In our research we focused on techniques
that are commonly available to ISPs. Be-
cause our research of the two malware
families did not result in many DNS-
based characteristics, we limited ourselves
to only mentioning the Mirai domain gen-
eration algorithm. However, other mal-
ware families might use DNS for other
means such as communication with their
C&C server, fast-flux to hide addresses
etc. This would offer plenty of new possi-
bilities to detect malware.

• Researching out-of-the-box detection
techniques is also possible. An exam-
ple of this is the CAMELIA project,
where researchers try to detect infected
devices by analyzing changes in electro-
magnetic emissions. In this category, we
have thought about comparing network la-
tency of IoT devices in normal operation
and after infection.

• Creating a baseline for open/closed ports
for every IoT device and then scanning for
devices that have differences to the base-
line could be a reliable way to detect infec-
tions. This could be done both inside one’s
network, or on the internet using services
such as Shodan.

• In our research we do not see any IPv6 ac-
tivity, but there may already be IPv6 IoT
malware active that we haven’t seen. New
techniques have been developed that use
certain assumptions and technical prop-
erties of IPv6-related protocols. These
techniques can be used to greatly reduce
the search space of IPv6, possibly making
IPv6 scanning viable [70]. For IoT mal-
ware these techniques could, for example,
be used to scan for specific manufacturers
by limiting scans to addresses generated
by the EUI-64 protocol that includes the
Organizationally Unique Identifier (OUI)
corresponding to the targeted manufac-
turer [71]. Although no IoT malware that
uses these techniques is known, once IPv6-
connected IoT devices become numerous

16

enough, we might start seeing malware ap-
plying these techniques. IPv6-only honey-
pots that have IP addresses generated in
the range of EUI-64 addresses for known
IoT device manufacturers might be a vi-
able approach to gather data.

• More darknet data could be gathered to
follow trends in scanning behavior from
IoT botnets, and this could be correlated
with data on which services are associated
with those ports and possible security vul-
nerabilities in those services.

• Gathering the TCP window sizes and
other TCP header values of all incoming
SYN packets on a darknet and grouping
them by source IP could be used to de-
termine the distribution of window sizes
generated by a single IP/bot. This al-
lows for statistical analysis of these values
and might be used to differentiate mal-
ware families by scanning behavior more
reliably.

7 Acknowledgments

The authors would like to thank the following
people for contributing to our research project:

• Rogier Spoor, research supervisor, for his
guidance during our research project,

• Xander Jansen for his help and enthusiasm
with applying our technique to real-world
NetFlow data,

• Roland van Rijswijk-Deij for his help with
our darknet experiments,

• Wim Biemolt for sharing his expertise in
network monitoring.

We would also like to extend our thanks to all
the other fine people at SURF, who hosted us
during our research.

References

[1] Brian Krebs. KrebsOnSecurity hit with
record DDoS.
https://krebsonsecurity.com/2016/

09/krebsonsecurity-hit-with-record-

ddos.

[2] OVH. The DDoS that didn’t break the
camel’s VAC. https://www.ovh.com/us/
news/articles/a2367.the-ddos-that-

didnt-break-the-camels-vac.

[3] Akamai. State of the internet Q3.
Technical report, Akamai, 2016.
https://www.akamai.com/us/en/

multimedia/documents/state-of-the-

internet/q3-2016-state-of-the-

internet-security-report.pdf.

[4] Matthew Prince. The DDoS that almost
broke the internet. https:
//blog.cloudflare.com/the-ddos-

that-almost-broke-the-internet.

[5] Matthew Prince. Technical details behind
a 400Gbps NTP amplification DDoS
attack. https://blog.cloudflare.com/
technical-details-behind-a-400gbps-

ntp-amplification-ddos-attack.

[6] D. Senie P. Ferguson. BCP-38.
https://tools.ietf.org/html/bcp38.

[7] P. Savola F. Baker. BCP-84.
https://tools.ietf.org/html/bcp84.

[8] Internet Society. Mutually agreed norms
for routing security (MANRS).
https://www.routingmanifesto.org/.

[9] Brian Krebs. Source code for IoT botnet
Mirai released. https://
krebsonsecurity.com/2016/10/source-

code-for-iot-botnet-mirai-released.

[10] Anna-Senpai. Mirai source code.
https://github.com/jgamblin/Mirai-

Source-Code.

