
University of Amsterdam
System & Network Engineering

Research Project

P4 VPN Authentication
Authentication of VPN Traffic on a Network Device with P4

Jeroen Klomp

Supervisors: Ronald van der Pol & Marijke Kaat

July 16, 2016

Abstract

This research explores the authentication of network traffic via P4 in the context of the CoCo
VPN service. CoCo is a prototype of a user-initiated multi-domain VPN service that is
intended to be used for computationally intensive applications, like eScience. The prototype
leverages SDN such that most functionality can be implemented directly in network devices,
but supporting authentication in this manner proves challenging. The P4 language provides
more flexibility than current SDN techniques by allowing reprogramming of the data plane,
possibly enabling secure authentication via SDN.

During the project the feasibility of authenticating network traffic with P4 has been
researched and a proof of concept has been built that implements the main aspects. These
aspects include distinguishing sessions and protecting against replay attacks. Since the
cryptographic means required for a secure authentication scheme are currently not available
in P4 and cannot be implemented using the P4 language itself, a message authentication
code is simulated.

The result of the proof of concept is that the flexibility of the P4 language shows promise.
However, to be implemented in a secure manner cryptographic means need to be supported
by the P4-enabled devices. For incorporation into the CoCo VPN service more work is
necessary to determine the best way to extend the architecture of the prototype.

Contents

1 Introduction 4
1.1 Related work . 4
1.2 Research questions . 5
1.3 Report outline . 5

2 Background 6
2.1 CoCo VPN service . 6
2.2 P4 overview . 9

3 Authentication protocol 11
3.1 Protocol requirements . 11
3.2 Authentication algorithm overview . 12
3.3 Authentication protocol overview . 14
3.4 CoCo authentication protocol . 17

4 Implementation in P4 22
4.1 Simplified authentication protocol . 22
4.2 P4 program . 23

5 Proof of concept 36
5.1 Test setup . 36
5.2 Demonstration . 37

6 Discussion and recommendations 46
6.1 CoCo architecture and authentication scheme 46
6.2 P4 language . 49

7 Conclusion 50

8 Future research 51

Bibliography 52

Acronyms 55

iii

1 Introduction

For the Community Connection (CoCo) project a user-configurable, on-demand virtual
private network (VPN) service is being developed. Its aim is to enable user-initiated setup
and tear down of multipoint-to-multipoint VPN instances in a multi-domain environment.[1]

The use case of the user-initiated VPN service is to facilitate eScience1 in a secure, highly
scalable, fast and very easy to use and support manner.

Currently, the prototype of the VPN service still has a couple of limitations; encryption
needs to be provided at the application layer where necessary and authentication is considered
to be suboptimal (e.g., provided by a whitelist of the source IP address, VLAN ID or interface).
To make the solution more secure it is an option that traffic from the user side be verified for
authenticity at the provider edge. This proves to be a problem with the OpenFlow protocol
due to inflexibility with regard to the parsers and actions that an OpenFlow switch can
support.

A possible solution to the limitations of OpenFlow herein are programmable data planes.
An example of a language that makes this possible is P4 (which stands for Programming
Protocol-Independent Packet Processors).[2] It allows for reconfiguration of a network device
by running P4 programs. This approach enables a higher degree of flexibility than OpenFlow,
for instance, it allows matching on arbitrary headers instead of from a predefined set. Through
P4 it might be possible for a switch to authenticate VPN traffic.

1.1 Related work

Research has been done on using software defined networking (SDN), and more specifically
OpenFlow, for authentication purposes. However, these research projects focus on users
authenticating at a centralised system which then uses the OpenFlow protocol to grant
access to resources,[3, 4] using policies on top of SDN controllers to ease the management of
user authentication[5] or instead focus on securing the OpenFlow protocol and architecture
itself.[6]

These research projects assume that after authentication has taken place traffic can be
securely matched on switch port, Media Access Control (MAC) address or Internet Protocol
(IP) address. This assumption does not hold true for the CoCo VPN use case because the
verification needs to be done at the provider which has no control over the network of its
customers.

Since its release to the general public in 2014, P4 has been subjected to several case
studies in order to assess its capabilities and state. Sivaraman et al. designed a data-center
switch[7] and Dang et al. implemented Paxos in P4.[8] The outcomes of these research
projects are that P4 shows promise but that there is still a need for improvements in regards
to the modularity of code, specification of primitives and the availability of fixed-function
blocks (i.e. libraries possibly provided by manufactures). Other remarks were the unintuitive

1Computationally intensive research efforts carried out in distributed environments; facilitating a DNA
sequencer as a service is one of the use cases.

4

approach of programming with tables, need for better error handling and the desire for
multi-packet processing.

1.2 Research questions

This project revolves around the question “how the CoCo VPN traffic can be authenticated
on a network device using the P4 language”. The following sub-questions are used to answer
the main question:

• What kind of protocol will provide secure authentication of CoCo VPN traffic?
• What facilities does P4 have to enable the authentication of network traffic?
• How feasible is it to use P4 for authentication of network traffic on a network device?
• How can authentication via P4 be incorporated into the CoCo VPN architecture?

1.3 Report outline

The rest of the report is structured as follows:

• in Chapter 2 the architecture of the CoCo VPN service is explained and an overview
of the P4 language is given;

• Chapter 3 lists the requirements of the authentication scheme, researches possible
approaches, including algorithms and protocols, and proposes an implementation
direction;

• in Chapter 4 a simplified authentication protocol is defined, the protocol is implemented
in the P4 and the program is discussed using code snippets;

• Chapter 5 explains how the proof of concept is tested and demonstrates the P4 program;
• in Chapter 6 the gained results and insights are summarised and used for providing

recommendations;
• finally, in Chapter 7 and Chapter 8 concluding thoughts are given and possible new

topics for research and follow-up tasks are proposed.

5

2 Background

In this part of the report information about the architecture of the VPN service and its
expected authentication use case is presented. Afterwards an overview of the P4 language is
given.

2.1 CoCo VPN service

The CoCo VPN service is a site-to-site VPN that spans multiple administrative domains
and can be initiated by users themselves. The service uses CoCo portals which handle
interaction with users and CoCo agents to calculate and establish the forwarding paths of
the virtual networks. This is done dynamically by reconfiguring the infrastructure within a
domain via OpenDaylight SDN controllers, which use the OpenFlow protocol. The Border
Gateway Protocol (BGP) is used to distribute the VPN and end-point information between
the agents across the different domains and within the core of the network Multiprotocol
Label Switching (MPLS) is used to encapsulate and forward the packets over their respective
dynamically constructed paths. The way the paths are calculated and constructed is not
important during this project, and to not needlessly deviate from the important aspects it is
not further addressed. In Figure 2.1 an overview of the VPN architecture is shown.

Of importance is the way users will be identified by the system and how this information
can be used for authentication purposes. A high-level overview of the steps that are taken
when a user constructs a VPN is as follows: 1) the user uses the CoCo portal to sign-up
for the VPN service, 2) cryptographic material is exchanged to provide in the means of
confidentiality and integrity, 3) the user authenticates at the CoCo portal to construct virtual
networks, and 4) the user’s network traffic is authenticated by the VPN service (i.e. the
provider) in order to get access to resources on other networks).

Currently, the security measures of the VPN service are still in the design phase. It
is envisioned that the cryptographic material will consist of asymmetric keys such that
individual users can be distinguished. When a user wishes to get access to remote resources
via the VPN service it will first need to contact the CoCo portal (either via a browser or
via an application programming interface (API)) so that a (symmetrical) session key can be
established. This session key can then be used by a program on the user’s device (from now
on referred as the client) to mark the traffic destined for the VPN service in such a way that
the VPN service is able to verify the authenticity of the traffic using the same key.

At the moment it is not envisioned that the authentication needs to be implemented
on an end-to-end basis. Instead, once traffic is verified by the VPN service and has passed
additional access checks (is this user allowed to access this VPN instance) the traffic is
considered secure and is not subject to further scrutiny at the network level in regard to the
VPN service (it may still be checked for other purposes like network management). This
implies a trust relationship between the service providers where each promises to verify the
authenticity of its users to enable the service to function securely.

This means that there is no explicit session between the client and the network device
that checks the authenticity of the network traffic destined for the VPN service. Instead, one

6

customer c1 customer c2

customer c3

domain d4

domain d3
domain d1

domain d2

data
plane

control
plane

CoCo agent a1

MPLS
MPLS

MPLS

MPLS

OpenFlow
OpenFlow

OpenFlow

BGP

BGP

BGP

RESTCONF

CoCo portal p1

CoCo portal p4

CoCo agent a4
RESTCONF CoCo portal p3

RESTCONF
CoCo agent a3

CoCo portal p2

BGP
CoCo agent a2

Web Interface

service
plane

HTTPS

ConnectComputeStore

“DNA sequencer as a Service”

Web Interface

HTTPS

ConnectComputeStore

“Shared Electron Microscope”

Figure 2.1: CoCo VPN architecture (adapted from Van der Pol et al.)[1]

could see the phase where the session key is established between the client and the CoCo
portal as the beginning of the multi-point to multi-point connection. The network device
used to verify the authenticity needs to have access to this session key, thus a mechanism that
distributes the key from the CoCo agent to the network device is necessary. It is conceivable
that the session key will not be valid indefinitely, but instead that after a predetermined
amount of time a new session key is established. This will allow more control over access to
resources and decrease the chance of malignant use. This means that the key distribution
mechanism needs to have a means to either express the validity constraints of the key material
or to explicitly invalidate previously distributed material once it expires.

In Figure 2.2 a simple illustration shows the procedures depicted above (the illustration
is simplified; only shows a unidirectional flow e.g., the return traffic is not shown but the
steps would be the same; and does not necessarily reflect the path the packets take e.g.,
communication between customer 1’s user and the CoCo VPN portal is likely to go through
the same provider edge (PE) device that in a later phase verifies the authenticity of the
traffic, but this is not necessary).

This research focuses on the authentication of network traffic on a network device but is
not concerned with the intricacies of designing all the components necessary for authenticating
CoCo users. Therefore, it is assumed that the prerequisites for user authentication (e.g., a
system for distinguishing users, creating sessions and exchanging key material) are available.

7

1: establish
session

2: session
(key)

established 3: session
key + metadata

4: network
traffic +

authentication
5: verify and

remove
authentication

6: network
traffic

CoCo VPN Portal + Agent

Provider Edge

VPN
User

VPN
User

Provider 1
Customer 2
Provider 2

Customer 1

Figure 2.2: Expected CoCo VPN use case
1. The user authenticates at the CoCo VPN service, most likely using a secure

channel that involves previously obtained key material. Then an attempt to
establish a session is initiated. This likely involves the user stating its intents
(e.g., accessing specific resources).

2. The CoCo VPN service verifies the intents of the user (e.g., via an access control
list (ACL) access to specific VPN instances or even endpoints is checked). If the
checks return positive a session is established which results at least in a session
identifier, a shared session key and an algorithm (and possibly other session
attributes) used for network authentication.

3. The CoCo VPN service then supplies any network device that serves as an entry
point for the VPN service (i.e. the PE) with the necessary information needed
to verify the network flows. Possibly, the user information only gets distributed
to the PEs that face that user.

4. The user generates traffic destined for a specific endpoint that is reachable via
the VPN. The packet is supplied with information such that its integrity and
authenticity can be verified and sent directly to the destination. This likely
involves using the session key and network packet as input to a digest algorithm
and storing the result in the form of an authentication code accompanied with
auxiliary information, like the session identifier, inside the packet.

5. The PE identifies packets destined for the service (e.g., via a prefix check or
by looking for a specific protocol) and uses the session identifier to lookup the
shared key in order to carry out the same cryptographic procedure to verify the
authenticity. Since the use case does not involve distributing the session key
to other providers or the remote endpoint, the PE removes the authentication
information.

6. The PE sends the authenticated network packet without the authentication
information via the VPN towards its endpoint.

8

2.2 P4 overview

As mentioned in the introduction, P4 allows one to program the packet forwarding pipeline
of P4-enabled network devices. While the same holds for OpenFlow to a certain extent, P4
allows for much more granularity because it is not restricted to populating a set of well-known
tables with entries that match and act on a limited set of protocol header types. It does this
by defining an abstract switch model that allows the specifics to be defined by a programmer
via P4 applications. The applications are written in an implementation-independent manner
and are then compiled to specific P4 targets. These are devices that support or can run
P4.[9]

P4 is protocol independent which means a programmer can define its own headers, which
the switch running the P4 program will be able to parse. After the parser has extracted
the headers as defined by the program, the match and action tables determine the control
flow within the pipeline. First the tables are created by the programmer, which defines
the header fields used for matching packets and describes the actions that can be taken in
case of a hit. Then the tables are populated by entries that hold the value to be matched
and once a packet matches, the action listed by that entry will be taken. The tables are
reconfigurable at runtime which can be done via an API in an OpenFlow-like fashion, or
even via OpenFlow itself (Figure 2.3 shows how OpenFlow and P4 fit into the SDN model).

Figure 2.4 shows the main components of the P4 abstract switch model. Packets are parsed
according to the headers described by the program. The result is a parsed representation of
the packet that can be used by the P4 program, primarily via match and action tables. These
tables can be applied both at the ingress and egress pipeline. There are subtle differences
between these stages e.g., in regards to dropping packets and setting the destination (which
for brevity will not be elaborated upon in this section). Finally, at the end of the egress
pipeline packets are deparsed (i.e. the parsed representation is serialised back to packet
format) and put on the wire.

The explanation given in this section only scratches the surface of the P4 forwarding
model and its capabilities. P4 is specified in the P4 Language Specification which goes into
much more detail and can be consulted for more information.[10] The language is still in
development and currently hardware support for P4 is in its early stages. However, there
is a software implementation, which was used during the project. In Section 4.2 the way
the P4 program is constructed is described and during the process more details about the
software switch and the P4 language are given.

9

Figure 2.3: P4 in relation to OpenFlow (adapted from the P4 Language Consortium)[9]

Figure 2.4: P4 abstract forwarding model[10, p. 6]

10

3 Authentication protocol

In this chapter the requirements for network authentication are researched and possible
authentication schemes and protocols to be incorporated into the CoCo VPN service are
explored.

3.1 Protocol requirements

A protocol used for authentication of network traffic provides protection against forgery of
packets. This means a recipient can be sure the packet originates from the sender, and that
the packet has not been altered by an intermediary (i.e. its integrity can be verified). In this
section the requirements for such a protocol are described in a high-level manner.

Message authentication is typically done in roughly two different ways: using message
authentication codes (MACs) or via digital signatures. Because signatures use prohibitively
slow asymmetric cryptography they are not used for authentication of network traffic, instead
MACs (using symmetric cryptography) are widely deployed for authentication of network
traffic.[11, p. 10] The MAC algorithm is used with a key and the message as input and
results in information, which the receiver of the message verifies by carrying out the same
operation and comparing the received value with its own calculated value. The algorithm
can involve relatively costly computations (in regard to generic network traffic) in order
to guarantee sufficient security properties and results in additional bits to be transferred.
Costly computations and increase of packet overhead could degrade network performance
and possibly even create opportunities for a Denial of Service (DoS). Therefore, the used
algorithm should provide sufficient protection against forgery while keeping the computational
and packet overhead to a minimum. In Section 3.2 more information about MAC algorithms
is given and recommendations for suitable algorithms in regard to the CoCo VPN service
are made.

Once a method for establishing the authenticity of messages is available and a forger is no
longer able to spoof messages, one more important provision needs to be made: forgers must
not be able to retransmit authentic messages without this being noticed, i.e. the receiver
needs to be able to detect replay attacks. This can be solved by including information inside
the message which ensures it can be only sent once e.g., a unique number, or by using a
per-packet key. In case of network traffic authentication this can be provided by including
a sequence number or a timestamp inside the packet. These values are constructed to
monotonically increase and receivers, that keep track of the values, only accept authenticated
packets if the value is greater than the previous. Since in practice values are finite and
network protocols are constrained in terms of field width, one needs to account for the
situation where the anti-replay value overflows and possibly wraps-around to a lesser value.
When this behaviour is left unspecified the receiver might either discard valid packets or
accept invalid (old) packets. These considerations demand a detailed specification of the
rules implementations should follow. In Section 3.3 an authentication protocol, that governs
authentication of network packets, is studied so that important aspects are identified and
possibly a candidate for the VPN service can be selected.

11

Another requirement is that ideally no new possibilities for tracking users are introduced.
This suggests that the session identifiers be rotated regularly. Since this information is
different for every new session, is expected to be only of local significance (meaning between
a customer and its provider) and is removed before it enters the paths between the providers
that comprise the VPN, the impact on users privacy is ought to be low. Still it would be
prudent to regularly refresh this information. Examples of how this could be implemented is
that the session and related key material are pre-emptively invalidated (e.g., using a timer)
or explicitly removed once they expire. In Section 3.4 a decision is made on how session and
key expiration should be implemented.

3.2 Authentication algorithm overview
In this section a non-exhaustive overview of possible message authentication algorithms is
given such that a preliminary selection can be made for possible incorporation into the P4
CoCo VPN authentication solution.

As stated in Section 3.1, MACs are used for authentication of network traffic. MACs can
be subdivided into authentication codes that are built from block ciphers and authentication
codes that leverage hash functions. The former uses a secret key to encrypt a fixed-length
representation of the original message with a symmetric encryption algorithm. The latter
uses a secret key mixed with the original message as input to a hash function.

There are several methods for mixing the key with the message, a secure construction
known as hash-based message authentication code (HMAC) is typically used. HMACs are
described in RFC 2104 and provide a way to use readily available cryptographic hash functions
in combination with a secret key to provide secure message authentication, while incurring
only a minor performance degradation over the original hash function.[12] Keys should be at
least as long as the hash digest output while the resulting MAC can be truncated to decrease
the overhead the MAC incurs. A typical recommendation is to truncate the output to at
most half the output size of the algorithm (a value that stems from the birthday attack),
while ensuring enough bits are available to keep the probability of collisions low.[12, p. 5]

The following algorithms are typically used for HMACs: MD5, and the Secure Hash
Algorithm (SHA) 1 and 2. MD5 and SHA-1 are deprecated or in the process of being
deprecated when used for providing signatures to certificates. However, in terms of message
authentication algorithms they are still considered to provide a sufficient level of security.
While the vulnerabilities do not affect MACs, or at least to lesser extent, it is discouraged
to include these weaker algorithm in newly designed protocols since better alternatives are
available.[13, p. 4] However, since the application of the CoCo VPN features very high band-
widths and requires implementation and computation in embedded devices, a compromise in
terms of security strength might be deemed acceptable.

As stated before, besides using HMACs block cipher algorithms can too be employed to
provide message authentication. RFC 3566 describes AES-XCBC-MAC which solves the forgery
problems of using Advanced Encryption Standard (AES) in cipher block chaining (CBC)
mode that arise when messages of varying lengths are authenticated.[14] Another block cipher
mode of operation suitable for MAC purposes is GMAC. GMAC uses Galois/Counter mode
(GCM) to provide an efficient and high performance MAC via parallelisation. Its low latency
and operational overhead make it suitable for protecting network traffic against forgery.[15, 16]

More recently Poly1305 has been standardised in RFC 7539 and has been incorpo-
rated into browsers and OpenSSH. It provides high-speed message authentication and is

12

relatively straightforward to implement. It can be used in concordance with ChaCha20
to form an alternative to AES while offering better performance in absence of hardware
acceleration.[17, 18]

Another possibility is SipHash. SipHash is a relatively new hash function which differ-
entiates itself from other hash function due to its low complexity, high performance and
optimisation for short messages.[19] Other hash functions tend to be optimised for longer
messages which incurs a computational overhead on the relatively large amount of short
messages network traffic is composed of. Furthermore, SipHash does not require multiple
keys, it does not rely on AES and no nonces need to be added to messages. The low-cost
computations result in an efficient hash function that promises to be hash-flood resistant
while still providing reasonable randomness.[20] These properties make it particularly suitable
as a function for software hash structures. An obligatory note to make is that SipHash is
not meant to be collision-resistant (which means it has less desirable properties for signatory
purposes, yet promises to be secure enough for MAC purposes under the assumption of a
secret key of sufficient length).[21]

In Table 3.1 an overview of (some of the variants of) the aforementioned algorithms is
given. Where applicable operation in HMAC mode is assumed.

Algorithm Hash size Truncated
sizea

Nonce size Total size

MD5 128 bit 64 bit - 64 bit
8 byte

SHA-1 160 bit 80 bit - 80 bit
10 byte

SHA-256 256 bit 128 bit - 128 bit
16 byte

SHA-512 512 bit 256 bit - 256 bit
32 byte

AES 128 bit - - 128 bit
16 byte

Poly1305 128 bitb - 128 bit 256 bit
32 bytes

SipHash 64 bit - - 64 bit
8 byte

Table 3.1: Overview of possible authentication algorithms
astandardised/advised truncation size
brequires two 128-bit keys

In terms of overhead, efficiency and implementation effort SipHash appears to be the best
choice. The security properties are not of the same level as SHA, but likely to be sufficient for
the CoCo use case which requires authentication only between the customer and provider. Its
hash-flood resistance makes it easier to incorporate into a network device whereas otherwise
dedicated circuits or fail-safe mechanisms need to be provided to surmount possible DoS
attacks. However, it is unlikely that the algorithm is high on the list of cryptographic

13

algorithms to be implemented by vendors that develop P4-enabled devices; P4 does not have
facilities for defining authentication algorithms in P4 itself,[10, p. 33] instead these functions
need to be provided by external objects via standardised or target-specific libraries.[10, p. 33]

It is more likely that algorithms like SHA and AES will find their way to P4 targets, possibly
facilitated by dedicated functions in hardware, since these algorithms are standardised by a
well-known institute, are considered secure and are widely deployed.

In case it is not possible to use an algorithm that is impervious to flood attacks and
the hardware is not capable of providing dedicated functions for message authentication,
setting a safe upper bound to the computation could be attempted (e.g., by limiting the
amount of VPN sessions, traffic or endpoints). P4 is capable of metering traffic, but this
will make the P4 program more complex and depending on the implementation (individual)
users could be subjected to a DoS.[10, p. 46] Furthermore, it could pose difficult to determine
the value at which traffic needs to be discarded since this is likely to be target and model
dependent. Nevertheless, counting the amount of authentication packets is advisable since it
gives insight into the usage of the service. Like metering, P4 has facilities for keeping traffic
counters (on a packet and/or byte level), how these are reported back to a controller is not
part of the specification. It is conceivable that a runtime-API, like OpenFlow, will provide
the means to either pull or push these values to the controller at definable intervals.

3.3 Authentication protocol overview

Once one or multiple MAC algorithms are available, a method is required to put the MAC on
the wire in a standardised manner. In the next sections a glimpse into one of such protocols,
Internet Protocol Security (IPsec), is given. It is by no means meant to be an exhaustive
study of protocol; only the relevant aspects for the CoCo VPN service are taken into account.

3.3.1 IPsec overview
At the network layer security can be provided by Internet Protocol Security (IPsec). It is a
comprehensive solution to transparently offer authentication and encryption for applications.
IPsec is considered to be complex and over-engineered, which mainly stems from the
comprehensive Internet Key Exchange (IKE) key exchange protocol.[22, p. 360, 23, p. 1] There
are also reports of incompatibility, which could be attributed to the complexity of the
protocol.[24]

3.3.2 Authentication Header and Encapsulating Security Payload
As mentioned earlier IPsec provides in authentication and encryption of IP traffic. Once
an IKE Security Association (SA) is established — a session is created and cryptographic
material has been exchanged — authentication can be provided by the Authentication Header
(AH) and both authentication and encryption can be provided by the Encapsulating Security
Payload (ESP). The AH is infamous since authentication can be provided solely by ESP. A
difference is that AH can also provide integrity over the immutable fields of the IP header
(fields that should not change across hops), whereas ESP can only provide this by also
encapsulating the original IP header at the expense of higher overhead.

