Advantages of anomaly detection between a controlling unit and its process devices for Industrial Control Systems

Rick Lahaye Anouk Boukema

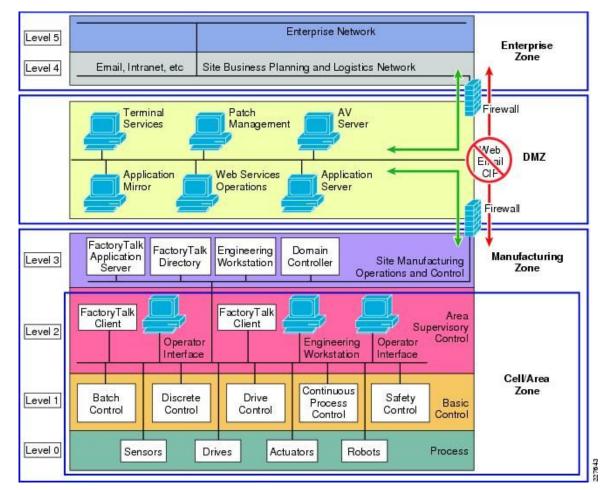
> supervisor: Dima van de Wouw Deloitte

The Problem

ICS is usually old

- Security not main focus
- Meant to last for 20-30 years
- Continuously available

Wrong production


- Destroy centrifuge
- Power outage

Problem Analysis

- Initial infection coming from within company
- Overwrites PLC
- Fools every device above PLC

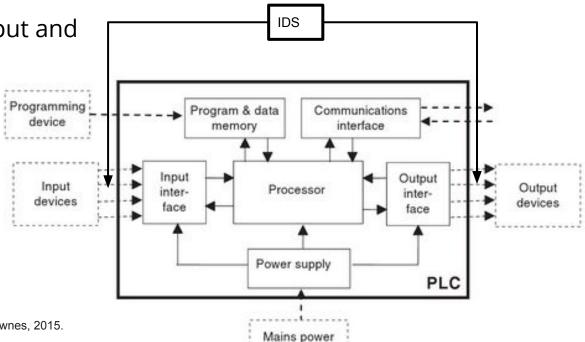
Hack is found only when damage is noticeable

Research Question & Methodology

Research Question

"What are the advantages of anomaly detection between the controlling unit and its process devices?"

Methodology


- 1. Related Work
- 2. Literature Study
- 3. Proof of Concept
 - a. data experiments

Solution to Minimize Damage

Detection along with Prevention

Anomaly detection at the input and output devices of PLC

- raw data
- Integer data
- Just before PLC

Source: Bolton, William. Programmable logic controllers. Newnes, 2015.

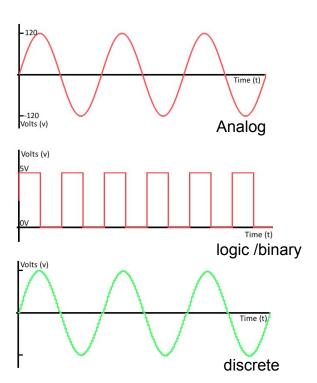
Related Work

Detection between level 1 and 0 already provided by security companies?

- Do not give much info
- Not in the white papers

Why so little info?

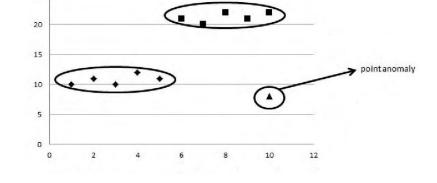
- Competitive reasons
- Confidentiality (security)


Source: http://www.icscybersecurityconference.com/

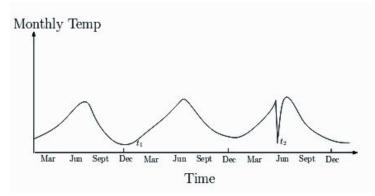
Anomaly Detection on Raw Data

3 types of in- and output signals of level 0 devices

Conform to a pattern of the production process


Keeping right temperature

Source: https://learn.sparkfun.com/tutorials/analog-vs-digital

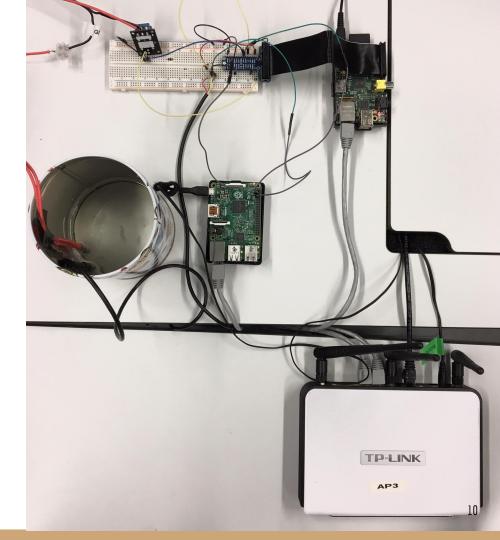

Anomaly Types

- Point Anomalies
- Contextual Anomalies

ICS specific what is of high importance

source: http://cucis.ece.northwestern.edu/projects/DMS/publications/AnomalyDetection.pdf

Proof of Concept


Requirements

- Point and Contextual Anomaly Detection
- Realistic comparison to ICS
- Available components for setup
- Simple setup to proof possibility to our research question