[11] Kelly Jackson Higgins. Root & the new
age of IoT-based DDoS attacks.
http://www.darkreading.com/

vulnerabilities---threats/root-and-

the-new-age-of-iot-based-ddos-

attacks-/d/d-id/1327281.

[12] Yin Minn Pa Pa, Shogo Suzuki, Katsunari
Yoshioka, Tsutomu Matsumoto, Takahiro
Kasama, and Christian Rossow. Iotpot:
Analysing the rise of iot compromises. In
9th USENIX Workshop on Offensive
Technologies (WOOT 15), Washington,
D.C., 2015. USENIX Association.

17

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-the-camels-vac
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q3-2016-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q3-2016-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q3-2016-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q3-2016-state-of-the-internet-security-report.pdf
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
https://blog.cloudflare.com/technical-details-behind-a-400gbps-ntp-amplification-ddos-attack
https://tools.ietf.org/html/bcp38
https://tools.ietf.org/html/bcp84
https://www.routingmanifesto.org/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released
https://github.com/jgamblin/Mirai-Source-Code
https://github.com/jgamblin/Mirai-Source-Code
http://www.darkreading.com/vulnerabilities---threats/root-and-the-new-age-of-iot-based-ddos-attacks-/d/d-id/1327281
http://www.darkreading.com/vulnerabilities---threats/root-and-the-new-age-of-iot-based-ddos-attacks-/d/d-id/1327281
http://www.darkreading.com/vulnerabilities---threats/root-and-the-new-age-of-iot-based-ddos-attacks-/d/d-id/1327281
http://www.darkreading.com/vulnerabilities---threats/root-and-the-new-age-of-iot-based-ddos-attacks-/d/d-id/1327281

[13] Kuan-Cheng Lin, Sih-Yang Chen, and
Jason C. Hung. Botnet detection using
support vector machines with artificial fish
swarm algorithm. Journal of Applied
Mathematics, 2014.

[14] Frank Konkel for Nextgov. DARPA funds
IOT malware detection project. http:
//www.nextgov.com/cybersecurity/

2016/08/darpa-funds-iot-malware-

detection-project/130460/.

[15] Pierluigi Paganini for Security Affairs.
MITRE will award $50,000 for a solution
that detects rogue IoT devices. http:
//securityaffairs.co/wordpress/

52115/iot/mitre-iot-devices.html.

[16] Wikipedia. BASHLITE. https:
//en.wikipedia.org/wiki/BASHLITE.

[17] Level 3 Threat Research Labs. Attack of
things! http://blog.level3.com/

security/attack-of-things/.

[18] MalwareMustDie. CoderID: SINDEN.
http://x.malwaremustdie.org/stat/

sinden.html.

[19] Brian Krebs. Who is anna-senpai, the
mirai worm author? https:

//krebsonsecurity.com/tag/lelddos/.

[20] Brian Prince. B́ashliteḿalware leverages
ShellShock in BusyBox attack.
http://www.darkreading.com/attacks-

breaches/bashlite-malware-

leverages-shellshock-in-busybox-

attack/d/d-id/1317508.

[21] M. Cotton and L. Vegoda. Rfc 5735 -
special use ipv4 addresses.
https://tools.ietf.org/html/rfc5735.

[22] Anthony Tellez. An archive of BASHLITE
source code. https://github.com/
anthonygtellez/BASHLITE.

[23] Eduard Kovacs. BASHLITE malware uses
ShellShock to hijack devices running
BusyBox.
http://www.securityweek.com/

bashlite-malware-uses-shellshock-

hijack-devices-running-busybox.

[24] Trend Micro Incorporated.
ELF BASHLITE.A. http://www.
trendmicro.com/vinfo/us/threat-

encyclopedia/malware/elf_bashlite.a.

[25] Pierluigi Paganini. A new BASHLITE
variant infects devices running BusyBox.
http://securityaffairs.co/

wordpress/30225/cyber-crime/

bashlite-exploits-shellshock.html.

[26] Trend Micro Incorporated.
ELF BASHLITE.SMB.
http://www.trendmicro.com/vinfo/us/

threat-encyclopedia/malware/ELF_

BASHLITE.SMB.

[27] Wikipedia. Shellshock (software bug).
https://en.wikipedia.org/wiki/

Shellshock_(software_bug).

[28] Rhena Inocencio. BASHLITE affects
devices running on BusyBox.
http://blog.trendmicro.com/

trendlabs-security-

intelligence/bashlite-affects-

devices-running-on-busybox/.