In terms of header structure AH and the ESP feature strong similarities. They contain a
32-bit Security Parameters Index (SPI) which is an arbitrary value used to identify the

14

SA (since the SA is used to agree upon and exchange of cryptographic means and material,
this value ultimately maps to a specific key used for authenticating and/or decrypting the
traffic). IPsec allows nodes to share SAs e.g., for multicast traffic.

The 32-bit Sequence Number is used for replay prevention. It is implemented as a
monotonic counter which initialises to zero and is incremented by one for every packet sent.
Packets with a sequence number lower than that of the latest received valid packet are
dropped and for packets to be considered valid the counter needs to be within a sliding
window. The sequence number does not cycle (wrap around back to zero); once the maximum
value is reached no more packets will be accepted and a new SA needs to be established.
Generation of the sequence numbers is required but verification is optional. An extensions to
the 32-bit sequence number is offered to facilitate high-bandwidth applications. This 64-bit
Extended Sequence Number (ESN) consists of a 32-bit low-order part (which is put on the
wire) and a 32-bit high-order part (which only exists internally in the endpoints). Depending
on the version of the specification the ESN needs to be explicitly negotiated or is implicitly
enabled.[25, p. 8]

A variable-length Integrity Check Value (ICV), aligned to 32-bit boundaries for IPv4
and 64-bit boundaries for IPv6, contains the value used for verifying the authenticity of the
packet. IPsec defines the fields used for the calculation of the ICV and standardises several
algorithms for this process. The algorithm used by a session is negotiated in the IKE phase
and part of the SA.[25, p. 11] RFC 4307 specifies the following algorithms for authentication
purposes to be used in IPsec: AUTH_HMAC_MD5_96, AUTH_HMAC_SHA1_96 and
AUTH_AES_XCBC_96 (96 means truncated to 96 bits).[26, p. 4] RFC 4543 also allows for
AUTH_AES_GMAC which allows for efficient implementation in hardware and allows for
tens of gigabits of throughput and higher (as mentioned earlier in Section 3.3).[15] RFC
4868 specifies the following algorithms, which improve upon their predecessor SHA-1, for
authentication purposes: AUTH_HMAC_SHA2_256_128, AUTH_HMAC_SHA2_384_-
192 and AUTH_HMAC_SHA2_512_256 (128, 192 and 256 are the truncated lengths and
are chosen according to the formula "nnn/2" in accordance with the birthday bound for
each algorithm).[27, pp. 6,18] To ensure against possibly-uncovered weaknesses of the de-facto
encryption standard AES RFC 7634 selects the ChaCha20 stream cipher with the Poly1305
authenticator to be used as a standby cipher (a cipher which can be used as a fallback).[28]

An 8-bit Next Header indicates which IP protocol follows the AH or ESP header (the
original payload) and when necessary padding is used to make sure certain fields start or
end at the correct boundary.

The main differences (relevant for the CoCo VPN architecture) between the AH and ESP
are that ESP is also meant to provide confidentiality and contains its payload (most likely
in encrypted form) within the ESP header, whereas AH’s payload follows the AH header.
For clarity the format of the AH is shown in Figure 3.1 including the length of possible
(non-truncated) MAC’s.

3.3.3 Suitability of IPsec for the CoCo VPN service
IPsec fulfils in every requirement of the CoCo VPN service. However, since at the moment
only authentication is desired implementing ESP is deemed unnecessary. Instead AH could
be applied between the VPN client and the PE. The protocol must account for network
address translation (NAT) between the VPN client and the CoCo portal, although since
the VPN service is envisioned to be used in national research and education networks

15

Offset
Type

0 1 2 3

Bit Octet 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0

AH

Next Header Payload Length Reserved
32 4 Security Parameters Index (SPI)
64 8 Sequence Number
96 12 Integrity Check Value (ICV) (variable)
128 16 64 bits (SipHash)
160 20
192 24 128 bits (MD5, Poly1305-AES)
224 28 160 bits (sha1)
256 32 [~ padding]

288 36
ICMP/
UDP/
TCP/...

Transport protocol and payload

Figure 3.1: IPsec AH protocol header

(NRENs) — which are typically expeditious in the deployment of new network protocols
like IPv6 — the extent of this concern first needs to be determined. The design also needs
to account for mobile clients e.g., one envisioned use case is possibly roaming researchers
supplied with notebooks. IPsec has facilities for NAT traversal and has been enhanced
with IKEv2 Mobility and Multihoming Protocol (MOBIKE) which enables mobility of IKE
SAs, however it requires using tunnel mode which has an increased overhead compared to
transport mode.[29] Technically, it is possible to use part of the SPI to encode options to
alter behaviour on the intermediary device that authenticates the traffic such that even when
using the AH the source IP address could be considered a mutable field. Unfortunately, this
would likely result in violations of the IPsec specification, a course of action generally best
refrained from.

Using IPsec has the advantage that the VPN service can use the extensive amount of
specification and tools available. Furthermore, since it is a network layer protocol no applica-
tions need to be adapted and it could eventually be used to also provide confidentiality. Since
key exchange takes place in user space and the VPN service is deployed in an environment
assumed to be (largely) overseen by the creator of the service, a form of IPsec-light could
be created that minimises the downsides of IPsec. An approach that could be taken is to
fork an open-source IPsec implementation to create a lightweight alternative at the cost
of sacrificing compatibility with implementations of IPsec that do follow the (complete)
specification. Unfortunately, this could cause problems for systems that are already using
IPsec and it likely still means a lot of complexity could be inherited, risking technical debt.

When pursuing solely authentication of network traffic a more simple solution might be
preferred. When confidentiality is also desired a comprehensive suite like IPsec could have
merits. A consideration to be aware of is the requirement of the CoCo VPN service to provide
authentication of VPN traffic on intermediary devices instead of on end-to-end basis. This
could make putting IPsec to use for both authentication and encryption more advantageous
(providing confidentiality while distributing the keys to many devices sounds contradictory).
A solution could be to use different keys for authentication and confidentiality purposes;
the authentication keys are shared between the domains and the two (or possibly more)
endpoints, while the keys used for confidentiality are known only by the endpoints.

16

3.4 CoCo authentication protocol

In Section 3.3 it is determined that using a readily available authentication protocol has
advantages over creating a custom protocol, however it also shows that it might cause too
much inflexibility and complexity. In theory one could divert from the specification and only
implement the necessary parts in a way that suits the use case, but this is generally seen as
a bad practice.

In case no available protocol suits the use case appropriately then a new protocol can
be created at the costs of designing, implementing and maintaining it. This is likely to
be the best approach for the CoCo VPN service due to its relatively unique requirements
(non-end-to-end authentication of traffic in a multi-domain setting). For this research a
preliminary design of such a protocol is proposed.

3.4.1 CoCo protocol header
The preliminary CoCo header has been created with the following considerations in mind,
the header should:

• be lightweight: since the VPN is meant to facilitate computational intensive research
activities;

• be flexible: behaviour of the device processing the header should be adjustable, e.g.,
via flags;

• facilitate authentication: via a variable length field several hashing algorithms should
be supported;

• ideally also support home and mobile users: it is envisioned that the some users of the
VPN service are likely to roam and be on networks using NAT;

• and possibly be extendible: it is likely that end-to-end encryption cannot be facilitated
by the applications in all occasions, thus the need for encryption provided by the VPN
service might arise. The CoCo authentication header could then be extended to also
facilitate this need. Extendibility should either provide in the flexibility to enable
the required functionality without changing the header format or by ensuring future
changes can be made to the format.1

Figure 3.2 shows the proposed CoCo authentication header. The header is heavily
influenced by IPsec AH but provides additional flexibility. For instance it is implemented
on top of User Datagram Protocol (UDP), which makes it easier to traverse middle boxes
using NAT and firewalls. Initially it had flags to alter the processing of the header, which
for example could be used to relax security checks to accommodate NAT environments.
However, during the design it became apparent that supporting such corner cases gets tricky
very quickly (especially when not all the required use cases and their security requirements
are clear). Therefore, it has been decided to remove provisions like these and allow them to
be added where necessary at a later stage.

The CoCo header follows a normal UDP header from which the source and destination
ports are used to signal the presence of the CoCo header. In the proposal port number

1Since this project solely comprises authentication this design goal is not taken into consideration in the
proposed protocol.

17

49344 from the set of dynamic and private ports is used, solely because its hexadecimal
representation is 0xc0c0; since the port numbers are not used by an actual application and the
way the authentication is generated by the client is not yet defined, it has no other criterion
than being a relatively uncommon and easy to spot combination. In case the authentication
scheme is extended to also include end-to-end use cases then these port numbers can become
more important since a daemon needs to listen on a certain socket. Technically more
information could be encoded into this identifier (e.g., the CoCo authentication protocol
version number) but while this might lower the overhead per packet it could also make
maintenance of the specification and the implementations more cumbersome.

The first field of the actual CoCo authentication header is the 16-bit CoCo Identifier
field. Since the UDP source port number discussed above could be subject to mutation by a
middlebox that identifier might not be sufficient, hence the CoCo identifier field. Part of the
identifier (e.g., the last four bits) could be used for encoding the version of the authentication
header and might be used by the parser to determine how to parse the header in case changes
are made to the protocol. This method saves bits at the cost of slightly more complexity.
A dedicated version number field is likely to be unnecessary since the protocol is meant to
be used in a semi-private environment, and will be implemented in hardware that can be
reprogrammed. On the other hand it could be prudent to still include it because when a
provider serves multiple customers, upgrading the protocol format might be easier this way
(otherwise coordinated efforts could be required).

From this point the CoCo header follows the format of the IPsec AH header since no
other facilities are required. Where necessary the SPI can be used to encode additional
functionality, i.e. certain bits could be used to define distinct modes that change the way the
network device verifies the authenticity of the packet. At the moment the following modes
are envisioned: NAT mode could be used to signal the presence of a NAT device (which
could mean that the source IP address and the source port number are not included in the
calculation of the authentication code) and Relaxed mode could be used to signal that no
fields of the IP header are included in the calculation of the authentication code. This will
reduce the amount of sessions that can be defined (e.g., with two modes 31 bits are left for
identification when the reserved IPsec values[30] are not taken into account).

Alternatively the Header Length field could be halved where one half is used for flags or
modes and the other half encodes the length per four octets plus (since the minimal length of
the header is four rows of 32 bit the maximum integrity check value that can be represented
by a four bit Header Length field is 672 bits which is sufficient for today’s hashing protocols).

In theory the length field is not necessary since the algorithm used could be also encoded
into the SPI and thus the length of the ICV field can be deduced. However, this could
make parsing the header more complex. Encoding information in other values is best to
be refrained from when information can also be conveyed by transferring it in the form of
metadata as part of the session. The downside to this approach is that it results in a more
stateful approach.

The Sequence Number field follows the same rules as the IPsec AH. It is initialised at
zero and stops at its highest value. After that a new session needs to be established. The
sequence number is still a 32-bit value where IPsec has the option to negotiate a 64-bit
extended sequence number to allow high performance applications to send more data without
renegotiating an SA. Since a 32-bit value can be used to transfer about 6 TB using an
maximum transmission unit (MTU) of 1500 bytes it likely suffices (transferring 6 TB over a
10 Gb link takes about 1.3 hours and while using jumbo frames the session can be prolonged

18

Offset
Type

0 1 2 3

Bit Octet 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0
UDP

Source Port: dynamic Destination Port: 49344/c0c0
32 4 Length Checksum: 0 for IPv4

64 8

CoCo

CoCo Identifier: 0xc0c0 Next Header Header Length
96 12 Security Parameters Index (SPI)
128 16 Sequence Number
160 20 Integrity Check Value (ICV) (variable)
192 24 64 bits (SipHash)
224 28
256 32 128 bits (MD5, Poly1305-AES)
288 36 160 bits (sha1)
320 40 [~ padding]

352 44
ICMP/
UDP/
TCP/...

Original transport protocol and payload

Figure 3.2: Custom CoCo protocol header

to about 8.5 hours in the ideal case). In the scenario where a 100 Gb link gets saturated with
packets of 1000 bytes (a more realistic average that still is on the high end) a new session
needs to be established every 5 minutes.

Even with session pre-establishment and a smooth roll-over this could become a problem.
When such extreme use cases are envisioned (a category a DNA sequencer could be considered
part of) it might be better to immediately move to 64-bit sequence numbers at the cost
of a 32-bit overhead every packet. Also when multi-domain end-to-end authentication is
considered 64-bit sequence numbers are advisable because it puts less stress on the part
of the CoCo architecture that handles session establishment (a subsystem which will then
comprise a more complex chain and thus has more points of failure).

Another option is to use a similar approach as with the ESN of IPsec. IPsec allows for a
64-bit sequence number of which only 32 bit are sent on the wire while the endpoints keep
track of the 64-bit value. While this is a good approach implementing it in P4 might be
more complicated.

When a sequence number is about to reach its maximum value the client could negotiate
a new session before its old session has expired. To ensure a smooth roll-over during a short
period of time both sessions will be considered valid.

3.4.2 CoCo authentication protocol behaviour
The flow chart in Figure 3.3 depicts the actions taken by the PE device. First, a packet hits
the PE and enters the forwarding pipeline of the device. At a certain point in this pipeline
e.g., after functions of higher priority like ACLs and error checking have been applied, the
PE needs to determine whether the packet is destined for the CoCo VPN service. This
check can consist of looking for a specific header or verifying whether the destination of the
packet is a VPN endpoint (and maybe even its source too). If the packet is not destined
for the VPN then the normal processing path can continue which ultimately will result in
forwarding of the packet (assuming the switch has the necessary routing information).

Once the packet is determined part of the CoCo VPN service the session identifier is
used to look-up the authentication key. The figure depicts this as a single action but could

19

consist of separate steps. In case of the CoCo VPN service, it is expected that every session
identifier maps to a single key and both are supplied to the switch simultaneously. Thus, if
the session identifier of the packet does not match with a table the key is also not available
and vice versa. In this case the packet must be dropped.

If the session material is known by the PE, the sequence number is checked for validity.
For replay protection a per-session sliding window is used and only sequence numbers within
that window are accepted. If the number attached to the packet is lower or higher than
expected that packet is dropped. This step is best carried out before the MAC gets verified
since it minimises the amount of work the PE has to do (in case sequence numbers are
invalid) and also lowers the chance of introducing DoS opportunities.

In case the sequence number check passes, the MAC is computed using the session key
and compared to the value carried by the packet. Computation of the MAC should follow a
similar method as with the computation of checksums; the MAC field of the header is set
to zero during the computation. Fields included in the computation should be at least the
authentication header and its payload, but could also include parts of the network protocol
to ensure the source and destination addresses are authentic. Depending on the use case
the fields included could be different per session, which should be signalled out-of-band,
via protocol flags or by encoding options in other values. Only if the MACs are equal the
packet is considered authentic and is granted access to the VPN paths. Before forwarding
the packet, the latest valid sequence number is saved and its authentication header removed.
This step includes modifying the IP header to account for the change in protocol type, packet
size and header checksum. If the MACs do not match the packet is dropped.

The actions can be enhanced in several ways. For instance, at several steps statistics
could be gathered for monitoring and troubleshooting purposes. This could include packet
count and bytes sent (per-session and in total, separately for packets that succeeded or failed
authentication). These statistics could be transferred periodically to the controller in a push
or pull fashion. Similarly, a metering function could be used that limits the amount of traffic
the VPN service or an individual session is allowed to use. Such a function could also be used
to lower the probability or the impact of a DoS attack, however it needs to be implemented
such that no new attacks are introduced (e.g., by limiting the total amount of VPN traffic,
malicious users could deny service to legitimate users).

In the flow chart packets are dropped silently instead of reporting the error to the sender.
The rationale behind this is that it keeps the P4 implementation simple. Instead it moves
the complexity to the client which should implement a function to reset a stale or out-of-sync
session. In the case no return traffic is received after a certain amount of time (or packets)
the client should establish a new session. The result is that only bidirectional flows are
supported. It is expected that this will not cause a problem because bidirectional flows
are anticipated. In practice a message could be used to indicate the authentication failed,
however for security considerations it should not mention why in detail. Also, timing attacks
possibly leading to key recovery should be taken into account when implementing a feedback
method.

20

Number
valid?

Remove
authentication

header & forward
packet

Number
valid?

Record sequence
number

VPN
traffic?

Normal processing
path

Forward packet
No

Use identifier to
lookup key

Yes

Key
avail-
able?

Drop packet
No

Check sequence
number

Yes

Packet hits PE
Drop packet

No

Compute & compare
HMACs

Yes

Same
HMACs

?
Drop packet

No

Yes

VPN
traffic?

Normal processing
path

Forward packet

Use identifier to
lookup key

Key
avail-
able?

Drop packet

Check sequence
number

Packet hits PE
Drop packet

Compute & compare
HMACs

Same
HMACs

?
Drop packet

VPN
traffic?

Figure 3.3: PE authentication actions flow chart

21

4 Implementation in P4

A proof of concept has been created to test whether the functionality required for authenti-
cation of network traffic can be implemented using P4. In this chapter this proof of concept
is discussed. First a simplified authentication protocol is described, then the aspects of the
P4 program constructed during the project are detailed step by step.

4.1 Simplified authentication protocol

The Generic Routing Encapsulation (GRE) has been used for the simplified authentication
protocol. It provides in all the facilities required for the simplified authentication scheme:
session identifiers can be stored in the Key field, sequence numbers used for replay protection
can be stored in the Sequence Number field and the Checksum field can be used for simulating
the MAC. Furthermore it intrinsically allows for encapsulation of other packets and is widely
supported by hosts and network tools.

GRE was first specified in RFC 1701 and updated in RFC 2784. It can be used for
encapsulating IP packets (or even complete Ethernet frames) into other IP packets so that
they can be tunnelled across the Internet. Where the RFC 1701 specification provides
in several flags (e.g., Checksum Present bit and Key Present bit) RFC 2784 removed
most of them (only the checksum flag was kept) and a new GRE version number was
introduced for PPTP.[31, 32] PPTP is specified in RFC 2637 and uses an enhanced GRE
header (which still includes the flags because it predates RFC 2784).[33] In RFC 2890 the
Key and Sequence Number Extensions are specified which basically adds these flag bits back
and elaborates on their use (the bits are no longer referred to as flags but are used in this
report interchangeably).[34] Where the original specification states that the Key field may
be used for authentication purposes RFC 2890 states that it may be used for “identifying
individual flows within the tunnel”.

The history and intricacies of GRE are not important. What is important is that
by setting flags (e.g., the Checksum Present and Sequence Number Present bits) GRE’s
optional fields can be enabled. Since both sides of the communication channel are controlled
(the client used to send the GRE packets and the P4 software switch) there is no need to
strictly adhere to the specification. This flexibility allows using the mentioned fields for
authentication purposes.

In Figure 4.1 the GRE header is given and shows how it is used for authentication purposes.
Since the specification reflects their use closely the Key field holds the 16-bit session identifier
and the Sequence Number stores the 16-bit sequence number. Their semantics are kept as
simple as possible which means the session identifiers are not used to encode additional
options and the sequence numbers are not used to represent a larger number internally (i.e.
as with IPsec’s ESN). However, each session identifier does have its own sequence number to
keep track of and a sliding window is used (set to an arbitrary size of 125 packets).

The Checksum field however is used to hold the MAC and its semantics do not adhere to
the checksum as specified by the GRE specification. A normal GRE checksum contains the
one’s complement of the one’s complement sum of all the 16 bit words in the GRE header

22

Offset
Type

0 1 2 3

Bit Octet 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0

GRE

Flags: CKS Reserved0 Version Protocol Type: 0000 (possibly GRE keepalive)
32 4 Checksum: MAC (CRC16) Reserved1/Offset: key (not on wire)
64 8 Key: session identifier
96 12 Sequence Number
128 16 ICMP ICMP echo request with random payload

Figure 4.1: CoCo protocol header

and its payload.[32, p. 3] To simulate a MAC the checksum’s value is altered by storing the
MAC key in the Offset field. Prior to sending the packet the key in the Offset field is
removed. On the wire the checksum will be wrong according to the GRE specification but
both endpoints know that they need to add a key to the Offset field to obtain the right
result. What key is used depends on the session identifier.

The idea behind the authentication scheme is that an authentication header is inserted
between the network and transport layers. At the very least the transport layer and its
payload must be protected by the MAC. Since the authentication header is removed after the
P4 switch successfully verifies the packet to be authentic, and the scheme does not require
packets to be tunnelled, the GRE payload has no need for an additional IP header. Because
it is practical to test with Internet Control Message Protocol (ICMP) traffic (i.e. no software
is needed on the remote host) pings are used as the payload.

4.2 P4 program

In the following sections different aspects of the developed P4 program are given. First the
way the program was developed is discussed, then a high-level overview of the program is
shown and finally the actual P4 code is given.

4.2.1 P4 development environment
Since P4 hardware support is in its early stages a P4 software switch is used as provided by
the P4 Language Consortium.1 There are two different software switches. It was not clear
which software switch suited the authentication proof of concept best, so it was planned to
use the first software switch. In case problems would arise the second switch would be tried.

The first software switch (called the behavioral model) is written in C. For every software
target, the source code gets pulled into the target’s working directory and is together with
the P4 program compiled into an executable. This means that it is easy to make changes to
the software switch’s code but also requires a full compilation every time the P4 program is
changed.

To be more flexible a second software switch (called the behavioral model 2) is being
developed in C++. It does not require recompilation of the software target when a change is
made to the P4 program.[35] In practice it appears that this does result in less recompilations
but is a bit harder to get started with and to make adaptations to the software switch;
some source code of the software switch can be/needs to be local (i.e. reside in the working

1The starting point for working with P4 code is https://github.com/p4lang

23

https://github.com/p4lang

directory) while other source code stays at its default location. Also, it was a bit unclear
how to use the behavioral model 2 in the P4factory (an all-in-one P4 development and
experimentation environment)2 so the behavioral model 2 including its dependencies were
installed manually.3 Work on the behavioral model 1 seems to have stalled while the
behavioral model 2 is in active development.

The software switches implement version 1.0 of the P4 language. However, it is possible
to enable version 1.1 of the language using the behavioral model 2.4 Version 1.1 of the P4
language is currently in draft form so during the project only version 1.0 was used.

4.2.2 Program overview
The flow chart in Figure 4.2 depicts the actions taken by the P4 software switch in a high-
level manner. The figure is very similar to Figure 3.3 but the actions reflect the P4 packet
processing pipeline more closely. For instance, it shows that the authentication functionality
is located at the egress pipeline. The figure is included to provide clarity before the details
and the actual code are presented in the following section.

4.2.3 P4 code
In this section snippets of the P4 code are given (for brevity, clarity and aesthetic reasons
the sequence the snippets are shown in may be different from the actual P4 program and
comments may have been added or removed; however, the code itself is left unchanged). The
full P4 program and auxiliary code are made available via a git repository5 and as an archive
attached to the digital version of this report.

At first the program was made using the behavioral model 1, but due to issues stated
in a later section, development switched to the behavioral model 2. For this reason all the
code shown is meant to be run on the behavioral model 2 unless stated otherwise (although
syntactically the code should be the same).

The simple_router target6 is used as the basis of the P4 authentication target. Techni-
cally only layer 2 functionality is required, however using a target with routing functionality
allows for integration with Mininet7 which makes testing the P4 program easier.