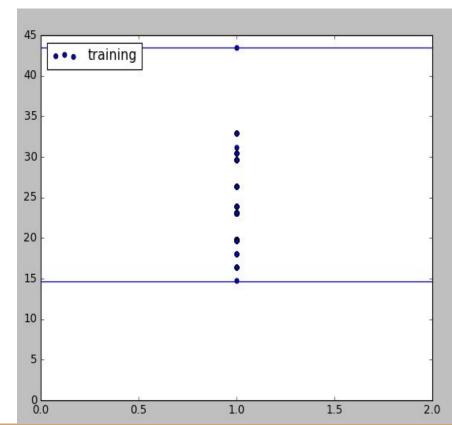
Closed Thermostatic Environment

Components

- Heater (digital logic signal)
- Sensor (digital discrete signal)
- Raspberry Pi PLC
- Raspberry Pi 2 IDS

Anomaly Detection Techniques for PoC

Requirements of ADT	Knowledge Based	ML SVM	ML LSTM
Real-Time	1	1	1
Point detection	1	1	1
Contextual detection	√	X	1
Generic setup	X	1	1

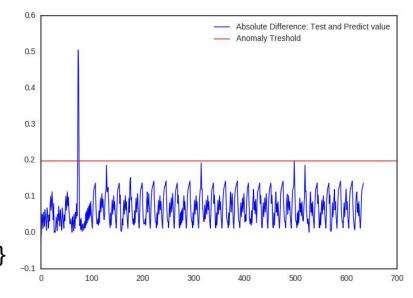

ML-based One Class Support Vector Machine

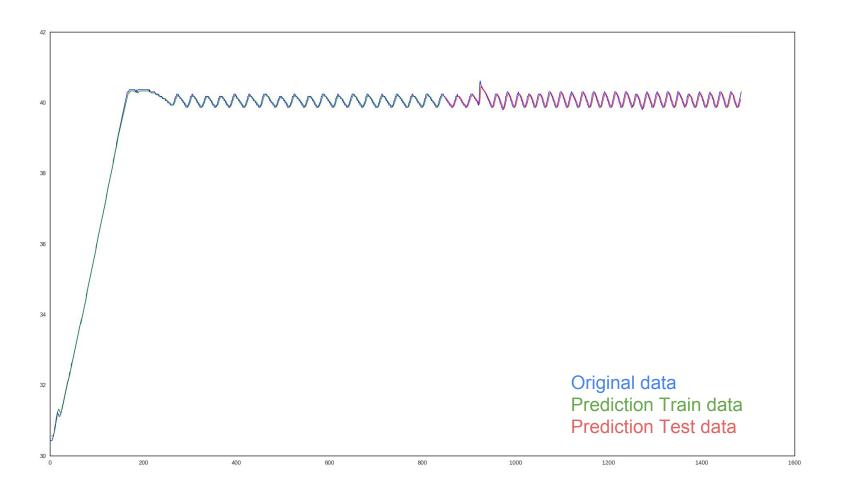
Implementation

- Unsupervised learning (unlabeled)
- On training data
- Classification

Proof of Concept

- Real time classification every second


ML-based Long Short-Term Memory


Prediction by LSTM network

- Recurrent Neural Network
- Windowsize 3

Anomaly Detections

- Norm = |Real value Predicted value |
- Threshold = $Max(Norm_{Train})$
- Anomaly = $\{x \mid Norm_{Test}(x) > Threshold\}$

	30.0 0	1485959229.51
TI D .	30.0 0	1485959230.34
	30.0 0	1485959231.17
The Data	30.0 0	1485959232.0
THE Dutu	29.937 0	1485959232.83
	30.0 0	1485959233.66
	29.937 1	1485959234.49
	29.937 1	1485959235.32
	29.937 1	1485959236.15
IDS.py script	29.937 1	1485959236.97
- Writes train and test files	29.937 1	1485959237.79
	29.937 1	1485959238.61
 Uses multithreading to run SVM and LSTM 	29.937 1	1485959239.43
concurrently both use train data	29.937 1	1485959240.25
	29.937 1	1485959241.07
- SVM is real-time	29.937 1	1485959241.89
- LSTM on test data file	29.937 1	1485959242.71
ESTIVI OTI CESC data IIIC	29.937 1	1485959243.53
	29.937 1	1485959244.35
	30.0 1	1485959245.17
	30.0 1	1485959245.99
	30.0 1	1485959246.81
	30.062 0	1485959247.63
		30.062 15

Results IDS

Train length: 1091 Test length: 308 the train data is 0.77% of total Threshold: 0.129699897766

LSTM: Anomaly has magnitude of 18% above norm

new test session starts for 10.0 minutes 2017-02-06 17:18:52

SVM: Anomaly detected - heater was on for 1.639986038

new test session starts for 10.0 minutes 2017-02-06 17:28:54 Train length: 1091 Test length: 305 the train data is 0.78% of total Threshold: 0.129699897766

new test session starts for 10.0 minutes 2017-02-06 17:38:5 2017-02-06 17:33:16.160318

Experiments & Results

Trainset = 50 min. Testset = 10 min.	Knowledg e based	SVM	LSTM
0. Nothing	✓	1	1
1. Remove sensor at min 2 and heater at 6 min for 10 sec	√	√	√
2. Activate heater 5 sec longer after min 2	2/5	3/5	√
3. Add Icecube at min 2	✓	√	√
4. Slowly remove 16% of water at min 2	1	√	1

Conclusion

"What are the advantages of anomaly detection between the controlling unit its process devices?"

- Requirements are met by combining SVM and LSTM
- Anomaly detection to find:
 - 1. Malfunction of components
 - 2. Hacks
 - 3. Vandalism/Stupidity
- Cost Efficient
- ICS owner has to make the trade-off
 - Implementation and equipment cost VS prevented high damage costs
- Further development and research is needed to develop into a business use case

Discussion & Future Work

- Used a Pi instead of real PLC
- Not tested on other ICS environments
- Combine sensor and actuator data and compare for better Detection
- Setup warning system

Questions