[29] MalwareMustDie. MMD-0052-2016 -
overview of SkidDDoS elf++ IRC botnet.
http://blog.malwaremustdie.org/

2016/02/mmd-0052-2016-skidddos-elf-

distribution.html.

[30] Dietmar Kenzle. Seite 2 - aufgepasst:
berwachungskameras mutieren zu Botnets.
http://www.it-

administrator.de/themen/sicherheit/

fachartikel/204048.html.

[31] Jeffery Wilkins. QBOT-ART-OF-WAR.
https://github.com/CanadianJeff/

QBOT-ART-OF-WAR/.

[32] Kernelmode.info unixfreaxjp. Malware
collection. http://www.kernelmode.
info/forum/viewtopic.php?f=16&t=

3966&p=28461#p28461.

[33] 360 Netlab. A few observations of the new
mirai variant on port 7547.
http://blog.netlab.360.com/a-few-

observations-of-the-new-mirai-

variant-on-port-7547/.

[34] 360 Netlab. Mirai scanner.
http://data.netlab.360.com/mirai-

scanner.

[35] Evosec. New IoT Malware? Anime/Kami.
https://evosec.eu/nl/new-iot-

malware/.

18

http://www.nextgov.com/cybersecurity/2016/08/darpa-funds-iot-malware-detection-project/130460/
http://www.nextgov.com/cybersecurity/2016/08/darpa-funds-iot-malware-detection-project/130460/
http://www.nextgov.com/cybersecurity/2016/08/darpa-funds-iot-malware-detection-project/130460/
http://www.nextgov.com/cybersecurity/2016/08/darpa-funds-iot-malware-detection-project/130460/
http://securityaffairs.co/wordpress/52115/iot/mitre-iot-devices.html
http://securityaffairs.co/wordpress/52115/iot/mitre-iot-devices.html
http://securityaffairs.co/wordpress/52115/iot/mitre-iot-devices.html
https://en.wikipedia.org/wiki/BASHLITE
https://en.wikipedia.org/wiki/BASHLITE
http://blog.level3.com/security/attack-of-things/
http://blog.level3.com/security/attack-of-things/
http://x.malwaremustdie.org/stat/sinden.html
http://x.malwaremustdie.org/stat/sinden.html
https://krebsonsecurity.com/tag/lelddos/
https://krebsonsecurity.com/tag/lelddos/
http://www.darkreading.com/attacks-breaches/bashlite-malware-leverages-shellshock-in-busybox-attack/d/d-id/1317508
http://www.darkreading.com/attacks-breaches/bashlite-malware-leverages-shellshock-in-busybox-attack/d/d-id/1317508
http://www.darkreading.com/attacks-breaches/bashlite-malware-leverages-shellshock-in-busybox-attack/d/d-id/1317508
http://www.darkreading.com/attacks-breaches/bashlite-malware-leverages-shellshock-in-busybox-attack/d/d-id/1317508
https://tools.ietf.org/html/rfc5735
https://github.com/anthonygtellez/BASHLITE
https://github.com/anthonygtellez/BASHLITE
http://www.securityweek.com/bashlite-malware-uses-shellshock-hijack-devices-running-busybox
http://www.securityweek.com/bashlite-malware-uses-shellshock-hijack-devices-running-busybox
http://www.securityweek.com/bashlite-malware-uses-shellshock-hijack-devices-running-busybox
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/elf_bashlite.a
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/elf_bashlite.a
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/elf_bashlite.a
http://securityaffairs.co/wordpress/30225/cyber-crime/bashlite-exploits-shellshock.html
http://securityaffairs.co/wordpress/30225/cyber-crime/bashlite-exploits-shellshock.html
http://securityaffairs.co/wordpress/30225/cyber-crime/bashlite-exploits-shellshock.html
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ELF_BASHLITE.SMB
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ELF_BASHLITE.SMB
http://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/ELF_BASHLITE.SMB
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
https://en.wikipedia.org/wiki/Shellshock_(software_bug)
http://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-affects-devices-running-on-busybox/
http://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-affects-devices-running-on-busybox/
http://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-affects-devices-running-on-busybox/
http://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-affects-devices-running-on-busybox/
http://blog.malwaremustdie.org/2016/02/mmd-0052-2016-skidddos-elf-distribution.html
http://blog.malwaremustdie.org/2016/02/mmd-0052-2016-skidddos-elf-distribution.html
http://blog.malwaremustdie.org/2016/02/mmd-0052-2016-skidddos-elf-distribution.html
http://www.it-administrator.de/themen/sicherheit/fachartikel/204048.html
http://www.it-administrator.de/themen/sicherheit/fachartikel/204048.html
http://www.it-administrator.de/themen/sicherheit/fachartikel/204048.html
https://github.com/CanadianJeff/QBOT-ART-OF-WAR/
https://github.com/CanadianJeff/QBOT-ART-OF-WAR/
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3966&p=28461#p28461
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3966&p=28461#p28461
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3966&p=28461#p28461
http://blog.netlab.360.com/a-few-observations-of-the-new-mirai-variant-on-port-7547/
http://blog.netlab.360.com/a-few-observations-of-the-new-mirai-variant-on-port-7547/
http://blog.netlab.360.com/a-few-observations-of-the-new-mirai-variant-on-port-7547/
http://data.netlab.360.com/mirai-scanner
http://data.netlab.360.com/mirai-scanner
https://evosec.eu/nl/new-iot-malware/
https://evosec.eu/nl/new-iot-malware/