2https://github.com/p4lang/p4factory
3https://github.com/p4lang/behavioral-model
4p4c-bm can be used to generate JSON representations of the P4 program that are written with P4

version 1.1 in mind: https://github.com/p4lang/p4c-bm
5https://github.com/JcKlomp/rp2-p4-authentication
6https://github.com/p4lang/p4factory/tree/master/targets/simple_router
7Via Mininet instant virtual networks can be created on a Linux system: http://mininet.org/

24

https://github.com/p4lang/p4factory
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4c-bm
https://github.com/JcKlomp/rp2-p4-authentication
https://github.com/p4lang/p4factory/tree/master/targets/simple_router
http://mininet.org/

GRE
header?

GRE
header? Continue egress

Drop packet

ID avail-
able?

Compute MAC with
packet header +

hash_key & compare
MACs

Output

Lookup identifier in
gre_key table

Ingress

Parser
Get sequence

number from register
& check sequence
number of packet

Yes

Drop packetDrop packet
Input

Egress

Seq
num

valid? No

Yes

MACs
equal? No

Yes

Drop packetDrop packet

Store sequence
number in register &

continue egress

Yes

No

No

Figure 4.2: P4 program actions flow chart

25

GRE header

First the GRE header type called gre_t is declared (see Listing 4.1). Via the fields
attribute the fields of the header are named and followed by their respective width in bits.8
The GRE flags are declared as a compound field instead of individually bit by bit. This is
because using the behavioral model 2 these fields are reset to zero after the egress phase is
ends.9 Declaring these fields as one compound field works around that problem. Although
the switch should never forward a packet containing a GRE header (since that header must
be stripped off) this action was taken during testing the checksum functionality and now
only exists for historical reasons.

The declared GRE header does not comprise the full functionality of the GRE protocol.
For instance the P4 implementation does not contain any optional fields. In P4 optional
fields can be implemented using a variable-length field.10 Only one variable-length field can
be declared per header and variable-length fields have many other constraints. For instance,
variable-length fields cannot be used for metadata (headers that are declared similarly as
normal headers but are not deparsed after egress thus never sent) and cannot be used for
checksum calculations. To actually use a variable-length field it needs to be parsed further
until it has been split into fixed-sized data types.11 It is likely that the actual authentication
header used for the CoCo VPN service will allow MACs of differing length, therefore using
the variable-length fields needs to be investigated further.

Listing 4.1: GRE header

1 header_type gre_t {
2 fields {
3 flags : 16; // flags as compound field
4 protocolType : 16;
5 checksum : 16; // MAC
6 offset: 16;
7 key : 32; // session ID
8 sequenceNumber : 32; // replay protection
9 }

10 }
11

12 header gre_t gre;

Similarly to the GRE header, a GRE metadata header type is declared called gre_-
metadata_t. It is used to hold auxiliary data used during the verification of the authentication
of the packet. Most important are the index, hashKey, prevSequenceNumber and the
computedHash fields.

The validKey field is used in the control block for conditionally applying the
authentication-related tables. Technically it is possible to use another field that would also

8This follows the P4 language 1.0 specification. Version 1.1 deviates from this notation and allows for
more control over the data types used for the fields.

9Using the debugger (p4dbg.py) it was verified that these fields contain the right value up until the egress
phase. After that the packet is deparsed and sent. For an unknown reason some of the fields that compose
the compound field were set to zero on the wire. This problem was absent using the behavioral model 1.

10In P4 1.0 this is done by setting the field to width * and in P4 1.1 the varbit type is used. A header
that contains a variable-length field can be assigned a maximum length to limit its length.

11An example of parsing variable-length fields is given in the TLV_target: https://github.com/p4lang/
tutorials/tree/master/examples/TLV_parsing

26

https://github.com/p4lang/tutorials/tree/master/examples/TLV_parsing
https://github.com/p4lang/tutorials/tree/master/examples/TLV_parsing

be set in case the session identifier is known, but this way the semantics of the fields are
more clear. The validKey, index and hashKey fields are set by the GRE match+action
table (described later). The prevSequenceNumber and computedHash values are respectively
retrieved from a register and computed. Both are used for comparison with respectively
the GRE checksum and sequenceNumber fields and used to determine whether the packet
is valid. The emptyChecksum is never assigned an actual value and used solely as a work
around for setting the checksum field to zero during the computation of the computedHash
field. The reason for this work around is that using the #define directive directly to define
a field sometimes results in a wrong value (i.e. using the behavioral model 2, defining the
value ‘0x0000’ resulted in the value ‘0x0’ of bit width ‘0’, after compiling the program to
JSON representation).

Listing 4.2: GRE metadata header

1 header_type gre_metadata_t {
2 fields {
3 validKey : 1; // set when the session ID is known by the switch
4 index : 16; // index of register that holds latest valid sequence number
5 hashKey : 16; // holds the MAC key
6 prevSequenceNumber : 32; // holds the latest valid sequence number
7 computedHash : 16; // holds the locally computed MAC (simulated via checksum)
8 emptyChecksum : 16; // never assigned; always 0x0000
9 }

10 }
11

12 metadata gre_metadata_t gre_metadata;

GRE parsing

After the headers required for GRE are declared they need to be parsed. This is done by
adapting the IP parser. After the GRE header has been parsed control of the program
continues in the ingress pipeline (see Listing 4.3). The Ingress pipeline of the constructed P4
program is not different from that of the simple_router target. It was attempted to check
for a valid GRE header at this point, but this led to the switch crashing. In theory it should
be able to verify the GRE header at this point and either forward or drop these packets
(although at the ingress pipeline packets cannot truly be dropped; only the egress_spec can
be set to the drop port which can be overridden by subsequent tables in ingress).[10, p. 58]

Therefore, it was decided to move all the GRE control flow to the egress pipeline.

27

Listing 4.3: GRE parsing

1 # define IP_PROT_GRE 0x2f
2

3 parser parse_ipv4 {
4 extract(ipv4);
5 return select(ipv4.protocol) {
6 IP_PROT_GRE : parse_gre;
7 default : ingress;
8 }
9 }

10

11 parser parse_gre {
12 extract(gre);
13 return ingress;
14 }

GRE control flow

The P4 program is of quite modest size, but if there is a most comprehensive part then it
will be the egress pipeline (see Listing 4.4). First it checks whether the packet traversing
the pipeline contains a valid GRE header via the valid(gre) conditional. If this is the case
then the gre_key table is applied. The descriptions of the tables and actions will follow in
later sections.

When the session identifier hold by the GRE Key field results in a match in the gre_key
table an action is taken that sets the validKey metadata field to 1. Via the conditional
gre_metadata.validKey == 1 checking the authenticity of the packet either continues or
the packet is dropped by applying the gre_drop3 table. It can be seen that there are three
different tables used for dropping packets. The reason for this is that it is not possible to
reference multiple times to the same table and tables are necessary for applying actions. The
P4 specification hints that this is a per-target limitation, in this case likely imposed to prevent
recursion.[10, p. 74] A possible advantage of using multiple tables e.g., for dropping traffic,
is that separate counters can be used to keep track of the amount of dropped packets for
specific reasons (although it is not inconceivable this could be provided too by a single table
using different entries). Another advantage is that (at least in the software switch) the name
of the applied tables and actions taken are included in the logs which helps development.

The next control block is preceded with the ((gre.sequenceNumber > gre_-
metadata.prevSequenceNumber) and (gre.sequenceNumber < gre_metadata.prevSeq-
uenceNumber + 125)) if-else statement and is used to check whether the sequence number
the packet carries is expected. The number needs to be higher than the latest stored
number, but not higher than the window of 125 packets (which includes the current/latest
valid packet so the window actually fits 124 packets). This way the authentication scheme
tolerates a small amount of packet loss while keeping the opportunity for a brute force
attack low (which could lead to unwanted access of resources and possibly result in a DoS).

When the sequence number is considered valid the checksum (the simulated MAC) can
finally be computed which is done via the gre_compute_hash table. Then the checksum of
the GRE header and the computed checksum are compared for equality. If they are equal
the packet is considered authentic. Subsequently, the (higher) sequence number is stored in a

28

register via the gre_update table and the GRE header is removed via the gre_remove table.
At this point the GRE part of the egress pipeline is complete and the send_frame table
from the simple_router target is applied so that the packet can be forwarded properly.

Listing 4.4: GRE control flow

1 control egress {
2 if (valid(gre)) {
3 apply(gre_key);
4 if (gre_metadata.validKey == 1) {
5 if ((gre.sequenceNumber > gre_metadata.prevSequenceNumber) and

(gre.sequenceNumber < gre_metadata.prevSequenceNumber + 125)) { // sliding window↪→

6 apply(gre_compute_hash);
7 if (gre.checksum == gre_metadata.computedHash) {
8 apply(gre_update); // store new sequence number
9 apply(gre_remove); // remove gre header

10 }
11 else {
12 apply(gre_drop); // not a valid hash
13 }
14 }
15 else {
16 apply(gre_drop2); // not a valid sequence number
17 }
18 }
19 else {
20 apply(gre_drop3); // not a valid key (identifier)
21 }
22 }
23 apply(send_frame); // normal forwarding functionality
24 }

Tables

As shown in the previous section the P4 program uses several tables. Via the tables entries
can match packet fields which results in the execution of the specified action, possibly with
specific parameters. In terms of the GRE authentication scheme only the gre_key table is
used for matching entries. The other tables are used to execute default actions.

Listing 4.5 shows the gre_key table. It reads the GRE Key field of the current packet
and looks for an exact table entry match.12 If the table has a hit (an entry matches) then
the action supplied with that entry is taken, which for the gre_key table means that the
set_gre_key_valid is executed with the index and the hash_key supplied as parameters
(as stated earlier, the index is used to look up the right sequence number in a register and
the key is used as input to the simulated MAC). If no match is found then the default
set_gre_key_invalid action is taken. This action explicitly sets the validKey metadata
field to 0. This is done so that the control flow is correctly directed to the gre_drop3 table,
otherwise if the packet is dropped in a normal manner, the packet will erroneously traverse
the control blocks after the gre_metadata.validKey == 1 check, even though the validKey
field is not set to 1.

12How entries are matched is determined by the field_match_type option which can be exact, ternary,
lpm, index, range or valid.

29

Listing 4.6 shows how entries are added to the gre_key table and how default table
actions are set at runtime.

Listing 4.5: gre_key table

1 table gre_key {
2 reads {
3 gre.key : exact;
4 }
5 actions {
6 set_gre_key_valid;
7 set_gre_key_invalid;
8 }
9 }

Listing 4.6: Adding table entries and actions

1 table_set_default gre_key set_gre_key_invalid
2 table_add gre_key set_gre_key_valid 123456789 => 0 0xabcd

As stated earlier the other tables are not used for matching entries but purely exist for
executing actions (Listing 4.7). A peculiarity is the force_drop action. This is a work
around for dropping packets containing a GRE header and works by truncating the packets
to zero length. Why the behavioral model 2 was able to drop non-GRE packets normally
but not GRE packets is not clear.

Listing 4.7: Other GRE tables

1 table gre_compute_hash {
2 actions {
3 compute_gre_hash;
4 }
5 }
6

7 table gre_update {
8 actions {
9 update_gre_sequence_number;

10 }
11 }
12

13 table gre_remove {
14 actions {
15 remove_gre;
16 }
17 }
18

19 // all the gre_drop tables are constructed the same
20 table gre_drop {
21 actions {
22 //_drop; // doesn't work properly
23 force_drop;
24 }
25 }

30

Register actions

In P4 actions can be subdivided into primitive and compound actions. Compound actions are
declared as functions which contain one or multiple primitive actions that will be executed
sequentially. Primitive actions are the actual actions applied to the packets. “P4 supports
an extensible set of primitive actions”, but “not all targets will support all actions. Target
switches may have limits on when variables are bound and what combinations of parameter
types are allowed.”[10, p. 52] From this point, actions can refer both to compound and primitive
actions. Unless stated otherwise, in the context of a table action a compound action is
implied (like set_gre_key_valid) which might be referred to as a function for clarity, and
from the context of a compound action a primitive action is implied (like modify_field).

The actions will be described following the happy path (it is assumed no errors occur)
and where appropriate the deviations from it are given. First, when the packet matches the
gre_key table the set_gre_key_valid action is taken (Listing 4.8). This function accepts
the idx and key parameters. First the modify_field action is executed to set the validKey
field to 1, indicating that the packet has a valid session identifier. Then the key variable
passed as a parameter to the function is stored in the hashKey metadata field. The reason
for this action is to allow the key to be used in the calculation of the checksum. Also the
idx variable is stored in the index metadata field. This is handy in case the register gets
updated in a subsequent action. After these actions are carried out another function is called,
get_gre_sequence_number, which is used to retrieve the latest valid sequence number from
a register. Technically this function is unnecessary since the primitive action could have been
used directly (this call is done purely for historical reasons and keeps the naming consistent).

In case no entry matches the set_gre_key_invalid function is executed which simply
sets the validKey field to zero to prevent the packet from traversing wrong tables. Once
this issue is properly debugged the default table action can be set back to the force_drop
(or even the regular drop action once that issue is resolved).

Listing 4.8: gre_key table actions

1 action set_gre_key_valid(idx, key) {
2 modify_field(gre_metadata.validKey, 1);
3 modify_field(gre_metadata.hashKey, key);
4 modify_field(gre_metadata.index, idx);
5 get_gre_sequence_number();
6 }
7

8 action set_gre_key_invalid() {
9 modify_field(gre_metadata.validKey, 0);

10 }

In P4 counters, meters and registers can be used to maintain state across multiple packets.
Counters can be used for tracking the amount of packets and/or bytes matched in the
table. They can be automatically applied to individual table entries or incremented by one
by manually issuing the count action. Meters can measure data rate and expose it via a
three-color marking algorithm. Registers provide a more general-purpose stateful memory
and allow values to be read and written by actions.[10, p. 49] Since a sliding window needs to
be implemented registers appear to fit the purpose best.

In P4 stateful memories are organised into named arrays of cells and a cell e.g., an
individual register, is referenced by its array name and index.[10, p. 46] Stateful memories can

31

either be used in direct access or indirect access. Direct access means that the register is
bound to one table and every table entry has a dedicated cell. Entries cannot reference other
cells nor can the register be referenced from other tables. Indirect access means that any
entry can reference any cell in a global manner.[10, p. 46] A bit further in the specification
another distinction seems to indicate that stateful memories can be optionally declared as
direct or static. The direct attribute appears to conform to the direct access type and if
it is not used then the stateful memory needs to be referenced via name and index, which
appears to be conform to the indirect access type. However, static means that the resource
is dedicated to a single table while being referenced by name and index, which appears to be
a constraint of the indirect access type but this is not clearly stated in the specification.

On itself this is not a problem but these concepts are described only for the counter and
meter memories, not for registers. When declaring the register it was assumed that the
behaviour of the register in this regard would be the same or similar as that of the other
memory types. Unfortunately it appears that the compiler insists the register be declared
static, which again on itself is not a problem, however it is referenced from actions of two
tables (reading and writing the register) yet no failure arises. There also was a discrepancy
between the behaviour of the behavioral model 1 and 2 switches; where software switch 1
complained about the register having a wrong table declaration software switch 2 did not.

Another peculiarity is how to actually work with the registers. The specification mentions
that “Although registers cannot be used directly in matching, they may be used as the source
of a modify_field action allowing the current value of the register to be copied to a packet’s
metadata and be available for matching in subsequent tables.”[10, p. 50] Afterwards this sounds
straightforward and like the proper course of action, but instead the register_read and
register_write primitive actions, available in the simple_switch target, were used during
development.13 The reason for this is that the runtime_CLI14 uses the same functions for
manipulating registers (and simply oversight). Currently, these actions are not part of the
P4 specification, but it is expected they will be added in a future revision. At this point
the behavioral model 1 was not used any more because its runtime_CLI does not have
the register functions, which made testing the functionality hard. During the project no
indication was found that this software target allows manipulation of these stateful memories.

Reading the sequence number from the register involves the get_gre_sequence_number
function which executes the register_read action. In this case the action takes the
prevSequenceNumber field as the destination, the register sequence_number_reg is read-out
at the index specified in the index field (Listing 4.9). The update_gre_sequence_number
is given at this point because it is very similar to the way the register is read.

The rationale behind the instance count of the sequence_number_reg declaration is that
this way it could be possible to use the session identifier as the index. However, adding such
a number as a table action parameter proved impossible. Possibly the more precise data
type declaration method of version 1.1 of the P4 language will enable this optimisation (less
state would need to be stored by the controller and the switch).

13https://github.com/p4lang/behavioral-model/blob/master/targets/simple_switch/primitives.cpp
14A simple command line tool that can be used to program the tables at runtime and show information

about the functioning of the switch.

32

https://github.com/p4lang/behavioral-model/blob/master/targets/simple_switch/primitives.cpp

Listing 4.9: GRE register actions and declaration

1 action get_gre_sequence_number() {
2 register_read(gre_metadata.prevSequenceNumber, sequence_number_reg,

gre_metadata.index);↪→

3 }
4

5 action update_gre_sequence_number() {
6 register_write(sequence_number_reg, gre_metadata.index, gre.sequenceNumber);
7 }
8

9 register sequence_number_reg {
10 width: 32;
11 static: gre_update;
12 instance_count: 65536; // cannot add 32 bit number via table action parameter, so

session ID cannot be used as index↪→

13 }

Checksum action

In Listing 4.10 the code used for MAC simulation is shown. First the gre_checksum_list
field list is defined. A field list is used to specify a sequence of header fields to be handed to
checksum and hash-value generators. The output of these calculation objects can be used by
the P4 program in the form of an integer. The underlying algorithm of the function cannot
be expressed in the P4 language, but instead needs to be provided by target.[10, p. 33] This
means that algorithms like cyclic redundancy checks (CRCs) and hash functions are outside
the scope of the P4 language and the algorithms supported may vary between targets. The
language does allow interfaces to the functions such that they can be configurable at runtime.
Examples given in the P4 Language Specification are a configurable seed value and specifying
parameters like coefficients.

Currently for the simulated MAC, supplying the key to the function is done by putting
the key in an unused field of the GRE header: instead of the empty offset field the hashKey
metadata field is used for the calculation. However, a proper key supply facility is advisable
because this would allow the underlying algorithm to clearly distinguish the message from
the key, such that they can be mixed together by the algorithm itself.[12, p. 3] Whether the
interfaces specified by the P4 language will allow such a use case (e.g., inputting a 128-bit
key) has not become clear during this research.

The gre_checksum_list field list is referenced by the gre_checksum field list calculation
object. It defines the algorithm used and the properties of the resulting value. In this
case the same checksum algorithm used by the IPv4 header is utilised. Next the field list
calculation can be used to verify and update the checksum of a header via the gre.checksum
calculated field declarations. The verify option happens during parsing and can result in a
parse exception, which can be handled by the P4 program. Parse exceptions are currently not
implemented in the software switches (the behavioral model 2 issues a warning at compilation
time) which means this option has no effect. The verify option, once implemented, would
not provide the required functionality because to be able to dynamically change the way
the checksum is computed per session the session key needs to be put into a metadata field
first, an action that takes place after parsing the packets. The update option can be used to
update the checksum field of a header prior to deparsing it (preparing the packet to be sent)

33

at the end of the egress pipeline. This function is currently implemented, however it does
not provide the functionality necessary for the simplified authentication scheme; packets
need to be dropped if the computed checksum does not match.

Instead the modify_field_with_hash_based_offset primitive action is used.15 It is
issued from the compute_gre_hash function via the gre_compute_hash table. This primitive
action can be used to apply a field list calculation (gre_checksum) and use the result to
generate an offset value which can be used by the program. The P4 program uses this
function to compute and store the simulated MAC in the computedHash metadata field so
that it can be used to compare the checksums (as shown in Listing 4.4). The description of
the primitive function is a bit unclear, but the understanding is that the base (0) and the
size (65536) are used to determine the minimum and maximum value of the result (initially
the size was left zero but this led to compiler errors).[10, pp. 53,57]

One might have noticed that this MAC simulation does not secure the packet against
spoofed IP addresses. Technically it would be trivial to include fields of the IP header in
the calculation, but it was decided not to since it made calculating the checksum at the
client-side (the node that sends the authenticated packets to the switch) more complicated
(this process is described in Chapter 5).

Listing 4.10: GRE checksum

1 field_list gre_checksum_list {
2 gre.flags;
3 gre.protocolType;
4 gre_metadata.emptyChecksum;
5 gre_metadata.hashKey; // dynamic hash_key via offset field
6 gre.key; // session identifier
7 gre.sequenceNumber;
8 payload;
9 }

10

11 field_list_calculation gre_checksum {
12 input {
13 gre_checksum_list;
14 }
15 algorithm : csum16;
16 output_width : 16;
17 }
18

19 // normal checksum facility not used
20 /*
21 calculated_field gre.checksum {
22 verify gre_checksum if (valid(gre));
23 update gre_checksum if (valid(gre));
24 }
25 */
26

27 action compute_gre_hash() {
28 modify_field_with_hash_based_offset(gre_metadata.computedHash, 0, gre_checksum,

65536);↪→

29 }

15P4 also provides the generate_digest primitive action, which as its name indicates allows one to
generate digests of packets, however it appears to be meant to send this digest to a controller for further
processing.[10, p. 60]

34

Removal of GRE header action

After the packets have been verified to be authentic the GRE authentication header can be
removed. This is done by the remove_gre function via the gre_remove table (Listing 4.11).
This function uses the remove_header action to mark the GRE header as invalid which
will prevent deparsing the header instance at egress. The result is that the GRE header is
popped and valid parts higher-up the stack are copied to lower positions.[10, p. 55] Since the
packet is altered the IPv4 header needs to reflect those changes. First the protocol is set
to ICMP (during the project only ICMP was used as a payload) and the size of the GRE
header needs to be subtracted from the total packet length.

Besides being easier to debug, there is no good reason to make updating the sequence
number and removing the GRE header two separate steps. For an actual implementation
this optimisation can be considered. Also, for the actual authentication scheme this code
needs to be more sophisticated. For instance, different protocols need to be supported and
the header is likely to support variable lengths. It is expected that these requirements will
not result in (overly) complex code but might necessitate changes like removing the GRE
header after the alterations to the IP header have been made (because referencing invalid
fields results in undefined behaviour).[10, p. 32]

Because the IPv4 header has been changed, the header checksum has become invalid.
Prior to sending the packet the switch needs to update the IPv4 header checksum. The code
is similar to that shown in Listing 4.10 and is part of the base simple_router target, so it
is not shown here.

Listing 4.11: remove_gre action

1 # define IP_PROT_ICMP 0x01
2

3 action remove_gre() {
4 remove_header(gre);
5 modify_field(ipv4.protocol, IP_PROT_ICMP); // static proto following gre header
6 add_to_field(ipv4.totalLen, -16); // reduce length (size of gre header)
7 }

35

5 Proof of concept

In this chapter the functionality of the constructed P4 program is shown. First the way the
program is tested is given, then the simplified authentication scheme implemented in P4 is
demonstrated.

5.1 Test setup

The P4 program is run via a P4 software switch (the behavioral model 2) in a Mininet
environment. Via Mininet a virtual network that comprises two hosts is created and connected
to the P4 switch. The switch is actually functioning as a router that allows communication
between the two /24 subnets. Then a Python script using Scapy1 modules is used to send
a packet containing the simplified GRE authentication header. Scapy is positioned on the
link that connects H1 with the switch. Packets are sent to H2 via the switch. Assuming the
packets are authenticated correctly, H2 should reply and the response captured by Scapy.

First an IP packet is created with the source and destination address set to H1 and
H2 respectively. A GRE header is added that contains the session identifier and sequence
number. An ICMP layer follows the GRE header and the packet is concluded with three
random hexadecimals that comprise the ICMP Data field (used for identifying the packet
and testing forgery). Scapy calculates the checksum including the key by putting the MAC
key in the GRE Offset field. After the checksum has been calculated the key is removed
from the Offset field and the packet is sent.

If the packet is considered authentic by the P4 switch, it removes the GRE header and
then sends it to H2 which will respond with a regular ICMP echo reply packet. Since the P4
switch is actually a router that forwards normal IP packets it will forward the packet to H1
at which point Scapy will also receive it.

The packets are put on the wire via Scapy’s layer 2 sendp function. Via a sniffer the
payloads of the packets sent and received are compared and if they are equal the response is
considered valid. The reason for sending the packet at layer 2 is that the Linux namespace
facing the user (the root namespace) does not contain the IP addresses nor routing information
necessary for reaching the hosts (which live in the Mininet host namespaces). Also the
packets sent and received are asymmetric (GRE packets are sent and normal ICMP packets
are received). Therefore Scapy cannot match the response correctly. The solution to use a
sniffer in a separate thread proved the most straightforward.

Figure 5.1 depicts the test scenario (routing information is left out for brevity). The
notation of the messages sent approaches Scapy’s method for creating packets (for clarity a
simplified notation is used in the figure).

1Scapy is an interactive packet manipulation tool which among others, allows for easily crafting and
forging of packets: http://www.secdev.org/projects/scapy/

36

http://www.secdev.org/projects/scapy/

H1H1 S1S1 H2H2

Mininet Mininet P4

eh0 s1-eth1 s1-eth2 eth0

Scapy

GRE(key)/ICMP(rqst)/’123’ ICMP(rqst)/’123’

ICMP(rply)/’123’ ICMP(rply)/’123’

10.0.0.10 10.0.1.10

Figure 5.1: PoC test scenario

5.2 Demonstration

In this section the simplified authentication scheme implemented in the P4 program is
demonstrated.2

5.2.1 Reachability test
First a regular ping is tried to verify network reachability between H1 and H2. Listing 5.1
shows the command in Mininet returned successfully and the sniffer on the left-hand side of
the switch confirms this.

2A screencast of the demonstration has been made. It is published at https://raw.githubusercontent.com/
JcKlomp/rp2-p4-authentication/master/demonstration/demo.webm

37

https://raw.githubusercontent.com/JcKlomp/rp2-p4-authentication/master/demonstration/demo.webm
https://raw.githubusercontent.com/JcKlomp/rp2-p4-authentication/master/demonstration/demo.webm

Listing 5.1: Reachability test

Mininet
mininet> h1 ping -c1 h2
PING 10.0.1.10 (10.0.1.10) 56(84) bytes of data.
64 bytes from 10.0.1.10: icmp_seq=1 ttl=63 time=2.75 ms

--- 10.0.1.10 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.752/2.752/2.752/0.000 ms

Sniffer H1 - S1-ETH1
Src => Dst Prot Type Data ID Seq Chksum
1 10.0.0.10 => 10.0.1.10 ICMP RQST 1234567
2 10.0.1.10 => 10.0.0.10 ICMP RPLY 1234567

5.2.2 Session identifier 1
Via the runtime_CLI P4 command line tool the state of the P4 switch is checked (Listing 5.2).
There are two entries in the gre_key table: 075bcd15 (123456789) and 3ade68b1 (987654321).
These are the session identifiers, both are assigned separate keys (abcd and 1234 respectively)
and separate indices (used for the registers). Via the register_read function both registers
are read-out and shown to be initialised to zero.

Listing 5.2: P4 runtime state

gre_key table entries
RuntimeCmd: table_dump gre_key
==========
TABLE ENTRIES

Dumping entry 0x0
Match key:
* gre.key : EXACT 075bcd15
Action entry: set_gre_key_valid - 00, abcd

Dumping entry 0x1
Match key:
* gre.key : EXACT 3ade68b1
Action entry: set_gre_key_valid - 01, 1234
==========
Dumping default entry
Action entry: set_gre_key_invalid -

sequence_number_reg register values
RuntimeCmd: register_read sequence_number_reg 0
sequence_number_reg[0]= 0

RuntimeCmd: register_read sequence_number_reg 1
sequence_number_reg[1]= 0

38

In Listing 5.3 three packets are sent. First the packet_send function is used to create
a packet with 123456789 as the session identifier, 0xabcd as the MAC key and 123 as the
sequence number. These parameters result in a valid packet, the switch authenticates and
forwards it, and H2 responds with an ICMP echo reply containing the same random payload
(frame 4). Next the same parameters are used to send another packet, however this time the
remote host fails to reply (frame 6 should have been a reply from H2, instead it shows the
next packet sent by Scapy). This is because the sequence number no longer falls within the
sliding window. After the sequence number gets increased by one the number is correct and
the packet is considered valid.

Afterwards, the registers are checked and show that the sequence number of the session
identifier used to sent the packets has been increased, while the other register has not
changed.

Listing 5.3: Testing packets with session identifier 123456789

Sending 3 packets
> packet_send 123456789 0xabcd 123
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

123, checksum: 0xcf45, payload: 683↪→

response: 683

> packet_send 123456789 0xabcd 123
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

123, checksum: 0xcf45, payload: 662↪→

no response

> packet_send 123456789 0xabcd 124
sending 1 packet
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

124, checksum: 0xcf44, payload: 360↪→

response: 360

Src => Dst Prot Type Data ID Seq Chksum
3 10.0.0.10 => 10.0.1.10 GRE ICMP 683 0x075bcd15 123 0xcf45
4 10.0.1.10 => 10.0.0.10 ICMP RPLY 683
5 10.0.0.10 => 10.0.1.10 GRE ICMP 662 0x075bcd15 123 0xcf45
6 10.0.0.10 => 10.0.1.10 GRE ICMP 360 0x075bcd15 124 0xcf44
7 10.0.1.10 => 10.0.0.10 ICMP RPLY 360

Register values
RuntimeCmd: register_read sequence_number_reg 0
sequence_number_reg[0]= 124

RuntimeCmd: register_read sequence_number_reg 1
sequence_number_reg[1]= 0

39

5.2.3 Session identifier 2
Next the other session identifier known by the switch is tested (Listing 5.4). First a packet
is sent using 987654321, 0x1234 and 125 as parameters. This packet is dropped because
the sequence number lies outside the window. Then the sequence number is lowered to 124
and this time a response is received successfully. After the window has been updated 125 is
now considered valid. Next the sequence number is incremented by 125 resulting in a packet
with sequence number 250. This again fails because once more the number falls outside the
window. After lowering the sequence number to 249 the packet is accepted.

Listing 5.4: Testing packets with session identifier 987654321

Sending 5 packets
> packet_send 987654321 0x1234 125
sending packet: identifier: 987654321 (0x3ade68b1), hash key: 0x1234, sequence number:

125, checksum: 0x99be, payload: 783↪→

no response

> packet_send 987654321 0x1234 124
sending packet: identifier: 987654321 (0x3ade68b1), hash key: 0x1234, sequence number:

124, checksum: 0x99bf, payload: 454↪→

response: 454

> packet_send 987654321 0x1234 125
sending packet: identifier: 987654321 (0x3ade68b1), hash key: 0x1234, sequence number:

125, checksum: 0x99be, payload: 928↪→

response: 928

> packet_send 987654321 0x1234 250
sending packet: identifier: 987654321 (0x3ade68b1), hash key: 0x1234, sequence number:

250, checksum: 0x9941, payload: 324↪→

no response

> packet_send 987654321 0x1234 249
sending packet: identifier: 987654321 (0x3ade68b1), hash key: 0x1234, sequence number:

249, checksum: 0x9942, payload: 831↪→

response: 831

Src => Dst Prot Type Data ID Seq Chksum
8 10.0.0.10 => 10.0.1.10 GRE ICMP 783 0x3ade68b1 125 0x99be
9 10.0.0.10 => 10.0.1.10 GRE ICMP 454 0x3ade68b1 124 0x99bf

10 10.0.1.10 => 10.0.0.10 ICMP RPLY 454
11 10.0.0.10 => 10.0.1.10 GRE ICMP 928 0x3ade68b1 125 0x99be
12 10.0.1.10 => 10.0.0.10 ICMP RPLY 928
13 10.0.0.10 => 10.0.1.10 GRE ICMP 324 0x3ade68b1 250 0x9941
14 10.0.0.10 => 10.0.1.10 GRE ICMP 831 0x3ade68b1 249 0x9942
15 10.0.1.10 => 10.0.0.10 ICMP RPLY 831

40

5.2.4 Session identifier 3

New sessions can be added to the switch at runtime.3 In Listing 5.5 first an attempt is made
at sending a packet with the identifier 0x00000042. Without this session being known by
the switch, it fails. After the entry has been added to the gre_key table the next attempt
succeeds.

Listing 5.5: Testing packets with session identifier 0x00000042

Sending the packet without the session identifier configured
> packet_send 0x00000042 0x0024 123
sending packet: identifier: 66 (0x42), hash key: 0x24, sequence number: 123, checksum:

0x4f1e, payload: 263↪→

no response

Configure new session by adding table entry
RuntimeCmd: table_add gre_key set_gre_key_valid 0x00000042 => 2 0x0024
Adding entry to exact match table gre_key
match key: EXACT-00:00:00:42
action: set_gre_key_valid
runtime data: 00:02 00:24
Entry has been added with handle 2

Sending the packet again
> packet_send 0x00000042 0x0024 123
sending 1 packet
sending packet: identifier: 66 (0x42), hash key: 0x24, sequence number: 123, checksum:

0x4f1e, payload: 725↪→

response: 725

Src => Dst Prot Type Data ID Seq Chksum
16 10.0.0.10 => 10.0.1.10 GRE ICMP 263 0x00000042 123 0x4f1e
17 10.0.0.10 => 10.0.1.10 GRE ICMP 725 0x00000042 123 0x4f1e
18 10.0.1.10 => 10.0.0.10 ICMP RPLY 725

5.2.5 Forging of packets
Packets can be forged by the Scapy script in different ways. Two methods are shown. The
first method is to use the wrong MAC key. In Listing 5.6 the keys 0xabce, 0x1234 and
0xabcd are used of which only the right key results in the packet being forwarded by the
switch.

Listing 5.6: Forging the key

Register holds same value previously recorded
RuntimeCmd: register_read sequence_number_reg 0
sequence_number_reg[0]= 124

Sending packet with key set to 0xabce
> packet_send 123456789 0xabce 125

3Actually, all sessions are configured at runtime.

41

sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabce, sequence number:
125, checksum: 0xcf42, payload: 887↪→

no response

Sending packet with key set to 0x1234
> packet_send 123456789 0x1234 125
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0x1234, sequence number:

125, checksum: 0x68dd, payload: 341↪→

no response

Sending packet with key set to 0xabcd
> packet_send 123456789 0xabcd 125
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

125, checksum: 0xcf43, payload: 288↪→

response: 288

Src => Dst Prot Type Data ID Seq Chksum
20 10.0.0.10 => 10.0.1.10 GRE ICMP 341 0x075bcd15 125 0x68dd
21 10.0.0.10 => 10.0.1.10 GRE ICMP 288 0x075bcd15 125 0xcf43
22 10.0.1.10 => 10.0.0.10 ICMP RPLY 288

The other method is to append data to the payload after the simulated MAC has been
calculated. This is done by adding the 1 parameter. Listing 5.7 shows that when the payloads
are forged the packets are not be accepted.

Listing 5.7: Forging the payload

> packet_send 123456789 0xabcd 126 1
forging payload '618' with '248' appended
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

126, checksum: 0xcf42, payload: 618248↪→

no response

> packet_send 123456789 0xabcd 126 1
forging payload '481' with '769' appended
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

126, checksum: 0xcf42, payload: 481769↪→

no response

> packet_send 123456789 0xabcd 126
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

126, checksum: 0xcf42, payload: 476↪→

response: 476

Src => Dst Prot Type Data ID Seq Chksum
23 10.0.0.10 => 10.0.1.10 GRE ICMP 618248 0x075bcd15 126 0xcf42
24 10.0.0.10 => 10.0.1.10 GRE ICMP 481769 0x075bcd15 126 0xcf42
25 10.0.0.10 => 10.0.1.10 GRE ICMP 476 0x075bcd15 126 0xcf42
26 10.0.1.10 => 10.0.0.10 ICMP RPLY 476

42

5.2.6 Peculiarities
During the development and testing of the P4 program several odd phenomena were observed.
Some seem to stem from the software switch’s quirks that were worked around during the
project. Others were mainly unexpected and counter-intuitive manifestations that happen
when working with the lower layers of the network stack and using protocols in ways
unintended. Two of them are highlighted here.

The first peculiarity is that even though the payloads are randomised, the checksums stay
the same when the GRE header is left unchanged (Listing 5.8). The cause for this strange
behaviour is found in the ICMP header: changes to the ICMP payload are cancelled out by
the ICMP checksum; when the ICMP data payload value is increased (e.g., from ‘1’ to ‘2’
resulting in the hexadecimal value ‘3200’ instead of ‘3100’)4 the ICMP checksum “corrects”
the difference by being decremented with the same difference (e.g., ‘c6ff’ becomes ‘c5ff’).
The result for the GRE checksum is that the changes to the ICMP layer become an invariant.
Listing 5.9 shows this phenomenon by sending different packets via Scapy, capturing the
frames and calculating the checksums (the GRE header starts at offset 0x22 and the ICMP
header at 0x32).

Listing 5.8: Random payloads with same checksums

> packet_send 123456789 0xabcd 126
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

126, checksum: 0xcf42, payload: 906↪→

no response

> packet_send 123456789 0xabcd 126
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

126, checksum: 0xcf42, payload: 465↪→

no response

> packet_send 123456789 0xabcd 126
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

126, checksum: 0xcf42, payload: 736↪→

no response

> packet_send 123456789 0xabcd 126
sending packet: identifier: 123456789 (0x75bcd15), hash key: 0xabcd, sequence number:

126, checksum: 0xcf42, payload: 282↪→

no response

Src => Dst Prot Type Data ID Seq Chksum
27 10.0.0.10 => 10.0.1.10 GRE ICMP 906 0x075bcd15 126 0xcf42
28 10.0.0.10 => 10.0.1.10 GRE ICMP 465 0x075bcd15 126 0xcf42
29 10.0.0.10 => 10.0.1.10 GRE ICMP 736 0x075bcd15 126 0xcf42
30 10.0.0.10 => 10.0.1.10 GRE ICMP 282 0x075bcd15 126 0xcf42

4The values are effectively padded with zeros because the checksum calculation uses 16-bit words.

43

Listing 5.9: Detailed view of the equalising effect of the ICMP checksum

Send packet with ICMP payload 1
send(IP()/GRE(key_present=1,seqnum_present=1,chksum_present=1)/ICMP()/'1')

Capture packet
0000 ff ff ff ff ff ff 00 00 00 00 00 00 08 00 45 00E.
0010 00 2d 00 01 00 00 40 2f 7c 9f 7f 00 00 01 7f 00 .-....@/|.......
0020 00 01 b0 00 00 00 4f ff 00 00 00 00 00 00 00 00O.........
0030 00 00 08 00 c6 ff 00 00 00 00 311

Calculate GRE checksum
b000+0000+0000+0000+0000+0000+0000+0000+0800+c6ff+0000+0000+3100 = 1+AFFF = ones(B000)

= 4FFF↪→

Send packet with ICMP payload 2
send(IP()/GRE(key_present=1,seqnum_present=1,chksum_present=1)/ICMP()/'2')

0000 ff ff ff ff ff ff 00 00 00 00 00 00 08 00 45 00E.
0010 00 2d 00 01 00 00 40 2f 7c 9f 7f 00 00 01 7f 00 .-....@/|.......
0020 00 01 b0 00 00 00 4f ff 00 00 00 00 00 00 00 00O.........
0030 00 00 08 00 c5 ff 00 00 00 00 322

b000+0000+0000+0000+0000+0000+0000+0000+0800+c5ff+0000+0000+3200 = 1+AFFF = ones(B000)
= 4FFF↪→

Send packet with ICMP payload 4213212131312121 and ICMP identifier 1
send(IP()/GRE(key_present=1,seqnum_present=1,chksum_present=1)/ICMP(id=1)/'42132121313121

21')↪→

0000 ff ff ff ff ff ff 00 00 00 00 00 00 08 00 45 00E.
0010 00 3c 00 01 00 00 40 2f 7c 90 7f 00 00 01 7f 00 .<....@/|.......
0020 00 01 b0 00 00 00 4f ff 00 00 00 00 00 00 00 00O.........
0030 00 00 08 00 63 72 00 01 00 00 34 32 31 33 32 31cr....421321
0040 32 31 33 31 33 31 32 31 32 31 2131312121

b000+0000+0000+0000+0000+0000+0000+0000+0800+6372+0001+0000+3432+3133+3231+3231+3331+3331
+3231+3231 = 2+AFFE = ones(B000) = 4FFF↪→

Another unexpected result is that the sniffer positioned at the right-hand side of the
switch (not shown in the listings above) stops capturing when a GRE packet is sent that
cannot be verified correctly. Tcpdump shows that the software switch literally presents an
empty Ethernet frame to the interface. Apparently truncating the packet to zero in order
to drop it in case of a GRE header has an unexpected side effect. This results in tshark
exiting when it sees such a malformed Ethernet frame, but only when tshark (or Wireshark)
is listening on a single interface. Further inspection shows that an error is printed via the
kernel ring buffer. To work around this problem tshark is automatically restarted but this
action is visible via the frame counter.

During publication of the final code, different behaviour was seen: an error message
gets printed that the packet size is too short and the sniffer does no longer stop capturing
because the erroneous frame is no longer presented. A possible explanation for this differing
in behaviour is that an updated dependency (e.g., the Mininet package) now accounts for
frames smaller than an allowed minimum.

44

Listing 5.10: Truncation quirk

Sniffer S1-ETH2 - H2
Src => Dst Prot Type Data ID Seq Chksum
1 10.0.0.10 => 10.0.1.10 ICMP RQST 725
2 10.0.1.10 => 10.0.0.10 ICMP RPLY 725
1 10.0.0.10 => 10.0.1.10 ICMP RQST 288
2 10.0.1.10 => 10.0.0.10 ICMP RPLY 288
1 10.0.0.10 => 10.0.1.10 ICMP RQST 476
2 10.0.1.10 => 10.0.0.10 ICMP RPLY 476

Tcpdump output
12:31:52.266216 [|ether]

Kernel ring buffer error message
protocol 0003 is buggy, dev s1-eth2

Alternative error message
lt-simple_route: packet size is too short (0 < 14)

45

6 Discussion and recommendations

In this chapter the insights obtained during the project are discussed. First the architecture
of the CoCo VPN service and the authentication protocol is looked into. Then the proposed
authentication scheme and protocol are examined in the light of the P4 proof of concept.
Furthermore, the state of the P4 language and its ecosystem are reflected upon.

6.1 CoCo architecture and authentication scheme

During the project it became apparent that the CoCo VPN architecture is still in an early
phase. Currently, the user interaction and routing aspects have been developed in the form
of a prototype. However, user authentication was considered out of scope up to now. The
user agent is not defined nor is clear what the cryptographic means will comprise. For
instance, it has not been determined how user identities will be dealt with in a multi-domain
setting or how the key material will be distributed. This makes reasoning about the required
authentication scheme and its protocol a difficult task. As a result no clear and definite
recommendations can be given during this project in that regard. Instead we need to
constrain ourselves to guidelines and recommendations that need further exploration.

In terms of complexity it appears wise to keep the authentication scheme simple. By
confining most of the complexity in the CoCo controller the implementation and maintenance
of the P4 program is likely to be more straightforward. Especially for the early generations
of P4 hardware it is conceivable that the lack of maturity may result in less than ideal
conformance to the specification, possibly giving rise to compatibility issues between targets
(e.g., requiring maintenance of separate versions of the same program). It is expected that by
keeping the P4 components simple, development and troubleshooting will be easier, leading
to a system that performs better.

A thing that is likely to complicate the implementation and result in a complex system
is the scope of the system. Currently it is envisioned that VPN users may be mobile and use
the system from home. For the authentication scheme this means that it needs to be able to
identify the user using different network identifier and possibly differentiate users that use
the same identifier due to NAT. This has implications for the authentication protocol which
need to be considered carefully. It might be better to refrain from supporting too many use
cases, otherwise a too complex system could be the result. For instance, using tunnels for
home users instead of a purely routed solution could lower the requirements of the scheme
and alleviate the burden of developing and maintaining it.

Another argument for keeping the solution simple is that its intended use case is high
performance computing. This consideration led to the idea to pre-provision the P4 switch
with all session information and key material. This way session roll-overs could be handled
in the middle of transfers without any performance degradation. The downside is that this
solution has scalability issues. Especially when authentication information is distributed
across different domains the constrained amount of memory of the network devices could
pose a problem.

46

In the current envisioned use case it is expected that the key material can be kept local
to the domain, but if end-to-end authentication is desirable this is no longer an option.
In that case it might be a solution to forward packets that contain an unknown session
identifier to the CoCo controller in an OpenFlow manner (i.e. the controller inspects packets
with unknown identifiers and installs an entry on-demand). As an optimisation it could be
decided to only provision the switches with the key material of sessions that are expected to
flow through the switch. The rest of the sessions are only installed on-demand when a flow
hits the P4 switch. This does have implications for the complexity of the system and the
performance characteristics. Further research into P4 solutions that make this possible and
careful consideration are advised.

During the project the concept of sending a packet with an authentication header, which
is removed by the network after it has been verified, has been successfully implemented in
P4. However, even though the providers should be trustworthy (the architecture provides no
confidentiality), this scheme will likely lead to a suboptimal system. The concern stems from
the asymmetry of the flows: packets with an IPsec AH or UDP authentication header are
sent and the response could be an ICMP or Transmission Control Protocol (TCP) packet.
This is likely to pose a problem for middleboxes (e.g., a firewall or NAT device) and could
impede monitoring and troubleshooting. A solution could be to not remove the header used
for authentication or restore it when it exits the last PE on its path. Possibly a generic or
local session identifier could be used such that authentication information can still be kept
local and the scheme kept simple.

Implementation of the CoCo client (the user agent that adds the authentication infor-
mation) and the authentication protocol are other parts of the architecture that need to be
studied further. If an existing protocol is used (like the IPsec AH) then the accompanied
software could be used too, possibly as a basis, to implement the CoCo client. However,
this could lead to violations of the leveraged protocol. Customisation of the protocol and
software could lead to compatibility issues. If the VPN service gets deployed across more
than a hand full of organisations this could be an indefensible design decision. If IPsec AH
is selected as the authentication protocol it is likely best to refrain from customising the
standard. However, a subset could be defined to ease the implementation efforts.

In case a lower-layer protocol is used (like the IPsec AH) or created, mobility and home
use are harder to support than is likely the case with a higher-layer protocol (like UDP).
However, higher-layer protocols are likely to impose a higher overhead and could be more
difficult to implement in P4 because of their generic use case; an identifier needs to be used
(e.g., a specific port number) or part of the payload needs to be parsed in order to determine
whether the packet contains a CoCo authentication header. Further insight in the CoCo use
cases and research into the flexibility of parsing headers in P4 is necessary to determine the
best method.

Likewise, more research is necessary to decide upon the most suitable authentication
method. Especially the cryptographic means (e.g., hashing algorithm) needs to be considered
in terms of provided security but also feasibility of P4 target support and runtime requirements.
AES and SHA are likely candidates, however it would be very interesting to compare these
algorithms with SipHash. Due to its high performance, low complexity and suitability for
(short) network packets, SipHash might be a better choice. However, the algorithm appears
less versatile in terms of cryptographic purposes and since it is not part of cipher suites it is
not a likely candidate for widespread inclusion in the P4 targets.