[36] Anna-Senpai. Mirai source code release
accompanying forums post. https:
//github.com/jgamblin/Mirai-Source-

Code/blob/master/ForumPost.md.

[37] 360 Netlab. Now Mirai has DGA feature
built in.
http://blog.netlab.360.com/new-

mirai-variant-with-dga.

[38] Daniel Karrenberg, Yakov Rekhter, Eliot
Lear, and Geert Jan de Groot. Address
Allocation for Private Internets. RFC
1918, February 1996.

[39] Dr. Stuart D. Cheshire, Dr. Bernard
D. Aboba Ph.D., and Erik Guttman.
Dynamic Configuration of IPv4 Link-Local
Addresses. RFC 3927, May 2005.

[40] Rick Wanner. What is happening on
2323/tcp?
https://isc.sans.edu/forums/diary/

What+is+happening+on+2323TCP/21563/.

[41] Johannes B. Ullrich. Tr-069 newntpserver
exploits: What we know so far.
https://isc.sans.edu/forums/diary/

TR069+NewNTPServer+Exploits+What+

we+know+so+far/21763/.

[42] Arvid Norberg. utorrent transport
protocol. BEP 29.

[43] Sam Edwards and Ioannis Profetis.
Hajime: Analysis of a decentralized
internet worm for iot devices. https:
//security.rapiditynetworks.com/

publications/2016-10-16/hajime.pdf.

[44] Cisco Systems. Cisco ios netflow.
http://www.cisco.com/c/en/us/

products/ios-nx-os-software/ios-

netflow/index.html.

[45] Brad Reese. Netflow versus sflow. http:
//www.techworld.com/networking/

netflow-versus-sflow-3865/.

[46] SolarWinds Worldwide LLC. Netflow
basics and deployment strategies.
http://www.solarwinds.com/

documentation/Netflow/docs/

NetFlowBasicsandDeploymentStrategies.

pdf.

[47] Brad Hale. Netflow v9 datagram
knowledge series: Part 1 - netflow
overview. https://thwack.solarwinds.
com/community/solarwinds-

community/geek-

speak_tht/blog/2012/09/06/netflow-

v9-datagram-knowledge-series-part-

1--netflow-overview.

[48] Ed. B. Claise. Rfc 3954 - cisco systems
netflow services export version 9. https:
//www.ietf.org/rfc/rfc3954.txt.

[49] M. Cotton and L. Vegoda. Rfc 6437 - ipv6
flow label specification. https:
//www.ietf.org/rfc/rfc6437.txt.

[50] NetFort Technologies. Flow analysis
versus packet analysis. what should you
choose? https://www.netfort.com/wp-

content/uploads/PDF/WhitePapers/

NetFlow-Vs-Packet-Analysis-What-

Should-You-Choose.pdf.

[51] Michael Scheck. Netflow for incident
detection. https://www.first.org/
global/practices/Netflow.pdf.

[52] Valent́ın Carela-Español, Pere Barlet-Ros,
Albert Cabellos-Aparicio, Josep
Solé-Pareta. Analysis of the impact of
sampling on netflow traffic classification.
Technical report, Universitat Politècnica
de Catalunya, 2010. http://people.ac.
upc.edu/pbarlet/papers/netflow-

classification.comnet2010.pdf.

[53] Chris Sanders. Practical Packet Analysis.
No Starch Press, 2011.