47

Besides complications in terms of firewalls and NAT, other possible issues have been
identified. For instance, IP fragmentation would necessitate that the P4 switch identifies,
buffers and reassembles fragmented packets so that the MAC can be computed correctly. It is
unlikely that P4 will provide the facilities necessary to do this; in P4 programming the parser
is limited to defining fields and extracting headers of a single packet, it does not standardise
control over the queues[10, p. 76] which might otherwise be used for buffering fragments,
and in IPv6 routers do not fragment packets lowering the need for such a facility).[36, p. 18]

Thus, it is likely that this functionality would need to be provided by the target making
its availability uncertain. Another problem for computing the MAC is the switch’s packet
forwarding mode; in cut-through mode the switch starts forwarding the packet before it has
been completely received. Since it is expected that the PE is run in layer 3 mode this is
unlikely to pose a problem.

Another issue that might arise is that multiple PE switches might be deployed in a
load-balance or back-up scenario. Since state about the sessions (the sequence numbers) is
kept locally on the switch a split-brain problem might arise. A solution might be to use large
windows and periodically transfer the state to a controller. Alternatively, each switch could
directly inform other switches, either after each packet or a when a predetermined threshold
is reached. Still, it means that state needs to be transferred and failure modes require more
attention. For example, the client could consider the established session invalid after it has
not received a reply of the other VPN endpoint after a certain amount of attempts. On the
other hand, the controller should ensure that the switches are in the right state; state of the
switches must be tracked and stale session information should be removed.

To accommodate very high-performance applications it is advisable to use 64-bit sequence
numbers. This can be done either by allotting a 64-bit field for this purpose at the cost of
higher header overhead, or via the same concept as the Extended Sequence Numbers of the
IPsec protocol at the cost of more complexity. Implementing the latter in P4 is likely to
be feasibly using an extra register per tracked session, but remains a future research topic.
Likewise, encoding options into the session identifier is likely possible via a longest-prefix
or masked match, or options could be supplied via metadata by the controller. With these
topics unresearched the best method for indicating session options remains to be determined.

Because the CoCo VPN architecture needs to differentiate users it has to include methods
for exchanging key material to support authentication. And since the service is intended to
support eScience — which will likely involve sensitive information — there is no good reason
to not develop it with end-to-end encryption in mind (besides to keeping the system simple).
Solving confidentiality at the network layer is a complex task, but once the key distribution
system is in place adding encryption at layer 3 is likely to be more successful than adapting
every application with a Transport Layer Security (TLS) subsystem.

If it is decided to implemented end-to-end authentication and encryption it might be a
good idea to use separate keys for authentication and encryption. The authentication keys
could then be known by the network while the encryption keys could be only known by the
endpoints. That way the network can authenticate the VPN traffic and limit misuse early,
while the end users can be ensured of the confidentiality of their traffic. However, the ideal
situation where the network does not need to trust its users and vice versa would require a
more sophisticated cryptography scheme.

48

6.2 P4 language

The experiences achieved during the project show that P4 language is in a fairly good shape
considering its relatively immature state. The software targets are still in development, and
while there were several quirks or even bugs, it can be considered reasonably stable. It is to
be expected that while the software switch is in active development, its stability will vary
over time and that the issues found during the project are of a volatile kind.

Even for an inexperienced programmer, like the author of this report, the P4 Language
Specification is remarkably clear and fairly unambiguous. Since the language is being
developed and version 1.1 of the specification is currently in draft form, it is inevitable
that inconsistencies and functionality gaps exist. Examples are the description of stateful
memories and the unspecified register_read and register_write primitive actions.

Via the proof of concept the main requirements for implementing authentication of network
traffic in P4 are shown to be feasible. The 1.0 version of the P4 Language Specification
imposes several impracticalities, mainly in terms of the bit width of the data type allowed
in action parameters. This limitation should be overcome with version 1.1 of the language,
which allows for more expressive declaration of data types. At this moment there are no
suitable cryptographic means e.g., algorithms and key input functions, for ensuring that
authentication will be secure. To certain extent it is expected that the P4 hardware targets
can and will be enabled to provide in these means. First, the software targets and possibly
the P4 compiler need to be enhanced such that a secure authentication scheme can be tested
realistically.1

Of great assistance were the many software targets, available in the git repository, which
provided practical code examples. What is a bit confusing is that there are software targets
that are named the same, but consist of differing code. Possibly, development has shifted to
newer versions and the older versions are still available. Another confusing aspect is that
every software target can have different auxiliary tools and ways of interacting with it. For
instance, not all targets in the P4factory appear to be enabled for usage with the second
software switch and the targets of the behavioral model 2 have their supported primitive
actions defined separately.

1Possible starting points for adding the cryptographic means to the P4 source code are as follows:
• the behavioral model 1: p4c-behavioral/p4c_bm/templates/src/checksums.c and

p4c-behavioral/p4c_bm/templates/src/checksums_algos.h
• the behavioral model 2: behavioral-model/src/bm_sim/checksums.cpp and

behavioral-model/src/bm_sim/calculations.cpp;
• the compiler: p4c-bm/p4c_bm/gen_json.py;
• and the P4 high-level intermediate representation: p4-hlir/p4_hlir/frontend/dumper.py

49

7 Conclusion

During the project, requirements for adding authentication to the CoCo VPN service have
been explored and a P4 program comprising a simplified authentication scheme has been
developed. Through a proof of concept the mechanisms required for authentication of
network traffic via the P4 language are shown to be feasible; sessions can be manipulated at
runtime and via a simulated MAC (a ‘keyed CRC’) multiple sessions can be independently
authenticated. However, the necessary cryptographic means cannot be implemented using the
P4 language, but instead require support of the P4 target. Immaturity of the language and
per-target limitations are likely to impose hurdles for a successful deployment, especially for
the first generation(s) of P4 hardware. A possible mitigation of the expected problems is to
keep the authentication scheme and the P4 program simple. An example is to pre-provision
the switch that authenticates the traffic with all the established sessions and related key
material. This enables the high-performance applications of the VPN service but imposes
limits to the scalability.

As a more general conclusion, adding authentication of network traffic to the CoCo
VPN architecture knows many caveats. NAT, IP fragmentation and packet forwarding
modes need to be taken into account when designing the authentication scheme. The most
cost-effective solution to these issues is to only support a limited amount of problematic use
cases within the protocol or even the VPN itself, while tunnelling can be considered at the
cost of performance. The most appropriate authentication protocol depends on the use case
and the deployment scale. While the IPsec AH provides in all the required means, creating
a custom protocol is achievable through P4 and might offer a more flexible solution.

During the project, an authentication scheme consisting of asymmetrical flows was used
as a ‘reference design’. While implementing this scheme in P4 is shown feasible and has a few
inherently favourable characteristics in terms of complexity and scalability, it might cause
problems for actual deployments. The main concern of the scheme is that the removal of the
authentication header will likely make the flows harder to firewall and monitor. As a solution
end-to-end authentication, or another form that results in symmetrical flows, is encouraged.
Unfortunately, this has the potential to result in a more complex system, therefore the final
solution should be designed with these trade-offs in mind.

50

8 Future research

As future work the following topics are proposed:

• During the project it has become apparent that the cryptographic means necessary
cannot be implemented directly into P4 itself. Instead the targets should provide in
these functions. For a follow-up project it would be interesting to implement a MAC
algorithm in the software switch so that a more realistic proof of concept can be created.
This work could also include the comparison and selection of the most appropriate
algorithm to be used for the authentication scheme and to be implemented in actual
targets. During the project a preliminary selection of algorithms has been made. This
selection includes the SipHash algorithm, which does not seem to have been subjected
to extensive cryptanalysis.

• The authentication scheme envisioned for this project requires enhancements of the
CoCo VPN architecture. The CoCo agent needs to implement a P4-facing API while
the CoCo portal needs to allow session establishment with a to-be-developed CoCo
client. Development of this authentication scheme and its subsystems will likely require
further research of the P4 capabilities. The intended use cases of the VPN service
could also be reconsidered to increase the chances of a successful implementation and
deployment. For instance, offering high performance and a high level of security while
supporting home and mobile use cases could result in a system that is too complex.
Either restrictions or solutions for these use cases could be topics of future research.
Once user authentication on a network device is in place, end-to-end authentication and
encryption are desirable features. Even though these will introduce more complexity,
designing the CoCo VPN architecture should be done while keeping these in mind.
Whether and how these features can be supported best could be part of future research.

51

Bibliography

[1] Ronald van der Pol et al. “Assessment of SDN technology for an easy-to-use VPN
service”. In: Future Generation Computer Systems 56 (2016), pp. 295–302 (cit. on
pp. 4, 7).

[2] Pat Bosshart et al. “P4: Programming protocol-independent packet processors”. In:
ACM SIGCOMM Computer Communication Review 44.3 (2014), pp. 87–95 (cit. on
p. 4).

[3] Vainius Dangovas and Feliksas Kuliesius. “SDN-driven authentication and access
control system”. In: The International Conference on Digital Information, Networking,
and Wireless Communications (DINWC). Society of Digital Information and Wireless
Communication. 2014, p. 20 (cit. on p. 4).

[4] Jianfeng Zou et al. “Design and implementation of secure multicast based on SDN”.
In: Broadband Network & Multimedia Technology (IC-BNMT), 2013 5th IEEE Inter-
national Conference on. IEEE. 2013, pp. 124–128 (cit. on p. 4).

[5] Hyojoon Kim and Nick Feamster. “Improving network management with software
defined networking”. In: Communications Magazine, IEEE 51.2 (2013), pp. 114–119
(cit. on p. 4).

[6] Dongting Yu et al. “Authentication for resilience: the case of SDN”. In: Security
Protocols XXI. Springer, 2013, pp. 39–44 (cit. on p. 4).

[7] Anirudh Sivaraman et al. “DC. p4: programming the forwarding plane of a data-center
switch”. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research. ACM. 2015, p. 2 (cit. on p. 4).

[8] Huynh Tu Dang et al. “Paxos Made Switch-y”. In: arXiv preprint arXiv:1511.04985
(2015) (cit. on p. 4).

[9] Nick McKeown and Jen Rexford. Clarifying the differences between P4 and OpenFlow.
P4 Language Consortium. url: http://p4.org/p4/clarifying-the-differences-between-
p4-and-openflow/ (visited on 07/08/2016) (cit. on pp. 9, 10).

[10] The P4 Language Specification. Version 1.1.0. The P4 Language Consortium. Jan. 27,
2016. 124 pp. url: http://p4.org/wp-content/uploads/2016/03/p4_v1.1.pdf (cit. on
pp. 9, 10, 14, 27, 28, 31–35, 48).

[11] J. Viega, M. Messier, and P. Chandra. Network Security with OpenSSL: Cryptography
for Secure Communications. O’Reilly Media, 2002. isbn: 9780596551971. url: https:
//books.google.nl/books?id=IIqwAy4qEl0C (cit. on p. 11).

[12] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authen-
tication. RFC 2104 (Informational). Updated by RFC 6151. Internet Engineering Task
Force, Feb. 1997. url: https://tools.ietf.org/html/rfc2104 (cit. on pp. 12, 33).

[13] S. Turner and L. Chen. Updated Security Considerations for the MD5 Message-Digest
and the HMAC-MD5 Algorithms. RFC 6151 (Informational). Internet Engineering Task
Force, Mar. 2011. url: https://tools.ietf.org/html/rfc6151 (cit. on p. 12).

52

http://p4.org/p4/clarifying-the-differences-between-p4-and-openflow/
http://p4.org/p4/clarifying-the-differences-between-p4-and-openflow/
http://p4.org/wp-content/uploads/2016/03/p4_v1.1.pdf
https://books.google.nl/books?id=IIqwAy4qEl0C
https://books.google.nl/books?id=IIqwAy4qEl0C
https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc6151

[14] S. Frankel and H. Herbert. The AES-XCBC-MAC-96 Algorithm and Its Use With
IPsec. RFC 3566 (Proposed Standard). Internet Engineering Task Force, Sept. 2003.
url: https://tools.ietf.org/html/rfc3566 (cit. on p. 12).

[15] D. McGrew and J. Viega. The Use of Galois Message Authentication Code (GMAC) in
IPsec ESP and AH. RFC 4543 (Proposed Standard). Internet Engineering Task Force,
May 2006. url: https://tools.ietf.org/html/rfc4543 (cit. on pp. 12, 15).

[16] Stefan Lemsitzer et al. “Multi-gigabit GCM-AES architecture optimized for FPGAs”. In:
International Workshop on Cryptographic Hardware and Embedded Systems. Springer.
2007, pp. 227–238 (cit. on p. 12).

[17] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539
(Informational). Internet Engineering Task Force, May 2015. url: https://tools.ietf.
org/html/rfc7539 (cit. on p. 13).

[18] Daniel J Bernstein. “The Poly1305-AES message-authentication code”. In: Fast Software
Encryption. Springer. 2005, pp. 32–49 (cit. on p. 13).

[19] SipHash: a fast short-input PRF. May 27, 2016. url: https://131002.net/siphash/
(visited on 06/13/2016) (cit. on p. 13).

[20] Christian Heimes. PEP 456 – Secure and interchangeable hash algorithm. Sept. 27,
2013. url: https://www.python.org/dev/peps/pep-0456 (visited on 06/13/2016)
(cit. on p. 13).

[21] Jean-Philippe Aumasson and Daniel J Bernstein. “SipHash: a fast short-input PRF”.
In: Progress in Cryptology-INDOCRYPT 2012. Springer, 2012, pp. 489–508 (cit. on
p. 13).

[22] M.S. Merkow and J. Breithaupt. Information Security: Principles and Practices. Pren-
tice Hall Security Series. Pearson Prentice Hall, 2006. isbn: 9780131547292. url:
https://books.google.nl/books?id=fTAkAQAAIAAJ (cit. on p. 14).

[23] Niels Ferguson and Bruce Schneier. “A cryptographic evaluation of IPsec”. In: Coun-
terpane Internet Security, Inc 3031 (2000) (cit. on p. 14).

[24] Paul Wouters. Libreswan - Interoperability. Nov. 4, 2015. url: https://libreswan.org/
wiki/Interoperability (visited on 06/12/2016) (cit. on p. 14).

[25] R. Kent. IP Authentication Header. Dec. 2005. url: https://tools.ietf.org/html/rfc4302
(cit. on p. 15).

[26] J. Schiller. Cryptographic Algorithms for Use in the Internet Key Exchange Version 2
(IKEv2). Dec. 2005. url: https://tools.ietf.org/html/rfc4307 (cit. on p. 15).

[27] S. Kelly and S. Frankel. Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-
512 with IPsec. May 2007. url: https://tools.ietf.org/html/rfc4868 (cit. on p. 15).

[28] Y. Nir. ChaCha20, Poly1305, and Their Use in the Internet Key Exchange Protocol
(IKE) and IPsec. Aug. 2015. url: https://tools.ietf.org/html/rfc7634 (cit. on p. 15).

[29] Ed. P. Eronen. IKEv2 Mobility and Multihoming Protocol (MOBIKE). June 2006. url:
https://tools.ietf.org/html/rfc4555 (cit. on p. 16).

[30] Security Parameters Index (SPI) Parameters. IANA. url: https://www.iana.org/
assignments/spi-numbers/spi-numbers.xhtml (visited on 06/21/2016) (cit. on p. 18).

53

https://tools.ietf.org/html/rfc3566
https://tools.ietf.org/html/rfc4543
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
https://131002.net/siphash/
https://www.python.org/dev/peps/pep-0456
https://books.google.nl/books?id=fTAkAQAAIAAJ
https://libreswan.org/wiki/Interoperability
https://libreswan.org/wiki/Interoperability
https://tools.ietf.org/html/rfc4302
https://tools.ietf.org/html/rfc4307
https://tools.ietf.org/html/rfc4868
https://tools.ietf.org/html/rfc7634
https://tools.ietf.org/html/rfc4555
https://www.iana.org/assignments/spi-numbers/spi-numbers.xhtml
https://www.iana.org/assignments/spi-numbers/spi-numbers.xhtml

[31] S. Hanks et al. Generic Routing Encapsulation (GRE). RFC 1701 (Informational).
Internet Engineering Task Force, Oct. 1994. url: https://tools.ietf.org/html/rfc1701
(cit. on p. 22).

[32] D. Farinacci et al. Generic Routing Encapsulation (GRE). RFC 2784 (Proposed
Standard). Updated by RFC 2890. Internet Engineering Task Force, Mar. 2000. url:
https://tools.ietf.org/html/rfc2784 (cit. on pp. 22, 23).

[33] K. Hamzeh et al. Point-to-Point Tunneling Protocol (PPTP). RFC 2637 (Informational).
Internet Engineering Task Force, July 1999. url: https://tools.ietf.org/html/rfc2637
(cit. on p. 22).

[34] G. Dommety. Key and Sequence Number Extensions to GRE. RFC 2890 (Proposed
Standard). Internet Engineering Task Force, Sept. 2000. url: https://tools.ietf.org/
html/rfc2890 (cit. on p. 22).

[35] Behavioral Model Repository. GitHub. url: https://github.com/p4lang/behavioral-
model (visited on 07/04/2016) (cit. on p. 23).

[36] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 2460
(Draft Standard). Updated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112.
Internet Engineering Task Force, Dec. 1998. url: https://tools.ietf.org/html/rfc2460
(cit. on p. 48).

54

https://tools.ietf.org/html/rfc1701
https://tools.ietf.org/html/rfc2784
https://tools.ietf.org/html/rfc2637
https://tools.ietf.org/html/rfc2890
https://tools.ietf.org/html/rfc2890
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://tools.ietf.org/html/rfc2460

Acronyms

ACL
access control list 8, 19

AES
Advanced Encryption Standard 12–15, 47

AH
Authentication Header 14–18, 47, 50

API
application programming interface 6, 9, 14, 51

BGP
Border Gateway Protocol 6

CBC
cipher block chaining 12

CoCo
Community Connection ii, 4–8, 11–20, 23, 26, 46–48, 50, 51

CRC
cyclic redundancy check 33, 50

DoS
Denial of Service 11, 13, 14, 20, 28

ESN
Extended Sequence Number 15, 19

ESP
Encapsulating Security Payload 14, 15

GRE
Generic Routing Encapsulation 22, 23, 26–30, 33, 35, 36, 43, 44

HMAC
hash-based message authentication code 12, 13

ICMP
Internet Control Message Protocol 23, 35, 36, 39, 43, 47

55

ICV
Integrity Check Value 15, 18

IKE
Internet Key Exchange 14–16

IP
Internet Protocol 4, 14–16, 18, 20, 23, 27, 33–36, 48, 50

IPsec
Internet Protocol Security 14–19, 22, 47, 48, 50

MAC
Media Access Control 4

MAC
message authentication code 11–15, 20, 22, 23, 26, 28, 29, 33, 34, 36, 39, 41, 42, 48, 50,
51

MOBIKE
IKEv2 Mobility and Multihoming Protocol 16

MPLS
Multiprotocol Label Switching 6

MTU
maximum transmission unit 18

NAT
network address translation 15–18, 46–48, 50

NREN
national research and education network 15

PE
provider edge 7, 8, 15, 19, 20, 47, 48

SA
Security Association 14–16, 18

SDN
software defined networking ii, 4, 6, 9

SHA
Secure Hash Algorithm 12–15, 47

SPI
Security Parameters Index 14, 16, 18

56

TCP
Transmission Control Protocol 47

TLS
Transport Layer Security 48

UDP
User Datagram Protocol 17, 18, 47

VPN
virtual private network ii, 4–8, 11, 12, 14–17, 19, 20, 26, 46–48, 50, 51

57

	Contents
	1 Introduction
	1.1 Related work
	1.2 Research questions
	1.3 Report outline

	2 Background
	2.1 CoCo VPN service
	2.2 P4 overview

	3 Authentication protocol
	3.1 Protocol requirements
	3.2 Authentication algorithm overview
	3.3 Authentication protocol overview
	3.3.1 IPsec overview
	3.3.2 Authentication Header and Encapsulating Security Payload
	3.3.3 Suitability of IPsec for the CoCo VPN service

	3.4 CoCo authentication protocol
	3.4.1 CoCo protocol header
	3.4.2 CoCo authentication protocol behaviour

	4 Implementation in P4
	4.1 Simplified authentication protocol
	4.2 P4 program
	4.2.1 P4 development environment
	4.2.2 Program overview
	4.2.3 P4 code

	5 Proof of concept
	5.1 Test setup
	5.2 Demonstration
	5.2.1 Reachability test
	5.2.2 Session identifier 1
	5.2.3 Session identifier 2
	5.2.4 Session identifier 3
	5.2.5 Forging of packets
	5.2.6 Peculiarities

	6 Discussion and recommendations
	6.1 CoCo architecture and authentication scheme
	6.2 P4 language

	7 Conclusion
	8 Future research
	Bibliography
	Acronyms

README.md

rp2-p4-authentication

P4 authentication proof of concept using GRE and a 'keyed' checksum to simulate message authentication.

Installation overview
The files of this repository should be placed in the root of the behavioral model directory. Then the autoconf.sh and configure scripts need to be run. In case the behavioral model has not been compiled yet, make needs to be run too. The simple_router_auth_poc has been made using the 1.0.0 version of the software switch. The installation commands will install the environment (the behavioral model and the p4auth PoC target) from scratch on a Ubuntu 16.04 x86-64 installation.

Alternatively, the repo can be cloned somewhere else and the files copied to the behavioral model directory. Afterwards autogen.sh and configure need to be (re-)run.
The p4-auth repository comes with the following modified files:

* configure.ac: adds targets/simple_router_auth_poc/Makefile to AC_CONFIG_FILES
* targets/Makefile.am: adds simple_router_auth_poc to SUBDIRS
* mininet/p4_mininet.py: adds additional args to improve logging (requires debugging to be enabled)

It is also possible to just place the simple_router_auth_poc directory in the targets directory, copy the Makefile of the simple_target to it (after it has been generated by autoconf and automake) and run make from the target's directory. To improve mininet's logging the following can be added manually to *behavioral-model/mininet/p4_mininet.py*:

>@100
>args.append('--log-file /tmp/p4s.%s.verbose.log --log-flush --debugger' % self.name)

Installation commands

 git clone -b 1.0.0 https://github.com/p4lang/behavioral-model.git
 cd behavioral-model

 # prevent pip error from failing install_deps.sh
 #sudo apt install python-pip # not necessary any more for on an up to date installation
 #sudo -H pip install --upgrade pip
 ./install_deps.sh
 sudo pip install thrift # otherwise mininet fails to launch (running install_deps.sh as root does not resolve it)

Add P4 auth code:

 git remote add p4auth https://github.com/JcKlomp/rp2-p4-authentication.git
 git fetch p4auth
 git checkout p4auth/master -- . # copy the p4auth files into the bmv2 dir

Build the behavioral model:

 ./autogen.sh
 ./configure 'CXXFLAGS=-O0 -g' --enable-debugger
 make

At this point the behavioral model should have been built including all the necessary files of the simple_router_auth_poc target.

Optionally, install p4c-bm:

 git clone -b master 1.0.0 https://github.com/p4lang/p4c-bm.git
 cd p4c-bm
 sudo pip install -r requirements.txt
 sudo python setup.py install

Install dependencies for auth demonstration:

 sudo apt install tmux mininet scapy wireshark tshark
 # for tshark enable dumpcap's non-superusers option and ensure the user is part of wireshark group `sudo usermod -a -G wireshark $USER && su $USER`

Now the target can be tested by running *mininet.sh* from the target's directory.
After launching it the command `h1 ping -c1 h2` should result in a successful response (table entries are added automatically after 2 seconds; sometimes this timeout is too low and needs to be increased or it can be tried to launch mininet again after files have been cached).
Then, to test the authentication PoC *tmux* should be started to run `source demonstration.sh` (preferably switch to a root user before starting tmux, otherwise the table entries need to be added manually) or `sudo ./packet_sender.py` can be used manually while the target is runnning in *mininet*.

Files and their purpose

* simple_router.p4: P4 code
* packet_sender.py: script for sending authenticated packets in the *Mininet* environment using *Scapy*
* demonstration.sh: automatically create demonstration environment in *tmux* using *packet_sender.py*, *Mininet* and *tshark*
* add_entries.sh: simple script to add table entries via *commands.txt* and *runtime_CLI*
* commands.txt: table entry commands used with *runtime_CLI*
* debugger.sh: simple script to start the debugger via *p4dbg.py*
* launch.sh: wrapper around *run.sh* for launching the software switch without *Mininet*
* logger.sh: simple script for starting the *nanomsg* logger
* mininet.sh: script for launching the software switch in the *Mininet* environment; table entries are automatically added and a sniffer (e.g., *Wireshark*) can be launched
* mininet-host-down.sh: script for bringing a *Mininet* link down and up (no real purpose other than testing)
* p4-compile2-json.sh: simple script for compiling the P4 program to json representation via *p4c-bmv2*; can be used for replacing problematic values in the json afterwards via multi-line *perl* search & replace
* primitives.cpp: local software switch source code containing the primitive actions; code for additional primitive actions copied from the BMv2 *simple_switch* target
* tshark.sh: script used by *demonstration.sh* around *tshark* for printing relevant packet data
* wireshark.sh: simple script for manually starting *Wireshark*; obsolete since using the *mininet.sh* launcher will also do this

configure.ac

-*- Autoconf -*-
Process this file with autoconf to produce a configure script.

AC_PREREQ([2.68])
AC_INIT([bm], [m4_esyscmd(tools/get_version.sh)],
 [antonin@barefootnetworks.com])
AM_INIT_AUTOMAKE([foreign subdir-objects])
AC_CONFIG_SRCDIR([src/bm_sim/checksums.cpp])
AC_CONFIG_HEADERS([config.h])

AC_SUBST([BM_VERSION], [AC_PACKAGE_VERSION])

Pyhton is optional to the package
AM_PATH_PYTHON([2.7],, [:])

coverage_enabled=no
AC_ARG_ENABLE([coverage],
 AS_HELP_STRING([--enable-coverage], [Enable code coverage tracking]))
AS_IF([test "x$enable_coverage" = "xyes"], [
 coverage_enabled=yes
 AC_DEFINE([COVERAGE], [], ["Link with gcov."])
 COVERAGE_FLAGS="-coverage"
])

AC_SUBST([COVERAGE_FLAGS])

AC_ARG_WITH([targets],
 AS_HELP_STRING([--without-targets], [Do not build targets]),
 [], [want_targets=yes])

AM_CONDITIONAL([COND_TARGETS], [test "$want_targets" = yes])

want_stress_tests=no
AC_ARG_WITH([stress_tests],
 AS_HELP_STRING([--with-stress-tests], [Include stress tests]),
 [want_stress_tests=yes], [])

AM_CONDITIONAL([COND_STRESS_TESTS], [test "$want_stress_tests" = yes])

want_pdfixed=no
AC_ARG_WITH([pdfixed],
 AS_HELP_STRING([--with-pdfixed], [Build pdfixed for bmv2]),
 [want_pdfixed=yes], [])

AM_CONDITIONAL([COND_PDFIXED], [test "$want_pdfixed" = yes])

MY_CPPFLAGS=""

debugger_enabled=no
AC_ARG_ENABLE([debugger],
 AS_HELP_STRING([--enable-debugger], [Enable bmv2 remote debugger]))
AS_IF([test "x$enable_debugger" = "xyes"], [
 debugger_enabled=yes
 MY_CPPFLAGS="$MY_CPPFLAGS -DBMDEBUG_ON"
])

logging_macros_enabled=no
AC_ARG_ENABLE([logging_macros],
 AS_HELP_STRING([--disable-logging-macros],
 [Disable compile time debug and trace logging macros]))
AS_IF([test "x$enable_logging_macros" != "xno"], [
 logging_macros_enabled=yes
 MY_CPPFLAGS="$MY_CPPFLAGS -DBMLOG_DEBUG_ON -DBMLOG_TRACE_ON"
])

BMELOG_ON is defined by default, since it is required for some tests
elogger_enabled=no
AC_ARG_ENABLE([elogger],
 AS_HELP_STRING([--disable-elogger],
 [Disable nanomsg event logger (some unit tests may fail)]))
AS_IF([test "x$enable_elogger" != "xno"], [
 elogger_enabled=yes
 MY_CPPFLAGS="$MY_CPPFLAGS -DBMELOG_ON"
])

Checks for programs.
AC_PROG_CXX
AC_PROG_CC
LT_INIT

AC_CONFIG_MACRO_DIR([m4])

enforce -std=c++11
AX_CXX_COMPILE_STDCXX_11([noext],[mandatory])

Checks for header files.
AC_LANG_PUSH(C)
AC_LANG_PUSH(C++)

Thrift
AC_WITH([p4thrift],
 [
 AC_PATH_PROG([THRIFT], [p4thrift], [])
 AC_SUBST([THRIFT_LIB], ["-lp4thrift"])
 WITH_P4THRIFT="true"
 MY_CPPFLAGS="$MY_CPPFLAGS -DP4THRIFT"
 AC_CHECK_HEADER([p4thrift/P4Thrift.h], [], [AC_MSG_ERROR([P4Thrift headers not found. Install P4Thrift from http://github.com/p4lang/thrift/])])
],
 [
 AC_PATH_PROG([THRIFT], [thrift], [])
 AC_SUBST([THRIFT_LIB], ["-lthrift"])
 AC_CHECK_HEADER([thrift/Thrift.h], [], [AC_MSG_ERROR([Thrift headers not found. Install Thrift from http://thrift.apache.org/docs/install/])])
])
AM_CONDITIONAL([P4THRIFT], [test "x$WITH_P4THRIFT" != "x"])
AS_IF([test x"$THRIFT" = x],
[AC_MSG_ERROR([cannot find thrift])])

AC_CHECK_HEADERS([algorithm array cassert cmath queue \
cstdio string sys/stat.h sys/types.h ctime tuple unistd.h unordered_map \
utility vector], [], [AC_MSG_ERROR([Missing header file])])

Check for libjudy, libgmp, libnanomsg, libpcap
AC_CHECK_LIB([Judy], [Judy1Next], [], [AC_MSG_ERROR([Missing libJudy])])
AC_CHECK_LIB([gmp], [__gmpz_init], [], [AC_MSG_ERROR([Missing libgmp])])
AC_CHECK_LIB([nanomsg], [nn_errno], [], [AC_MSG_ERROR([Missing libnanomsg])])
AC_CHECK_LIB([pcap], [pcap_create], [], [AC_MSG_ERROR([Missing libpcap])])
AC_CHECK_LIB([pcap], [pcap_set_immediate_mode], [pcap_fix=yes], [pcap_fix=no])
if test -n "$COVERAGE_FLAGS"; then
 AC_CHECK_LIB([gcov], [__gcov_init], [], [AC_MSG_ERROR([Missing gcov library])])
fi

AM_CONDITIONAL([WITH_PCAP_FIX], [test "$pcap_fix" = "yes"])

C++ libraries are harder (http://nerdland.net/2009/07/detecting-c-libraries-with-autotools/),
so use headers to check
AC_CHECK_HEADER([boost/thread.hpp], [], [AC_MSG_ERROR([Boost threading headers not found])])
AC_CHECK_HEADER([boost/multiprecision/gmp.hpp], [], [AC_MSG_ERROR([Missing boost Multiprecision headers])])
AC_CHECK_HEADER([boost/program_options.hpp], [], [AC_MSG_ERROR([Missing boost program options header])])
AC_CHECK_HEADER([boost/functional/hash.hpp], [], [AC_MSG_ERROR([Missing boost functional hash header])])
AC_CHECK_HEADER([boost/filesystem.hpp], [], [AC_MSG_ERROR([Missing boost filesystem header])])

AC_SUBST([AM_CPPFLAGS], ["$MY_CPPFLAGS \
 -I\$(top_srcdir)/include \
 -isystem\$(top_srcdir)/third_party/jsoncpp/include \
 -isystem\$(top_srcdir)/third_party/spdlog/include"])

AC_SUBST([AM_CXXFLAGS], ["-Wall -Werror -Wextra"])
AC_SUBST([AM_CFLAGS], [""])

Checks for typedefs, structures, and compiler characteristics.
not supported by autoconf 2.68, add to m4/ ?
AC_CHECK_HEADER_STDBOOL
AC_TYPE_SIZE_T
AC_TYPE_UINT64_T
AC_LANG_POP(C++)

Generate makefiles
AC_CONFIG_FILES([Makefile
		thrift_src/Makefile
		third_party/Makefile
		third_party/gtest/Makefile
		third_party/jsoncpp/Makefile
		third_party/spdlog/Makefile
 include/Makefile
 src/Makefile
 src/bf_lpm_trie/Makefile
		src/bm_sim/Makefile
		src/bm_runtime/Makefile
		src/BMI/Makefile
		src/bm_apps/Makefile
		src/bm_apps/examples/Makefile
		targets/Makefile
		targets/simple_router/Makefile
 targets/simple_router_auth_poc/Makefile
		targets/l2_switch/Makefile
		targets/l2_switch/learn_client/Makefile
		targets/simple_switch/Makefile
		targets/simple_switch/tests/Makefile
		targets/simple_switch/tests/CLI_tests/Makefile
		tests/Makefile
		tests/stress_tests/Makefile
 tools/Makefile
 pdfixed/Makefile
 pdfixed/include/Makefile])

Generate other files
AC_CONFIG_FILES([tests/utils.cpp
 src/bm_sim/version.cpp
 mininet/stress_test_ipv4.py])
AC_CONFIG_FILES([targets/simple_switch/tests/CLI_tests/run_one_test.py],
 [chmod +x targets/simple_switch/tests/CLI_tests/run_one_test.py])

AC_OUTPUT

AS_ECHO("")
AS_ECHO("Features recap")
AS_ECHO("Coverage enabled : $coverage_enabled")
AS_ECHO("Debugger enabled : $debugger_enabled")
AS_ECHO("Logging macros enabled : $logging_macros_enabled")
AS_ECHO("Event logger enabled : $elogger_enabled")
AS_ECHO("With pdfixed : $want_pdfixed")

mininet/p4_mininet.py

Copyright 2013-present Barefoot Networks, Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

from mininet.net import Mininet
from mininet.node import Switch, Host
from mininet.log import setLogLevel, info

class P4Host(Host):
 def config(self, **params):
 r = super(Host, self).config(**params)

 self.defaultIntf().rename("eth0")

 for off in ["rx", "tx", "sg"]:
 cmd = "/sbin/ethtool --offload eth0 %s off" % off
 self.cmd(cmd)

 # disable IPv6
 self.cmd("sysctl -w net.ipv6.conf.all.disable_ipv6=1")
 self.cmd("sysctl -w net.ipv6.conf.default.disable_ipv6=1")
 self.cmd("sysctl -w net.ipv6.conf.lo.disable_ipv6=1")

 return r

 def describe(self):
 print "**********"
 print self.name
 print "default interface: %s\t%s\t%s" %(
 self.defaultIntf().name,
 self.defaultIntf().IP(),
 self.defaultIntf().MAC()
)
 print "**********"

class P4Switch(Switch):
 """P4 virtual switch"""
 device_id = 0

 def __init__(self, name, sw_path = None, json_path = None,
 thrift_port = None,
 pcap_dump = False,
 verbose = False,
 device_id = None,
 **kwargs):
 Switch.__init__(self, name, **kwargs)
 assert(sw_path)
 assert(json_path)
 self.sw_path = sw_path
 self.json_path = json_path
 self.verbose = verbose
 logfile = '/tmp/p4s.%s.log' % self.name
 self.output = open(logfile, 'w')
 self.thrift_port = thrift_port
 self.pcap_dump = pcap_dump
 if device_id is not None:
 self.device_id = device_id
 P4Switch.device_id = max(P4Switch.device_id, device_id)
 else:
 self.device_id = P4Switch.device_id
 P4Switch.device_id += 1
 self.nanomsg = "ipc:///tmp/bm-%d-log.ipc" % self.device_id

 @classmethod
 def setup(cls):
 pass

 def start(self, controllers):
 "Start up a new P4 switch"
 print "Starting P4 switch", self.name
 args = [self.sw_path]
 # args.extend(['--name', self.name])
 # args.extend(['--dpid', self.dpid])
 for port, intf in self.intfs.items():
 if not intf.IP():
 args.extend(['-i', str(port) + "@" + intf.name])
 if self.pcap_dump:
 args.append("--pcap")
 # args.append("--useFiles")
 if self.thrift_port:
 args.extend(['--thrift-port', str(self.thrift_port)])
 if self.nanomsg:
 args.extend(['--nanolog', self.nanomsg])
 args.extend(['--device-id', str(self.device_id)])
 P4Switch.device_id += 1
 args.append(self.json_path)

 logfile = '/tmp/p4s.%s.log' % self.name

 # verbose log
 args.append('--log-file /tmp/p4s.%s.verbose.log --log-flush --debugger' % self.name)

 print ' '.join(args)

 self.cmd(' '.join(args) + ' >' + logfile + ' 2>&1 &')
 # self.cmd(' '.join(args) + ' > /dev/null 2>&1 &')

 print "switch has been started"

 def stop(self):
 "Terminate IVS switch."
 self.output.flush()
 self.cmd('kill %' + self.sw_path)
 self.cmd('wait')
 self.deleteIntfs()

 def attach(self, intf):
 "Connect a data port"
 assert(0)

 def detach(self, intf):
 "Disconnect a data port"
 assert(0)

targets/Makefile.am

inlcude simple_router_auth_poc
SUBDIRS = simple_router l2_switch simple_switch simple_router_auth_poc

targets/simple_router_auth_poc/.gitignore

*.pcap
.libs/
.deps/
primitives.o
simple_router
simple_router.o

targets/simple_router_auth_poc/Makefile.am

noinst_PROGRAMS = simple_router
simple_router_SOURCES = simple_router.cpp primitives.cpp
simple_router_LDADD = \
$(top_builddir)/src/bm_runtime/libbmruntime.la \
$(top_builddir)/src/bm_sim/libbmsim.la \
$(top_builddir)/src/bf_lpm_trie/libbflpmtrie.la \
$(top_builddir)/thrift_src/libruntimestubs.la \
$(top_builddir)/src/BMI/libbmi.la \
$(top_builddir)/third_party/jsoncpp/libjson.la \
-lboost_system -lboost_thread $(THRIFT_LIB) -lboost_program_options
simple_router_LDFLAGS = -pthread

targets/simple_router_auth_poc/add_entries.sh

#!/bin/bash
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

to easily add the table entries

./runtime_CLI < commands.txt

targets/simple_router_auth_poc/commands.txt

table_set_default send_frame _drop
table_set_default forward _drop
table_set_default ipv4_lpm _drop
table_add send_frame rewrite_mac 1 => 00:aa:bb:00:00:00
table_add send_frame rewrite_mac 2 => 00:aa:bb:00:00:01
table_add forward set_dmac 10.0.0.10 => 00:04:00:00:00:00
table_add forward set_dmac 10.0.1.10 => 00:04:00:00:00:01
table_add ipv4_lpm set_nhop 10.0.0.10/32 => 10.0.0.10 1
table_add ipv4_lpm set_nhop 10.0.1.10/32 => 10.0.1.10 2

shell #### (only way to add comments?)

table_set_default gre_key set_gre_key_invalid
table_set_default gre_compute_hash compute_gre_hash
table_set_default gre_remove remove_gre
table_set_default gre_update update_gre_sequence_number

table_set_default gre_drop force_drop
table_set_default gre_drop2 force_drop
table_set_default gre_drop3 force_drop

shell # allow gre/ip/icmp with gre_key: 0x075bcd15; sequence number index 0; hash_key 0xabcd:
table_add gre_key set_gre_key_valid 123456789 => 0 0xabcd
shell # (this command prevents error messages about duplicte table entries due to new line when mininet is used)

shell # allow gre/ip/icmp with key (id): 0x00000001; sequence number index 1; hash_key 0x1234:
table_add gre_key set_gre_key_valid 987654321 => 1 0x1234
shell # (this command prevents error messages about duplicte table entries due to new line when mininet is used)

targets/simple_router_auth_poc/debugger.sh

#!/bin/bash
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

to easily start the debugger

sudo ../../tools/p4dbg.py "$@"

targets/simple_router_auth_poc/demonstration.sh

#!/bin/bash
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

control script for P4 authentication demonstration
usage: start tmux session
then : . script.sh
or : source script.sh
#
on very slow systems the timeout for adding the table entries defined in mininet.sh might need to be increased
#
tmux should be started as root, or sudo setup correctly (otherwise the table entries need to be added manually after startup)
setting up sudo means that it allows executing packet_sender.py and mininet as root without password, e.g.:
user ALL=(ALL:ALL) NOPASSWD: /usr/bin/python2 packet_sender.py, /usr/bin/python2 1sw_demo.py *
#
tshark (/usr/bin/dumpcap) should be allowed non-superusers.

end_demonstration(){
 tmux kill-session
 clear
}

export PS1="[p4@demonstration \W]\$ "

tmux set -g mouse on
tmux bind -n WheelUpPane if-shell -F -t = "#{mouse_any_flag}" "send-keys -M" "if -Ft= '#{pane_in_mode}' 'send-keys -M' 'select-pane -t=; copy-mode -e; send-keys -M'"

tmux set-option -g utf8 on

tmux split-window -h
tmux split-window -v -t 1 -p 20
tmux split-window -v -t 0 -p 20

tmux select-pane -t 0

the p4 force_drop action (truncation of the packet to zero) still creates a weird empty (zero-length) ethernet frame on the egress interface which trips up tshark so tshark on that interface needs to be restarted
another work around is to listen on multiple interfaces
while loop used to restart tshark, also for the eth1 because it might make it easier if mininet is killed
tmux send-keys -t 1 "export PS1=\"\"; sleep 1 && while true; do ./tshark.sh -i s1-eth1; sleep 1; done & clear && echo -e \"H1 - \e[1mS1-ETH1\e[0m - S1: \n\e[4m# Src => Dst Prot Type Data ID Seq Chksum\e[0m\"" C-m

tmux send-keys -t 2 "export PS1=\"\"; sleep 1 && while true; do ./tshark.sh -i s1-eth2; sleep 1; done & clear && echo -e \"S1 - \e[1mS1-ETH2\e[0m - H2: \n\e[4m# Src => Dst Prot Type Data ID Seq Chksum\e[0m\"" C-m

tmux select-pane -t 3

tmux send-keys -t 3 "export PS1=\"$ \"; end_demonstration(){
 tmux kill-session
}; clear" C-m
tmux send-keys -t 3 "./mininet.sh -n" C-m

sudo python2 packet_sender.py

targets/simple_router_auth_poc/launch.sh

#!/bin/bash
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

wrapper for run.sh launcher for running P4 authentication PoC without mininet

./run.sh --nanolog ipc:///tmp/bm-log.ipc --log-file /tmp/bm2.log --log-flush "$@"

targets/simple_router_auth_poc/logger.sh

#!/bin/bash
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

to easily start the nanomsg logger
when tail -f /tmp/p4s.s1.verbose.log.txt is not enough and debugging is enabled during compilation:
@102,1-8
args.append('--log-file /tmp/p4s.%s.verbose.log --log-flush --debugger' % self.name)

sudo ../../tools/nanomsg_client.py "$@"

targets/simple_router_auth_poc/mininet-host-down.sh

#!/bin/bash
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

Put mininet host h2 down and up (can be used to demonstrate that correctly
authenticated packets get through put are not replied to when the destination
is down)

usage:
mn> h2 sh ../targets/simple_router_auth_poc/mininet-host-down.sh down|up

down(){
 # set link s1 - h2 down and to up again so that packets will travel over that
 # link (but h2 will not reply because routing info is now missing)
 echo "shutting link down"
 ip link set eth0 down
 ip link set eth0 up
}

up(){
 echo "restoring reachability"
 ip route add default via 10.0.1.1 dev eth0
 ip neighbor add 10.0.1.1 lladdr 00:aa:bb:00:00:01 dev eth0
}

"$1"

targets/simple_router_auth_poc/mininet.sh

#!/bin/bash
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

laucher for p4-mininet which also automatically starts Wireshark to work around an annoying bug that necessitates restarting Wirehark (double interfaces listed and inability to capture traffic after restarting Mininet)

if [[$1 == "-n"]]; then
 shift
else
 sniffer="wireshark"
fi

test -n "$DISPLAY" && test -n $(which "$sniffer") && ws=1

test -n "$ws" && echo "*** launching sniffer in the background" && (sleep 1 && "$sniffer" -i s1-eth1 -i s1-eth2 -k) &>/dev/null &

echo "*** adding table entries in the background"
(sleep 2 && ./add_entries.sh >/dev/null) &

echo "*** launching Mininet:"
pushd .
cd ../../mininet/
sudo python 1sw_demo.py --behavioral-exe ../targets/simple_router_auth_poc/simple_router --json ../targets/simple_router_auth_poc/simple_router.json "$@"
popd
echo "*** Mininet exited"

test -n "$ws" && echo "*** killing sniffer" && pkill -f "$sniffer -i s1-eth1 -i s1-eth2 -k"

targets/simple_router_auth_poc/p4-compile2-json.sh

#!/bin/bash
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

to easily compile the p4 program and possbily automatically repair certain compile flows

p4c-bmv2 --json simple_router.json simple_router.p4

old work around for gre_checksum literals
#perl -i -0pe 's/ "type": "hexstr",\n "value": "0x0",\n "bitwidth": 0\n },/ "type": "hexstr",\n "value": "0x0000",\n "bitwidth": 16\n },/' simple_router.json

#perl -i -0pe 's/ "type": "hexstr",\n "value": "0x01",\n "bitwidth": 16\n },/ "type": "hexstr",\n "value": "0xabcd",\n "bitwidth": 16\n },/' simple_router.json

targets/simple_router_auth_poc/packet_sender.py

#!/usr/bin/env python2
-*- coding: utf-8 -*-
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

run as root (for Scapy)
sudo python packet_sender.py

"""
packet sender - Scapy wrapper for P4 authentication PoC.
"""

from scapy.all import *

from threading import Thread

import os
import random
import time

import cmd
import traceback
import sys

if os.geteuid() != 0:
 print "usage: run as root"
 print "sudo python packet_sender.py\n"
 exit("root is required for Scapy; exiting")

print "### packet_sender.py ###\n"

use emoticons to make output more clear
if "CLEAN" not in os.environ:
 happy_face = "\033[42m◔‿◔\033[0m\n"
 sad_face = "\033[41m◕⁔◕\033[0m\n"
else:
 happy_face = ""
 sad_face = ""

warning message
if "NOWARN" not in os.environ:
 print ("!!! warning: this script runs as root and is able to execute user"
 " input; its only application is to test and demonstrate the P4 "
 "authentication proof of concept; use with care !!!\n")

command line interpreter
class MyCli(cmd.Cmd):
 """Simple command processor."""