[54] Margaret Rouse. promiscuous mode.
http://searchsecurity.techtarget.

com/definition/promiscuous-mode.

[55] Wireshark.org. Chapter 9. packet
dissection. https:
//www.wireshark.org/docs/wsdg_html_

chunked/ChapterDissection.html.

[56] Occupytheweb. How to set up a honeypot
& how to avoid them.
https://null-byte.wonderhowto.com/

how-to/hack-like-pro-set-up-

honeypot-avoid-them-0153391/.

[57] Margaret Rouse. honeypot (honey pot).
http://searchsecurity.techtarget.

com/definition/honey-pot.

19

https://github.com/jgamblin/Mirai-Source-Code/blob/master/ForumPost.md
https://github.com/jgamblin/Mirai-Source-Code/blob/master/ForumPost.md
https://github.com/jgamblin/Mirai-Source-Code/blob/master/ForumPost.md
http://blog.netlab.360.com/new-mirai-variant-with-dga
http://blog.netlab.360.com/new-mirai-variant-with-dga
https://isc.sans.edu/forums/diary/What+is+happening+on+2323TCP/21563/
https://isc.sans.edu/forums/diary/What+is+happening+on+2323TCP/21563/
https://isc.sans.edu/forums/diary/TR069+NewNTPServer+Exploits+What+we+know+so+far/21763/
https://isc.sans.edu/forums/diary/TR069+NewNTPServer+Exploits+What+we+know+so+far/21763/
https://isc.sans.edu/forums/diary/TR069+NewNTPServer+Exploits+What+we+know+so+far/21763/
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
https://security.rapiditynetworks.com/publications/2016-10-16/hajime.pdf
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.techworld.com/networking/netflow-versus-sflow-3865/
http://www.techworld.com/networking/netflow-versus-sflow-3865/
http://www.techworld.com/networking/netflow-versus-sflow-3865/
http://www.solarwinds.com/documentation/Netflow/docs/NetFlowBasicsandDeploymentStrategies.pdf
http://www.solarwinds.com/documentation/Netflow/docs/NetFlowBasicsandDeploymentStrategies.pdf
http://www.solarwinds.com/documentation/Netflow/docs/NetFlowBasicsandDeploymentStrategies.pdf
http://www.solarwinds.com/documentation/Netflow/docs/NetFlowBasicsandDeploymentStrategies.pdf
https://thwack.solarwinds.com/community/solarwinds-community/geek-speak_tht/blog/2012/09/06/netflow-v9-datagram-knowledge-series-part-1--netflow-overview
https://thwack.solarwinds.com/community/solarwinds-community/geek-speak_tht/blog/2012/09/06/netflow-v9-datagram-knowledge-series-part-1--netflow-overview
https://thwack.solarwinds.com/community/solarwinds-community/geek-speak_tht/blog/2012/09/06/netflow-v9-datagram-knowledge-series-part-1--netflow-overview
https://thwack.solarwinds.com/community/solarwinds-community/geek-speak_tht/blog/2012/09/06/netflow-v9-datagram-knowledge-series-part-1--netflow-overview
https://thwack.solarwinds.com/community/solarwinds-community/geek-speak_tht/blog/2012/09/06/netflow-v9-datagram-knowledge-series-part-1--netflow-overview
https://thwack.solarwinds.com/community/solarwinds-community/geek-speak_tht/blog/2012/09/06/netflow-v9-datagram-knowledge-series-part-1--netflow-overview
https://www.ietf.org/rfc/rfc3954.txt
https://www.ietf.org/rfc/rfc3954.txt
https://www.ietf.org/rfc/rfc6437.txt
https://www.ietf.org/rfc/rfc6437.txt
https://www.netfort.com/wp-content/uploads/PDF/WhitePapers/NetFlow-Vs-Packet-Analysis-What-Should-You-Choose.pdf
https://www.netfort.com/wp-content/uploads/PDF/WhitePapers/NetFlow-Vs-Packet-Analysis-What-Should-You-Choose.pdf
https://www.netfort.com/wp-content/uploads/PDF/WhitePapers/NetFlow-Vs-Packet-Analysis-What-Should-You-Choose.pdf
https://www.netfort.com/wp-content/uploads/PDF/WhitePapers/NetFlow-Vs-Packet-Analysis-What-Should-You-Choose.pdf
https://www.first.org/global/practices/Netflow.pdf
https://www.first.org/global/practices/Netflow.pdf
http://people.ac.upc.edu/pbarlet/papers/netflow-classification.comnet2010.pdf
http://people.ac.upc.edu/pbarlet/papers/netflow-classification.comnet2010.pdf
http://people.ac.upc.edu/pbarlet/papers/netflow-classification.comnet2010.pdf
http://searchsecurity.techtarget.com/definition/promiscuous-mode
http://searchsecurity.techtarget.com/definition/promiscuous-mode
https://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
https://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
https://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
https://null-byte.wonderhowto.com/how-to/hack-like-pro-set-up-honeypot-avoid-them-0153391/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-set-up-honeypot-avoid-them-0153391/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-set-up-honeypot-avoid-them-0153391/
http://searchsecurity.techtarget.com/definition/honey-pot
http://searchsecurity.techtarget.com/definition/honey-pot