 ps_arguments = [
 '123456789 0xabcd seq_num',
 '987654321 0x1234 seq_num',
 '0x00000000 0x0000 seq_num',
 'identifier hash_key seq_num']
 aps_arguments = [
 '123456789 0xabcd seq_num',
 '987654321 0x1234 seq_num',
 '0x00000000 0x0000 seq_num',
 'identifier hash_key seq_num']
 p4_cli_arguments = [
 'table_dump gre_key',
 'table_add gre_key set_gre_key_valid 0x00000000 => 2 0x0000']

 def do_packet_send(self, line):
 print "#### sending 1 packet ####"
 if not line:
 ps(identifier, hash_key, seq_num)
 else:
 command = line.split(' ')
 # interpret variables
 for item in command:
 command[command.index(item)] = eval(item)
 ps(*command)
 # wait a bit for the sniffer to complete
 # so that the terminal behaves better
 time.sleep(1)

 def do_auto_packet_send(self, line):
 global amount
 global verbose
 if not line:
 aps(amount, identifier, hash_key, seq_num, 0, 0, 0)
 else:
 command = line.split(' ')
 # interpret variables
 for item in command:
 command[command.index(item)] = eval(item)

 if len(command) > 3:
 # swap amount around
 amount = command[3]
 del command[3]
 aps(amount, *command)
 # wait a bit for the sniffer to complete
 # so that the terminal behaves better
 time.sleep(1)

 def do_p4_cli(self, line):
 # this uses the shell instead of using python directly
 # probably better to switch to subprocess and of course do some checking
 line = line.replace(' ', '\\ ') # escape spaces
 line = line.replace('>', '\\>') # prevent bash redirection
 command = "bash -c .'/runtime_CLI <<<" + line + "'"
 os.system(command)

 def do_verbose(self, line):
 global verbose
 if not line:
 # switch verbose
 verbose += 1
 verbose = verbose % 2
 else:
 verbose = int(line)
 if verbose:
 print "verbose enabled"
 else:
 print "verbose disabled"

 def do_set_sequence_number(self, line):
 global seq_num
 if not line:
 seq_num += 1
 elif "+" in line:
 seq_num += int(line.replace('+', ''))
 elif "-" in line:
 seq_num -= int(line.replace('-', ''))
 else:
 seq_num = int(line)
 print "sequence number set to '%s'" % seq_num

 def complete_packet_send(self, text, line, begidx, endidx):
 if not text:
 completions = self.ps_arguments[:]
 else:
 completions = [f
 for f in self.ps_arguments
 if f.startswith(text)
]
 return completions

 def complete_auto_packet_send(self, text, line, begidx, endidx):
 if not text:
 completions = self.aps_arguments[:]
 else:
 completions = [f
 for f in self.aps_arguments
 if f.startswith(text)
]
 return completions

 def complete_p4_cli(self, text, line, begidx, endidx):
 if not text:
 completions = self.p4_cli_arguments[:]
 else:
 completions = [f
 for f in self.p4_cli_arguments
 if f.startswith(text)
]
 return completions

 # handle ctrl-c
 def cmdloop(self):
 try:
 cmd.Cmd.cmdloop(self)
 except KeyboardInterrupt as e:
 print '^C'
 self.cmdloop()

 def do_EOF(self, line):
 return True

 def emptyline(self):
 return

 def default(self, line):
 # interpret all other commands and behave like a normal interactive
 # python terminal (afap e.g., variable assignment works)
 # not really necessary anymore since seq_num can now be set via cli cmd
 try:
 # eval expression (e.g., exec function)
 eval(line)
 except:
 try:
 # eval statement (e.g., assignment) in global scope
 exec line in globals()
 except Exception:
 print(traceback.format_exc())
 # or
 print(sys.exc_info()[0])

sniffer
sniffing is necessary because srp[1] doesn't recognise replies
thread is required because otherwise sniff blocks
def sniff_thread(*var):
 global verbose
 #print 'start sniffer'
 # Scapy BPF filter seems buggy
 # spawns tcpdump -i ens3 -ddd -s 1600 (src host 10.0... (wrong interface)
 #pkts = sniff(count=2, timeout=1, iface='s1-eth1', filter="(src host
 #10.0.0.10 and dst host 10.0.1.10) or (src host 10.0.1.10 and dst host
 #10.0.0.10)")
 pkts = sniff(count=2, timeout=1, iface='s1-eth1')

 try:
 if verbose:
 # first test pkts (otherwise print is always executed)
 if pkts[1]:
 print "\nresponse:"
 pkts[1].show()

 sent = str(pkts[0].getlayer(Raw))[8:] # strip off raw ICMP part
 received = str(pkts[1].getlayer(Raw))
 if sent != received or var[0] != sent or var[0] != received:
 print ("\nunexpected payload; original: %s, sent: %s, "
 "received: %s") % (var[0], sent, received)
 print sad_face
 elif verbose:
 print "\npayloads match"
 print happy_face
 elif not verbose:
 print "\nresponse: %s" % received
 print happy_face
 except:
 print "\nno response"
 print sad_face

work around buggy Scapy BPF filter by limiting unwanted packets via iptables
(s1-eth2 not necessary for the sniffer but easier on the eyes when dumping
both interfaces)
os.system("sudo ip6tables -I OUTPUT -o s1-eth1 --j DROP")
os.system("sudo ip6tables -I OUTPUT -o s1-eth2 --j DROP")

packet send
def ps(identifier=123456789, hash_key=0xabcd, lseq_num=123, forge='', format='',
 payload=''):
 global verbose
 if not payload:
 payload = str(random.randint(1, 1000))
 # create packet
 ip = IP(dst='10.0.1.10', src='10.0.0.10')
 # use hash_key as offset
 # so that the key is included in the checksum calculation
 gre = GRE(key_present=1,key=identifier,seqnum_present=1,
 seqence_number=lseq_num,offset=hash_key,chksum_present=1)

 if not format:
 packet = ip/gre/ICMP()/payload
 elif format == 1:
 icmprqst = '\x08\x00\x05\xdc\x00\x00\x00\x00'
 payload = icmprqst + payload
 packet = ip/gre/payload
 elif format == 2:
 packet = ip/gre/payload
 else:
 packet = ip/gre/ip/ICMP()/payload

 # create new packet based from first packet so that checksum is calculated
 packet2=IP(str(packet))

 # remove offset (for keyed hash) from packet
 del packet2[GRE].offset

 if forge == 1:
 # forge packet payload
 forged_payload = str(random.randint(1, 1000))
 rawload = packet2.getlayer(Raw).load
 rawload += forged_payload
 #packet2[GRE].payload = rawload
 packet2[Raw].load = rawload

 print "forging payload '%s' with '%s' \
 appended" % (payload, forged_payload)
 payload = payload + forged_payload

 # set fixed checksum for testing
 #packet2[GRE].chksum = 0xc74b
 # fix ip length
 packet2[IP].len += len(forged_payload)

 elif forge == 2:
 # forge offset (doesn't work because field is already used for hash_key)
 forged_offset = random.randint(1, 65536)
 #forged_offset = 0x1234
 print "forging offset to %s" % (forged_offset)
 packet2[GRE].offset = forged_offset

 elif forge == 3:
 # forge sequence number
 forged_sequence = random.randint(1, 65536)
 #forged_offset = 0x1234
 print "forging sequence number to %s" % (forged_sequence)
 packet2[GRE].seqence_number = forged_sequence

 elif forge == 4:
 # forge protocol
 forged_protocol = random.randint(1, 65536)
 print "forging protocol type to %s" % (forged_protocol)
 packet2[GRE].proto = forged_protocol

 print ("sending packet: identifier: %s (0x%x), hash key: 0x%x, "
 "sequence number: %s, checksum: 0x%x, payload: %s") % (identifier,
 identifier, hash_key, lseq_num, packet2[GRE].chksum, payload)

 if verbose:
 print "Packet to be sent:"
 packet2.show2()
 print ""

 # sniff for responses in background
 my_thread = Thread(target=sniff_thread, args=(payload,))
 my_thread.start()

 # give sniffer a little time to initialise
 time.sleep(0.1)

 # send packet that includes the keyed checksum
 sendp(Ether()/packet2, iface='s1-eth1', verbose=0)

 # update sequence number
 # handy for aps and ps with seq_num+1
 global seq_num
 seq_num = lseq_num

auto packet send
def aps(amount=5, identifier=123456789, hash_key=0xabcd, lseq_num=123, *args):
 current = 0
 print "#### sending %s packets ####" % amount
 while current < amount:
 print "### packet %s of %s ###" % (current+1, amount)
 ps(identifier, hash_key, lseq_num, *args)
 current += 1
 lseq_num += 1
 # sniffer can't handle too much traffic currently
 #print 'sleep'
 time.sleep(1)

default values
identifier = 123456789
hash_key = 0xabcd
global seq_num
seq_num=123
payload='coco1234coco'
amount = 5
verbose=1

easier to type (no longer needed due to the cmd module's command completion)
#id = identifier
#k = hash_key
#c = seq_num
#p = payload
#a = amount

print default values so that they can easily be used in interactive terminal
print "default values:"
print "\tidentifier \t= %s" % identifier
print "\thash_key \t= 0x%x" % hash_key
print "\tseq_num \t= %s" % seq_num
#print "\tpayload \t= %s" % payload
print "\tamount \t= %s" % amount

print "\nsend packets via following python function:"
print "\t> ps(identifier, hash_key, seq_num)\n"
print "ps(identifier, hash_key, seq_num, forge, format, payload)"
print "aps(amount identifier, hash_key, seq_num, forge, format, payload)"
print "...or via the following interactive command function:"
print "\t> packet_send identifier hash_key seq_num\n"
print "packet_send identifier hash_key seq_num forge format payload"
print "...or via their automated alternatives (aps and auto_packet_send)"
print "auto_packet_send identifier hash_key seq_num amount forge format payload"

if __name__ == '__main__':
 prompt = MyCli()
 prompt.prompt = '> '
 prompt.cmdloop()

vim: tw=80 colorcolumn=81 ts=4 sw=4 softtabstop=4 expandtab

targets/simple_router_auth_poc/primitives.cpp

targets/simple_router_auth_poc/primitives.cpp

/* Copyright 2013-present Barefoot Networks, Inc.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

/*

 * Antonin Bas (antonin@barefootnetworks.com)

 *

 */

#include <bm/bm_sim/actions.h>

template <typename... Args>

using ActionPrimitive = bm::ActionPrimitive<Args...>;

using bm::Data;

using bm::Field;

using bm::Header;

// from simple_switch

using bm::MeterArray;

using bm::CounterArray;

using bm::RegisterArray;

using bm::NamedCalculation;

using bm::HeaderStack;

//

class modify_field : public ActionPrimitive<Field &, const Data &> {

 void operator ()(Field &f, const Data &d) {

 f.set(d);

 }

};

REGISTER_PRIMITIVE(modify_field);

class add_to_field : public ActionPrimitive<Field &, const Data &> {

 void operator ()(Field &f, const Data &d) {

 f.add(f, d);

 }

};

REGISTER_PRIMITIVE(add_to_field);

class drop : public ActionPrimitive<> {

 void operator ()() {

 get_field("standard_metadata.egress_port").set(511);

 }

};

REGISTER_PRIMITIVE(drop);

// I cannot name this "truncate" and register it with the usual

// REGISTER_PRIMITIVE macro, because of a name conflict:

//

// In file included from /usr/include/boost/config/stdlib/libstdcpp3.hpp:77:0,

// from /usr/include/boost/config.hpp:44,

// from /usr/include/boost/cstdint.hpp:36,

// from /usr/include/boost/multiprecision/number.hpp:9,

// from /usr/include/boost/multiprecision/gmp.hpp:9,

// from ../../src/bm_sim/include/bm_sim/bignum.h:25,

// from ../../src/bm_sim/include/bm_sim/data.h:32,

// from ../../src/bm_sim/include/bm_sim/fields.h:28,

// from ../../src/bm_sim/include/bm_sim/phv.h:34,

// from ../../src/bm_sim/include/bm_sim/actions.h:34,

// from primitives.cpp:21:

// /usr/include/unistd.h:993:12: note: declared here

// extern int truncate (const char *__file, __off_t __length)

class truncate_ : public ActionPrimitive<const Data &> {

 void operator ()(const Data &truncated_length) {

 get_packet().truncate(truncated_length.get<size_t>());

 }

};

REGISTER_PRIMITIVE_W_NAME("truncate", truncate_);

class remove_header : public ActionPrimitive<Header &> {

 void operator ()(Header &hdr) {

 hdr.mark_invalid();

 }

};

REGISTER_PRIMITIVE(remove_header);

class register_read

 : public ActionPrimitive<Field &, const RegisterArray &, const Data &> {

 void operator ()(Field &dst, const RegisterArray &src, const Data &idx) {

 dst.set(src[idx.get_uint()]);

 }

};

REGISTER_PRIMITIVE(register_read);

class register_write

 : public ActionPrimitive<RegisterArray &, const Data &, const Data &> {

 void operator ()(RegisterArray &dst, const Data &idx, const Data &src) {

 dst[idx.get_uint()].set(src);

 }

};

REGISTER_PRIMITIVE(register_write);

class modify_field_with_hash_based_offset

 : public ActionPrimitive<Data &, const Data &,

 const NamedCalculation &, const Data &> {

 void operator ()(Data &dst, const Data &base,

 const NamedCalculation &hash, const Data &size) {

 uint64_t v =

 (hash.output(get_packet()) % size.get<uint64_t>()) + base.get<uint64_t>();

 dst.set(v);

 }

};

REGISTER_PRIMITIVE(modify_field_with_hash_based_offset);

targets/simple_router_auth_poc/run.sh

sudo ./simple_router -i 0@veth1 -i 1@veth3 -i 2@veth5 -i 3@veth7 --pcap simple_router.json "$@"

targets/simple_router_auth_poc/runtime_CLI

../../tools/runtime_CLI.py

targets/simple_router_auth_poc/simple_router.cpp

targets/simple_router_auth_poc/simple_router.cpp

/* Copyright 2013-present Barefoot Networks, Inc.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

/*

 * Antonin Bas (antonin@barefootnetworks.com)

 *

 */

#include <bm/bm_sim/queue.h>

#include <bm/bm_sim/packet.h>

#include <bm/bm_sim/parser.h>

#include <bm/bm_sim/tables.h>

#include <bm/bm_sim/switch.h>

#include <bm/bm_sim/event_logger.h>

#include <bm/bm_runtime/bm_runtime.h>

#include <unistd.h>

#include <iostream>

#include <memory>

#include <thread>

#include <fstream>

#include <string>

#include <chrono>

using bm::Switch;

using bm::Queue;

using bm::Packet;

using bm::PHV;

using bm::Parser;

using bm::Deparser;

using bm::Pipeline;

class SimpleSwitch : public Switch {

 public:

 SimpleSwitch()

 : Switch(true), // enable_switch = true

 input_buffer(1024), output_buffer(128) { }

 int receive(int port_num, const char *buffer, int len) {

 static int pkt_id = 0;

 if (this->do_swap() == 0) // a swap took place

 swap_happened = true;

 auto packet = new_packet_ptr(port_num, pkt_id++, len,

 bm::PacketBuffer(2048, buffer, len));

 BMELOG(packet_in, *packet);

 input_buffer.push_front(std::move(packet));

 return 0;

 }

 void start_and_return() {

 std::thread t1(&SimpleSwitch::pipeline_thread, this);

 t1.detach();

 std::thread t2(&SimpleSwitch::transmit_thread, this);

 t2.detach();

 }

 private:

 void pipeline_thread();

 void transmit_thread();

 private:

 Queue<std::unique_ptr<Packet> > input_buffer;

 Queue<std::unique_ptr<Packet> > output_buffer;

 bool swap_happened{false};

};

void SimpleSwitch::transmit_thread() {

 while (1) {

 std::unique_ptr<Packet> packet;

 output_buffer.pop_back(&packet);

 BMELOG(packet_out, *packet);

 BMLOG_DEBUG_PKT(*packet, "Transmitting packet of size {} out of port {}",

 packet->get_data_size(), packet->get_egress_port());

 transmit_fn(packet->get_egress_port(),

 packet->data(), packet->get_data_size());

 }

}

void SimpleSwitch::pipeline_thread() {

 Pipeline *ingress_mau = this->get_pipeline("ingress");

 Pipeline *egress_mau = this->get_pipeline("egress");

 Parser *parser = this->get_parser("parser");

 Deparser *deparser = this->get_deparser("deparser");

 PHV *phv;

 while (1) {

 std::unique_ptr<Packet> packet;

 input_buffer.pop_back(&packet);

 phv = packet->get_phv();

 int ingress_port = packet->get_ingress_port();

 (void) ingress_port;

 BMLOG_DEBUG_PKT(*packet, "Processing packet received on port {}",

 ingress_port);

 // update pointers if needed

 if (swap_happened) { // a swap took place

 ingress_mau = this->get_pipeline("ingress");

 egress_mau = this->get_pipeline("egress");

 parser = this->get_parser("parser");

 deparser = this->get_deparser("deparser");

 swap_happened = false;

 }

 parser->parse(packet.get());

 ingress_mau->apply(packet.get());

 int egress_port = phv->get_field("standard_metadata.egress_port").get_int();

 BMLOG_DEBUG_PKT(*packet, "Egress port is {}", egress_port);

 if (egress_port == 511) {

 BMLOG_DEBUG_PKT(*packet, "Dropping packet");

 } else {

 packet->set_egress_port(egress_port);

 egress_mau->apply(packet.get());

 deparser->deparse(packet.get());

 output_buffer.push_front(std::move(packet));

 }

 }

}

/* Switch instance */

static SimpleSwitch *simple_switch;

int

main(int argc, char* argv[]) {

 simple_switch = new SimpleSwitch();

 int status = simple_switch->init_from_command_line_options(argc, argv);

 if (status != 0) std::exit(status);

 // should this be done by the call to init_from_command_line_options

 int thrift_port = simple_switch->get_runtime_port();

 bm_runtime::start_server(simple_switch, thrift_port);

 simple_switch->start_and_return();

 while (true) std::this_thread::sleep_for(std::chrono::seconds(100));

 return 0;