[58] Michele Adams Iyatiti Mokube.
Honeypots: Concepts, approaches, and
challenges. Technical report, Armstrong
Atlantic State University, 2007.
http://ai2-s2-

pdfs.s3.amazonaws.com/88d5/

f45a8fc8c6947cc02e8fb8b9cc3a53227ee3.

pdf.

[59] Michel Oosterhof. Cowrie ssh/telnet
honeypot. https:
//github.com/micheloosterhof/cowrie.

[60] P. Mockapetris. Rfc 1035 - domain names
- implementation and specification.
https:

//www.ietf.org/rfc/rfc1035.txt.

[61] Futai Zou & Siyu Zhang & Weixiong Rao
& Ping Yi. Detecting malware based on
DNS graph mining. Technical report,
Shanghai Jiao Tong University, 2015.
http://journals.sagepub.com/doi/

full/10.1155/2015/102687.

[62] Bradley Mitchell. Top public internet dns
servers.
https://www.lifewire.com/top-

public-internet-dns-servers-817519.

[63] Lucian Constantin. Malware increasingly
uses dns to avoid detection, experts say.
http://www.computerworld.com/

article/2501796/network-security/

malware-increasingly-uses-dns-to-

avoid-detection--experts-say.html.

[64] Pieter Arntz. Explained: Domain
generating algorithm.

https://blog.malwarebytes.com/

security-world/2016/12/explained-

domain-generating-algorithm/.

[65] Information Sciences Institute.
Transmission Control Protocol. RFC 793,
September 1981.

[66] SANS Internet Storm Center. Port report.

[67] Zakir Durumeric, Eric Wustrow, and
J. Alex Halderman. ZMap: Fast
Internet-wide scanning and its security
applications. In Proceedings of the 22nd
USENIX Security Symposium, August
2013.

[68] Tim Chown. IPv6 Implications for
Network Scanning. RFC 5157, March
2008.

[69] Mirko Presser. The rise of Iot - why
today? http://iot.ieee.org/

newsletter/january-2016/the-rise-

of-iot-why-today.html.

[70] Fernando Gont and Tim Chown. Network
Reconnaissance in IPv6 Networks. RFC
7707, March 2016.

[71] IEEE Standards Association. Guidelines
for 64-bit global identifier (eui-64).
http://standards.ieee.org/develop/

regauth/tut/eui64.pdf.

[72] Kernelmode.info unixfreaxjp.
Linux/bash0day alias shellshock alias
bashdoor.
http://www.kernelmode.info/forum/

viewtopic.php?f=16&t=3505&start=10.

20

http://ai2-s2-pdfs.s3.amazonaws.com/88d5/f45a8fc8c6947cc02e8fb8b9cc3a53227ee3.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/88d5/f45a8fc8c6947cc02e8fb8b9cc3a53227ee3.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/88d5/f45a8fc8c6947cc02e8fb8b9cc3a53227ee3.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/88d5/f45a8fc8c6947cc02e8fb8b9cc3a53227ee3.pdf
https://github.com/micheloosterhof/cowrie
https://github.com/micheloosterhof/cowrie
https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1035.txt
http://journals.sagepub.com/doi/full/10.1155/2015/102687
http://journals.sagepub.com/doi/full/10.1155/2015/102687
https://www.lifewire.com/top-public-internet-dns-servers-817519
https://www.lifewire.com/top-public-internet-dns-servers-817519
http://www.computerworld.com/article/2501796/network-security/malware-increasingly-uses-dns-to-avoid-detection--experts-say.html
http://www.computerworld.com/article/2501796/network-security/malware-increasingly-uses-dns-to-avoid-detection--experts-say.html
http://www.computerworld.com/article/2501796/network-security/malware-increasingly-uses-dns-to-avoid-detection--experts-say.html
http://www.computerworld.com/article/2501796/network-security/malware-increasingly-uses-dns-to-avoid-detection--experts-say.html
https://blog.malwarebytes.com/security-world/2016/12/explained-domain-generating-algorithm/
https://blog.malwarebytes.com/security-world/2016/12/explained-domain-generating-algorithm/
https://blog.malwarebytes.com/security-world/2016/12/explained-domain-generating-algorithm/
http://iot.ieee.org/newsletter/january-2016/the-rise-of-iot-why-today.html
http://iot.ieee.org/newsletter/january-2016/the-rise-of-iot-why-today.html
http://iot.ieee.org/newsletter/january-2016/the-rise-of-iot-why-today.html
http://standards.ieee.org/develop/regauth/tut/eui64.pdf
http://standards.ieee.org/develop/regauth/tut/eui64.pdf
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3505&start=10
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3505&start=10

Appendices

A BASHLITE architectures

Figure 15: BASHLITE malware for different architectures [72]

B BASHLITE gayfgt echo

Source: bashlite/client.c

Figure 16: BASHLITE gayfgt in octal representation [22]

C BASHLITE functions

Figure 17: BASHLITE functions variant A (left) and SMB (right) [24] [26]

21

D Mirai default credentials

Username Password Username Password

root admin admin admin
root 888888 root xmhdipc
root default root juantech
root 123456 root 54321

support support root (none)
admin password root root
root 12345 user user

admin (none) root pass
admin admin1234 root 1111
admin smcadmin admin 1111
root 666666 root password
root 1234 root klv123

Administrator admin service service
supervisor supervisor guest guest

guest 12345 guest 12345
admin1 password administrator 1234
666666 666666 888888 888888
ubnt ubnt root klv1234
root Zte521 root hi3518
root jvbzd root anko
root zlxx. root 7ujMko0vizxv
root 7ujMko0admin root system
root ikwb root dreambox
root user root realtek
root 00000000 admin 1111111

admin 1234 admin 12345
admin 54321 admin 123456
admin 7ujMko0admin admin 1234
admin pass admin meinsm
tech tech mother fucker

Source: mirai/bot/table.c

Table 7: Usernames and passwords included in Mirai

22

E Mirai supported processor architectures

Sun SPARC
Intel i386
Motorola 68000
Intel x86
MIPS R3000 big-endian
MIPS R3000 little-endian
MIPS R4000 big-endian
HPPA
Sun’s “v8plus”
PowerPC
PowerPC64
Cell BE SPU
ARM 32 bit
SuperH
SPARC v9 64-bit
Renesas H8/300
HP/Intel IA-64
AMD x86-64
IBM S/390
Axis Communications 32-bit embedded processor
Renesas M32R
Panasonic/MEI MN10300, AM33
OpenRISC 32-bit embedded processor
ADI Blackfin Processor
Altera Nios II soft-core processor
TI C6X DSPs
ARM 64 bit
Tilera TILEPro
Xilinx MicroBlaze
Tilera TILE-Gx
Fujitsu FR-V
Atmel AVR32

Source: loader/src/headers/util.h

Table 8: Processor architectures able to be detected by Mirai’s loader

23

F Mirai strings

Variable Decoded value

TABLE CNC DOMAIN cnc.changeme.com
TABLE CNC PORT 23
TABLE SCAN CB DOMAIN report.changeme.com
TABLE SCAN CB PORT 48101
TABLE EXEC SUCCESS listening tun0
TABLE KILLER SAFE https://youtu.be/dQw4w9WgXcQ
TABLE KILLER PROC /proc/
TABLE KILLER EXE /exe
TABLE KILLER DELETED (deleted)
TABLE KILLER FD /fd
TABLE KILLER ANIME .anime
TABLE KILLER STATUS /status
TABLE MEM QBOT REPORT %s:%s
TABLE MEM QBOT2 HTTPFLOOD
TABLE MEM QBOT3 LOLNOGTFO
TABLE MEM UPX \x58\x4D\x4E\x4E\x43\x50\x46\x22
TABLE MEM ZOLLARD zollard
TABLE MEM REMAITEN GETLOCALIP
TABLE SCAN SHELL shell
TABLE SCAN ENABLE enable
TABLE SCAN SYSTEM system
TABLE SCAN SH sh
TABLE SCAN QUERY /bin/busybox MIRAI
TABLE SCAN RESP MIRAI: applet not found
TABLE SCAN NCORRECT ncorrect
TABLE SCAN PS /bin/busybox ps
TABLE SCAN KILL 9 /bin/busybox kill -9
TABLE ATK VSE TSource Engine Query
TABLE ATK RESOLVER /etc/resolv.conf
TABLE ATK NSERV nameserver
TABLE ATK KEEP ALIVE Connection: keep-alive
TABLE ATK ACCEPT Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
TABLE ATK ACCEPT LNG Accept-Language: en-US,en;q=0.8
TABLE ATK CONTENT TYPE Content-Type: application/x-www-form-urlencoded
TABLE ATK SET COOKIE setCookie(’
TABLE ATK REFRESH HDR refresh:
TABLE ATK LOCATION HDR location:
TABLE ATK SET COOKIE HDR set-cookie:
TABLE ATK CONTENT LENGTH HDR content-length:
TABLE ATK TRANSFER ENCODING HDR transfer-encoding:
TABLE ATK CHUNKED chunked
TABLE ATK KEEP ALIVE HDR keep-alive
TABLE ATK CONNECTION HDR connection:
TABLE ATK DOSARREST server: dosarrest
TABLE ATK CLOUDFLARE NGINX server: cloudflare-nginx

TABLE HTTP ONE
Mozilla/5.0 (Windows NT 10.0; WOW64) \
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36

TABLE HTTP TWO
Mozilla/5.0 (Windows NT 10.0; WOW64) \
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36

TABLE HTTP THREE
Mozilla/5.0 (Windows NT 6.1; WOW64) \
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.103 Safari/537.36

TABLE HTTP FOUR
Mozilla/5.0 (Windows NT 6.1; WOW64) \
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36

TABLE HTTP FIVE
Mozilla/5.0 (Macintosh; Intel Mac OS X 10 11 6) \
AppleWebKit/601.7.7 (KHTML, like Gecko) Version/9.1.2 Safari/601.7.7

Source: mirai/bot/table.c

Table 9: Full list of decoded strings

24

G Mirai window size generator

#define GNU SOURCE
#include <s t d i n t . h>
#include <uni s td . h>
#include <s t d l i b . h>
#include <s t d i o . h>
#include <time . h>

void r a n d i n i t (void) ;
u i n t 3 2 t rand next (void) ;

int i ;
int num;
stat ic u i n t 3 2 t x , y , z , w;

void r a n d i n i t (void)
{

x = time (NULL) ;
y = getp id () ˆ getppid () ;
z = c lo ck () ;
w = z ˆ y ;

}

u i n t 3 2 t rand next (void) // per iod 2ˆ96−1
{

u i n t 3 2 t t = x ;
t ˆ= t << 11 ;
t ˆ= t >> 8 ;
x = y ; y = z ; z = w;
w ˆ= w >> 19 ;
w ˆ= t ;
return w;

}

int main (int argc , char ∗argv []){
i f (argc != 2) {

p r i n t f (”Usage : %s <num>\n” , argv [0]) ;
e x i t (1) ;

}

num = a t o i (argv [1]) ;
f p r i n t f (s tde r r , ” Generating %u window s i z e s \n” , num) ;
r a n d i n i t () ;

for (i = 0 ; i < num; i ++){
p r i n t f (”%u\n” , rand next () & 0 x f f f f) ;

}
}

Source: based on mirai/bot/rand.c

25

	Introduction
	Outline
	Approach
	Scope

	Related work
	Malware analysis
	BASHLITE
	Scan
	Attack
	More variants

	Mirai
	Mirai overview
	Scanning for devices
	Attacking other devices
	Infect
	Infection characteristics

	Common properties of IoT malware
	Scanning
	Attacking vulnerable hosts
	Infection
	Abuse

	Detection techniques
	NetFlow
	Packet analysis
	Honeypots
	DNS analysis
	Application of techniques
	NetFlow
	Packet capture
	Honeypots

	DNS analysis

	Experiments
	Mirai scanning behavior
	TCP window size
	Distribution of destination ports

	Honeypot data

	Discussion & Conclusion
	Limitations
	Research questions concluded
	Future work

	Acknowledgments
	References
	Appendices
	BASHLITE architectures
	BASHLITE gayfgt echo
	BASHLITE functions
	Mirai default credentials
	Mirai supported processor architectures
	Mirai strings
	Mirai window size generator