}

targets/simple_router_auth_poc/simple_router.json

{
 "header_types": [
 {
 "name": "standard_metadata_t",
 "id": 0,
 "fields": [
 [
 "ingress_port",
 9
],
 [
 "packet_length",
 32
],
 [
 "egress_spec",
 9
],
 [
 "egress_port",
 9
],
 [
 "egress_instance",
 32
],
 [
 "instance_type",
 32
],
 [
 "clone_spec",
 32
],
 [
 "_padding",
 5
]
],
 "length_exp": null,
 "max_length": null
 },
 {
 "name": "ethernet_t",
 "id": 1,
 "fields": [
 [
 "dstAddr",
 48
],
 [
 "srcAddr",
 48
],
 [
 "etherType",
 16
]
],
 "length_exp": null,
 "max_length": null
 },
 {
 "name": "ipv4_t",
 "id": 2,
 "fields": [
 [
 "version",
 4
],
 [
 "ihl",
 4
],
 [
 "diffserv",
 8
],
 [
 "totalLen",
 16
],
 [
 "identification",
 16
],
 [
 "flags",
 3
],
 [
 "fragOffset",
 13
],
 [
 "ttl",
 8
],
 [
 "protocol",
 8
],
 [
 "hdrChecksum",
 16
],
 [
 "srcAddr",
 32
],
 [
 "dstAddr",
 32
]
],
 "length_exp": null,
 "max_length": null
 },
 {
 "name": "gre_t",
 "id": 3,
 "fields": [
 [
 "flags",
 16
],
 [
 "protocolType",
 16
],
 [
 "checksum",
 16
],
 [
 "offset",
 16
],
 [
 "key",
 32
],
 [
 "sequenceNumber",
 32
]
],
 "length_exp": null,
 "max_length": null
 },
 {
 "name": "routing_metadata_t",
 "id": 4,
 "fields": [
 [
 "nhop_ipv4",
 32
]
],
 "length_exp": null,
 "max_length": null
 },
 {
 "name": "gre_metadata_t",
 "id": 5,
 "fields": [
 [
 "validKey",
 1
],
 [
 "index",
 16
],
 [
 "hashKey",
 16
],
 [
 "prevSequenceNumber",
 32
],
 [
 "computedHash",
 16
],
 [
 "emptyChecksum",
 16
],
 [
 "_padding",
 7
]
],
 "length_exp": null,
 "max_length": null
 }
],
 "headers": [
 {
 "name": "standard_metadata",
 "id": 0,
 "header_type": "standard_metadata_t",
 "metadata": true
 },
 {
 "name": "ethernet",
 "id": 1,
 "header_type": "ethernet_t",
 "metadata": false
 },
 {
 "name": "ipv4",
 "id": 2,
 "header_type": "ipv4_t",
 "metadata": false
 },
 {
 "name": "gre",
 "id": 3,
 "header_type": "gre_t",
 "metadata": false
 },
 {
 "name": "routing_metadata",
 "id": 4,
 "header_type": "routing_metadata_t",
 "metadata": true
 },
 {
 "name": "gre_metadata",
 "id": 5,
 "header_type": "gre_metadata_t",
 "metadata": true
 }
],
 "header_stacks": [],
 "parsers": [
 {
 "name": "parser",
 "id": 0,
 "init_state": "start",
 "parse_states": [
 {
 "name": "start",
 "id": 0,
 "parser_ops": [],
 "transition_key": [],
 "transitions": [
 {
 "value": "default",
 "mask": null,
 "next_state": "parse_ethernet"
 }
]
 },
 {
 "name": "parse_ethernet",
 "id": 1,
 "parser_ops": [
 {
 "op": "extract",
 "parameters": [
 {
 "type": "regular",
 "value": "ethernet"
 }
]
 }
],
 "transition_key": [
 {
 "type": "field",
 "value": [
 "ethernet",
 "etherType"
]
 }
],
 "transitions": [
 {
 "value": "0x0800",
 "mask": null,
 "next_state": "parse_ipv4"
 },
 {
 "value": "default",
 "mask": null,
 "next_state": null
 }
]
 },
 {
 "name": "parse_ipv4",
 "id": 2,
 "parser_ops": [
 {
 "op": "extract",
 "parameters": [
 {
 "type": "regular",
 "value": "ipv4"
 }
]
 }
],
 "transition_key": [
 {
 "type": "field",
 "value": [
 "ipv4",
 "protocol"
]
 }
],
 "transitions": [
 {
 "value": "0x2f",
 "mask": null,
 "next_state": "parse_gre"
 },
 {
 "value": "default",
 "mask": null,
 "next_state": null
 }
]
 },
 {
 "name": "parse_gre",
 "id": 3,
 "parser_ops": [
 {
 "op": "extract",
 "parameters": [
 {
 "type": "regular",
 "value": "gre"
 }
]
 }
],
 "transition_key": [],
 "transitions": [
 {
 "value": "default",
 "mask": null,
 "next_state": null
 }
]
 }
]
 }
],
 "deparsers": [
 {
 "name": "deparser",
 "id": 0,
 "order": [
 "ethernet",
 "ipv4",
 "gre"
]
 }
],
 "meter_arrays": [],
 "actions": [
 {
 "name": "set_gre_key_invalid",
 "id": 0,
 "runtime_data": [],
 "primitives": [
 {
 "op": "modify_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "validKey"
]
 },
 {
 "type": "hexstr",
 "value": "0x0"
 }
]
 }
]
 },
 {
 "name": "set_dmac",
 "id": 1,
 "runtime_data": [
 {
 "name": "dmac",
 "bitwidth": 48
 }
],
 "primitives": [
 {
 "op": "modify_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "ethernet",
 "dstAddr"
]
 },
 {
 "type": "runtime_data",
 "value": 0
 }
]
 }
]
 },
 {
 "name": "remove_gre",
 "id": 2,
 "runtime_data": [],
 "primitives": [
 {
 "op": "remove_header",
 "parameters": [
 {
 "type": "header",
 "value": "gre"
 }
]
 },
 {
 "op": "modify_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "ipv4",
 "protocol"
]
 },
 {
 "type": "hexstr",
 "value": "0x1"
 }
]
 },
 {
 "op": "add_to_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "ipv4",
 "totalLen"
]
 },
 {
 "type": "hexstr",
 "value": "-0x10"
 }
]
 }
]
 },
 {
 "name": "_drop",
 "id": 3,
 "runtime_data": [],
 "primitives": [
 {
 "op": "drop",
 "parameters": []
 }
]
 },
 {
 "name": "force_drop",
 "id": 4,
 "runtime_data": [],
 "primitives": [
 {
 "op": "drop",
 "parameters": []
 },
 {
 "op": "truncate",
 "parameters": [
 {
 "type": "hexstr",
 "value": "0x0"
 }
]
 }
]
 },
 {
 "name": "compute_gre_hash",
 "id": 5,
 "runtime_data": [],
 "primitives": [
 {
 "op": "modify_field_with_hash_based_offset",
 "parameters": [
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "computedHash"
]
 },
 {
 "type": "hexstr",
 "value": "0x0"
 },
 {
 "type": "calculation",
 "value": "gre_checksum"
 },
 {
 "type": "hexstr",
 "value": "0x10000"
 }
]
 }
]
 },
 {
 "name": "rewrite_mac",
 "id": 6,
 "runtime_data": [
 {
 "name": "smac",
 "bitwidth": 48
 }
],
 "primitives": [
 {
 "op": "modify_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "ethernet",
 "srcAddr"
]
 },
 {
 "type": "runtime_data",
 "value": 0
 }
]
 }
]
 },
 {
 "name": "update_gre_sequence_number",
 "id": 7,
 "runtime_data": [],
 "primitives": [
 {
 "op": "register_write",
 "parameters": [
 {
 "type": "register_array",
 "value": "sequence_number_reg"
 },
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "index"
]
 },
 {
 "type": "field",
 "value": [
 "gre",
 "sequenceNumber"
]
 }
]
 }
]
 },
 {
 "name": "set_nhop",
 "id": 8,
 "runtime_data": [
 {
 "name": "nhop_ipv4",
 "bitwidth": 32
 },
 {
 "name": "port",
 "bitwidth": 9
 }
],
 "primitives": [
 {
 "op": "modify_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "routing_metadata",
 "nhop_ipv4"
]
 },
 {
 "type": "runtime_data",
 "value": 0
 }
]
 },
 {
 "op": "modify_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "standard_metadata",
 "egress_port"
]
 },
 {
 "type": "runtime_data",
 "value": 1
 }
]
 },
 {
 "op": "add_to_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "ipv4",
 "ttl"
]
 },
 {
 "type": "hexstr",
 "value": "-0x1"
 }
]
 }
]
 },
 {
 "name": "_no_op",
 "id": 9,
 "runtime_data": [],
 "primitives": []
 },
 {
 "name": "set_gre_key_valid",
 "id": 10,
 "runtime_data": [
 {
 "name": "idx",
 "bitwidth": 16
 },
 {
 "name": "key",
 "bitwidth": 16
 }
],
 "primitives": [
 {
 "op": "modify_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "validKey"
]
 },
 {
 "type": "hexstr",
 "value": "0x1"
 }
]
 },
 {
 "op": "modify_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "hashKey"
]
 },
 {
 "type": "runtime_data",
 "value": 1
 }
]
 },
 {
 "op": "modify_field",
 "parameters": [
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "index"
]
 },
 {
 "type": "runtime_data",
 "value": 0
 }
]
 },
 {
 "op": "register_read",
 "parameters": [
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "prevSequenceNumber"
]
 },
 {
 "type": "register_array",
 "value": "sequence_number_reg"
 },
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "index"
]
 }
]
 }
]
 }
],
 "pipelines": [
 {
 "name": "ingress",
 "id": 0,
 "init_table": "_condition_0",
 "tables": [
 {
 "name": "ipv4_lpm",
 "id": 0,
 "match_type": "lpm",
 "type": "simple",
 "max_size": 1024,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [
 {
 "match_type": "lpm",
 "target": [
 "ipv4",
 "dstAddr"
],
 "mask": null
 }
],
 "actions": [
 "set_nhop",
 "_drop"
],
 "next_tables": {
 "set_nhop": "forward",
 "_drop": "forward"
 },
 "base_default_next": "forward"
 },
 {
 "name": "forward",
 "id": 1,
 "match_type": "exact",
 "type": "simple",
 "max_size": 512,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [
 {
 "match_type": "exact",
 "target": [
 "routing_metadata",
 "nhop_ipv4"
],
 "mask": null
 }
],
 "actions": [
 "set_dmac",
 "_drop"
],
 "next_tables": {
 "set_dmac": null,
 "_drop": null
 },
 "base_default_next": null
 }
],
 "conditionals": [
 {
 "name": "_condition_0",
 "id": 0,
 "expression": {
 "type": "expression",
 "value": {
 "op": "and",
 "left": {
 "type": "expression",
 "value": {
 "op": "valid",
 "left": null,
 "right": {
 "type": "header",
 "value": "ipv4"
 }
 }
 },
 "right": {
 "type": "expression",
 "value": {
 "op": ">",
 "left": {
 "type": "field",
 "value": [
 "ipv4",
 "ttl"
]
 },
 "right": {
 "type": "hexstr",
 "value": "0x0"
 }
 }
 }
 }
 },
 "true_next": "ipv4_lpm",
 "false_next": null
 }
]
 },
 {
 "name": "egress",
 "id": 1,
 "init_table": "_condition_1",
 "tables": [
 {
 "name": "send_frame",
 "id": 2,
 "match_type": "exact",
 "type": "simple",
 "max_size": 256,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [
 {
 "match_type": "exact",
 "target": [
 "standard_metadata",
 "egress_port"
],
 "mask": null
 }
],
 "actions": [
 "rewrite_mac",
 "_drop"
],
 "next_tables": {
 "rewrite_mac": null,
 "_drop": null
 },
 "base_default_next": null
 },
 {
 "name": "gre_key",
 "id": 3,
 "match_type": "exact",
 "type": "simple",
 "max_size": 16384,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [
 {
 "match_type": "exact",
 "target": [
 "gre",
 "key"
],
 "mask": null
 }
],
 "actions": [
 "_drop",
 "force_drop",
 "_no_op",
 "set_gre_key_valid",
 "set_gre_key_invalid"
],
 "next_tables": {
 "_drop": "_condition_2",
 "force_drop": "_condition_2",
 "_no_op": "_condition_2",
 "set_gre_key_valid": "_condition_2",
 "set_gre_key_invalid": "_condition_2"
 },
 "base_default_next": "_condition_2"
 },
 {
 "name": "gre_compute_hash",
 "id": 4,
 "match_type": "exact",
 "type": "simple",
 "max_size": 16384,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [],
 "actions": [
 "compute_gre_hash"
],
 "next_tables": {
 "compute_gre_hash": "_condition_4"
 },
 "base_default_next": "_condition_4"
 },
 {
 "name": "gre_update",
 "id": 5,
 "match_type": "exact",
 "type": "simple",
 "max_size": 16384,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [],
 "actions": [
 "update_gre_sequence_number"
],
 "next_tables": {
 "update_gre_sequence_number": "gre_remove"
 },
 "base_default_next": "gre_remove"
 },
 {
 "name": "gre_drop",
 "id": 6,
 "match_type": "exact",
 "type": "simple",
 "max_size": 16384,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [],
 "actions": [
 "_drop",
 "force_drop"
],
 "next_tables": {
 "_drop": "send_frame",
 "force_drop": "send_frame"
 },
 "base_default_next": "send_frame"
 },
 {
 "name": "gre_drop2",
 "id": 7,
 "match_type": "exact",
 "type": "simple",
 "max_size": 16384,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [],
 "actions": [
 "_drop",
 "force_drop"
],
 "next_tables": {
 "_drop": "send_frame",
 "force_drop": "send_frame"
 },
 "base_default_next": "send_frame"
 },
 {
 "name": "gre_drop3",
 "id": 8,
 "match_type": "exact",
 "type": "simple",
 "max_size": 16384,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [],
 "actions": [
 "_drop",
 "force_drop"
],
 "next_tables": {
 "_drop": "send_frame",
 "force_drop": "send_frame"
 },
 "base_default_next": "send_frame"
 },
 {
 "name": "gre_remove",
 "id": 9,
 "match_type": "exact",
 "type": "simple",
 "max_size": 16384,
 "with_counters": false,
 "direct_meters": null,
 "support_timeout": false,
 "key": [],
 "actions": [
 "remove_gre"
],
 "next_tables": {
 "remove_gre": "send_frame"
 },
 "base_default_next": "send_frame"
 }
],
 "conditionals": [
 {
 "name": "_condition_1",
 "id": 1,
 "expression": {
 "type": "expression",
 "value": {
 "op": "valid",
 "left": null,
 "right": {
 "type": "header",
 "value": "gre"
 }
 }
 },
 "true_next": "gre_key",
 "false_next": "send_frame"
 },
 {
 "name": "_condition_2",
 "id": 2,
 "expression": {
 "type": "expression",
 "value": {
 "op": "==",
 "left": {
 "type": "field",
 "value": [
 "gre_metadata",
 "validKey"
]
 },
 "right": {
 "type": "hexstr",
 "value": "0x1"
 }
 }
 },
 "true_next": "_condition_3",
 "false_next": "gre_drop3"
 },
 {
 "name": "_condition_3",
 "id": 3,
 "expression": {
 "type": "expression",
 "value": {
 "op": "and",
 "left": {
 "type": "expression",
 "value": {
 "op": ">",
 "left": {
 "type": "field",
 "value": [
 "gre",
 "sequenceNumber"
]
 },
 "right": {
 "type": "field",
 "value": [
 "gre_metadata",
 "prevSequenceNumber"
]
 }
 }
 },
 "right": {
 "type": "expression",
 "value": {
 "op": "<",
 "left": {
 "type": "field",
 "value": [
 "gre",
 "sequenceNumber"
]
 },
 "right": {
 "type": "expression",
 "value": {
 "op": "+",
 "left": {
 "type": "field",
 "value": [
 "gre_metadata",
 "prevSequenceNumber"
]
 },
 "right": {
 "type": "hexstr",
 "value": "0x7d"
 }
 }
 }
 }
 }
 }
 },
 "true_next": "gre_compute_hash",
 "false_next": "gre_drop2"
 },
 {
 "name": "_condition_4",
 "id": 4,
 "expression": {
 "type": "expression",
 "value": {
 "op": "==",
 "left": {
 "type": "field",
 "value": [
 "gre",
 "checksum"
]
 },
 "right": {
 "type": "field",
 "value": [
 "gre_metadata",
 "computedHash"
]
 }
 }
 },
 "true_next": "gre_update",
 "false_next": "gre_drop"
 }
]
 }
],
 "calculations": [
 {
 "name": "ipv4_checksum",
 "id": 0,
 "input": [
 {
 "type": "field",
 "value": [
 "ipv4",
 "version"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "ihl"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "diffserv"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "totalLen"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "identification"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "flags"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "fragOffset"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "ttl"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "protocol"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "srcAddr"
]
 },
 {
 "type": "field",
 "value": [
 "ipv4",
 "dstAddr"
]
 }
],
 "algo": "csum16"
 },
 {
 "name": "gre_checksum",
 "id": 1,
 "input": [
 {
 "type": "field",
 "value": [
 "gre",
 "flags"
]
 },
 {
 "type": "field",
 "value": [
 "gre",
 "protocolType"
]
 },
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "emptyChecksum"
]
 },
 {
 "type": "field",
 "value": [
 "gre_metadata",
 "hashKey"
]
 },
 {
 "type": "field",
 "value": [
 "gre",
 "key"
]
 },
 {
 "type": "field",
 "value": [
 "gre",
 "sequenceNumber"
]
 },
 {
 "type": "payload"
 }
],
 "algo": "csum16"
 }
],
 "checksums": [
 {
 "name": "ipv4.hdrChecksum|ipv4_checksum",
 "id": 0,
 "target": [
 "ipv4",
 "hdrChecksum"
],
 "type": "generic",
 "calculation": "ipv4_checksum",
 "if_cond": null
 }
],
 "learn_lists": [],
 "field_lists": [],
 "counter_arrays": [],
 "register_arrays": [
 {
 "name": "sequence_number_reg",
 "id": 0,
 "bitwidth": 32,
 "size": 65536
 }
],
 "force_arith": [
 [
 "standard_metadata",
 "ingress_port"
],
 [
 "standard_metadata",
 "packet_length"
],
 [
 "standard_metadata",
 "egress_spec"
],
 [
 "standard_metadata",
 "egress_port"
],
 [
 "standard_metadata",
 "egress_instance"
],
 [
 "standard_metadata",
 "instance_type"
],
 [
 "standard_metadata",
 "clone_spec"
],
 [
 "standard_metadata",
 "_padding"
]
]
}

targets/simple_router_auth_poc/simple_router.p4

/* Original work Copyright 2013-present Barefoot Networks, Inc.
 * Modified work Copyright 2016 Jeroen Klomp
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// headers
header_type ethernet_t {
 fields {
 dstAddr : 48;
 srcAddr : 48;
 etherType : 16;
 }
}

header_type ipv4_t {
 fields {
 version : 4;
 ihl : 4;
 diffserv : 8;
 totalLen : 16;
 identification : 16;
 flags : 3;
 fragOffset : 13;
 ttl : 8;
 protocol : 8;
 hdrChecksum : 16;
 srcAddr : 32;
 dstAddr: 32;
 }
}

//
// gre header
//

// simplified gre header (compound flags and fixed optional fields assumed)
header_type gre_t {
 fields {
 flags : 16; // flags as compound field otherwise the flags are set to 0 after egress (not really necessary anymore since the header is removed after authentication)
 protocolType : 16;
 checksum : 16;
 offset: 16;
 key : 32;
 sequenceNumber : 32;
 }
}

// parser
parser start {
 return parse_ethernet;
}

#define ETHERTYPE_IPV4 0x0800

header ethernet_t ethernet;

parser parse_ethernet {
 extract(ethernet);
 return select(latest.etherType) {
 ETHERTYPE_IPV4 : parse_ipv4;
 default: ingress;
 }
}

header ipv4_t ipv4;

field_list ipv4_checksum_list {
 ipv4.version;
 ipv4.ihl;
 ipv4.diffserv;
 ipv4.totalLen;
 ipv4.identification;
 ipv4.flags;
 ipv4.fragOffset;
 ipv4.ttl;
 ipv4.protocol;
 ipv4.srcAddr;
 ipv4.dstAddr;
}

field_list_calculation ipv4_checksum {
 input {
 ipv4_checksum_list;
 }
 algorithm : csum16;
 output_width : 16;
}

calculated_field ipv4.hdrChecksum {
 verify ipv4_checksum;
 update ipv4_checksum;
}

#define IP_PROT_GRE 0x2f

// gre header type needs to be defined prior to parsing ipv4, otherwise some fields stay undefined
header gre_t gre;

parser parse_ipv4 {
 extract(ipv4);
 return select(ipv4.protocol) {
 IP_PROT_GRE : parse_gre;
 default : ingress;
 }
}

//
// generic actions
//

action _no_op() {
 //no_op(); // primitive not implemented so just do nothing
}

action _drop() {
 drop();
}

action force_drop() {
 drop(); // drop action is not dropping gre traffic; only other traffic
 //modify_field(standard_metadata.egress_port, 511); // action that drop() does behind the curtain, doesn't work either
 truncate(0); // truncating the packet to zero works, although the switch still present an empty frame to the nic
}

//
// normal simple_router functionality
//

header_type routing_metadata_t {
 fields {
 nhop_ipv4 : 32;
 }
}

metadata routing_metadata_t routing_metadata;

action set_nhop(nhop_ipv4, port) {
 modify_field(routing_metadata.nhop_ipv4, nhop_ipv4);
 modify_field(standard_metadata.egress_port, port);
 add_to_field(ipv4.ttl, -1);
}

table ipv4_lpm {
 reads {
 ipv4.dstAddr : lpm;
 }
 actions {
 set_nhop;
 _drop;
 }
 size: 1024;
}

action set_dmac(dmac) {
 modify_field(ethernet.dstAddr, dmac);
}

table forward {
 reads {
 routing_metadata.nhop_ipv4 : exact;
 }
 actions {
 set_dmac;
 _drop;
 }
 size: 512;
}

action rewrite_mac(smac) {
 modify_field(ethernet.srcAddr, smac);
}

table send_frame {
 reads {
 standard_metadata.egress_port: exact;
 }
 actions {
 rewrite_mac;
 _drop;
 }
 size: 256;
}

//
// gre metadata
//

header_type gre_metadata_t {
 fields {
 validKey : 1;
 index : 16;
 hashKey : 16;
 prevSequenceNumber : 32;
 computedHash : 16;
 emptyChecksum : 16; // never assigned, always 0x0000; used for checksum calculation
 }
}

metadata gre_metadata_t gre_metadata;

// sequence number counter
register sequence_number_reg {
 width: 32;
 static: gre_update;
 instance_count: 65536;
}

//
// gre checksum
//

// cleaned-up version of gre_checksum_list that uses metadata fields instead of #defines which seems to cause problems in the json representation
field_list gre_checksum_list {
 gre.flags;
 gre.protocolType;
 gre_metadata.emptyChecksum;
 gre_metadata.hashKey; // dynamic hash_key via offset field
 gre.key; // identifier
 gre.sequenceNumber;
 payload;
}

field_list_calculation gre_checksum {
 input {
 gre_checksum_list;
 }
 algorithm : csum16;
 output_width : 16;
}

// useful for testing purposes (better to use the debugger though), but not needed/functional anymore since this is now handled by modify_field_with_hash_based_offset (with dynamic hash_keys)
/*
calculated_field gre.checksum {
 verify gre_checksum if (valid(gre));
 update gre_checksum if (valid(gre));
}
*/

// parser_exception do not appear to be implemented
/*
parser_exception p4_pe_checksum {
 //set_metadata(gre_metadata.gre_parse_error, 1);
 return ingress;
 //parser_drop; // either set metadata and return or drop packet
}
*/

parser parse_gre {
 extract(gre);
 return ingress;
}

//
// gre actions
//

action set_gre_key_invalid() {
 modify_field(gre_metadata.validKey, 0);
}

action set_gre_key_valid(idx, key) {
 modify_field(gre_metadata.validKey, 1);
 modify_field(gre_metadata.hashKey, key);
 modify_field(gre_metadata.index, idx);
 get_gre_sequence_number();
}

// register for sequence number
action get_gre_sequence_number() {
 register_read(gre_metadata.prevSequenceNumber, sequence_number_reg, gre_metadata.index);
}

action update_gre_sequence_number() {
 register_write(sequence_number_reg, gre_metadata.index, gre.sequenceNumber);
 //remove_gre(); // remove gre header (table gre_remove and gre_update_sequence_number could be merged, then this entry could be used)
}

action compute_gre_hash() {
 modify_field_with_hash_based_offset(gre_metadata.computedHash, 0, gre_checksum, 65536);
}

// remove gre header and repair ip proto: ip/gre/icmp -> ip/icmp
#define IP_PROT_ICMP 0x01

action remove_gre() {
 remove_header(gre);
 modify_field(ipv4.protocol, IP_PROT_ICMP); // static proto following gre header
 add_to_field(ipv4.totalLen, -16); // reduce length to accommodate for removal of gre header
}

//
// gre tables
//

// gre key (identifier) table
table gre_key {
 reads {
 gre.key : exact;
 }
 actions {
 //_drop; // doesn't work properly
 //force_drop; // appears to still allow traversal of wrong tables; instead use set_gre_key_invalid
 set_gre_key_valid;
 set_gre_key_invalid;
 }
}

table gre_compute_hash {
 actions {
 compute_gre_hash;
 }
}

// update sequence number
table gre_update {
 actions {
 update_gre_sequence_number;
 }
}

// not a valid hash
table gre_drop {
 actions {
 //_drop; // doesn't work properly
 force_drop;
 }
}

// not a valid sequence number
table gre_drop2 {
 actions {
 //_drop; // doesn't work properly
 force_drop;
 }
}

// not a valid key (identifier)
table gre_drop3 {
 actions {
 //_drop; // doesn't work properly
 force_drop;
 }
}

table gre_remove {
 actions {
 remove_gre;
 }
}

//
// control
//

control ingress {
 if(valid(ipv4) and ipv4.ttl > 0) {
 apply(ipv4_lpm); // normal ipv4 routing functionality
 apply(forward); // normal forwarding functionality
 }
}

control egress {
 if (valid(gre)) {
 apply(gre_key);
 if (gre_metadata.validKey == 1) {
 if ((gre.sequenceNumber > gre_metadata.prevSequenceNumber) and (gre.sequenceNumber < gre_metadata.prevSequenceNumber + 125)) { // sliding window of valid sequence numbers
 apply(gre_compute_hash);
 if (gre.checksum == gre_metadata.computedHash) {
 apply(gre_update); // store new sequence number
 apply(gre_remove); // remove gre header
 }
 else {
 apply(gre_drop); // not a valid hash
 }
 }
 else {
 apply(gre_drop2); // not a valid sequence number
 }
 }
 // following is unnecessary if the table gre_key has a drop action by default, but this will result in the tables (e.g., gre_compute_hash) above being applied nonetheless
 // therefore work around by explicitly setting validKey to 0 and applying gre_drop3 table
 else {
 apply(gre_drop3); // not a valid key (identifier)
 }
 }
 apply(send_frame); // normal forwarding functionality
}

targets/simple_router_auth_poc/tshark.sh

#!/bin/bash
#
(C) 2016 Jeroen Klomp
#
License: GPLv3

tshark parser for P4 authentication demonstration
usage: script.sh -i eth0 [...]

#if [[$2 == 's1-eth1']]; then
echo -e "# Src \t=> Dst Proto Type Payload ID Seq Chksum"
#fi

tpgreen=$(tput setab 2)
tpyellow=$(tput setab 3)
tpbold=$(tput bold)
tpreset=$(tput sgr0)

while read line; do
 #echo -n $line | awk '{print $1,$2,$3,$4,$5}'
 number=$(echo $line | awk '{print $1}')
 src=$(echo $line | awk '{print $2}')
 dst=$(echo $line | awk '{print $3}')
 proto=$(echo $line | awk '{print $4}')
 type=$(echo $line | awk '{print $5}') # icmptype or gre proto
 data=$(echo $line | awk '{print $6}')
 id_key=$(echo $line | awk '{print $7}')
 seq=$(echo $line | awk '{print $8}')
 chksum=$(echo $line | awk '{print $9}')

 if [[$proto == "47"]]; then
 proto="GRE "
 elif [[$proto == "1"]]; then
 proto="ICMP"
 fi

 if [[$type == "0"]]; then
 type="RPLY"
 elif [[$type == "8"]]; then
 type="RQST"
 elif [[$type == "0x00000000"]]; then
 type="ICMP"
 fi

 data2=$(echo ${data:24})
 if [[-z $data2]]; then
 data2=$data
 fi
 # prevent UTF-8 garbage from normal ping command
 #if [[${data:0:} == *[[:ascii:]]*]]; then
 # data2="[...]01234567"
 #fi
 #echo $data2
 # doesn't work
 # easiest work around is to use a terminal that simply doesn't show it (e.g., tmux by default)
 data3=$(echo -e $(echo -n "\x${data2}" | sed 's/:/\\x/g'))

 # fix checksum to 16 bits
 chksum=$(echo $chksum | sed 's/0000//')

 if [[$src == '10.0.0.10']]; then
 src="${tpgreen}$src${tpreset}"
 else
 src="${tpyellow}$src${tpreset}"
 fi

 # improve layout
 if [[${#number} < 2]]; then
 number=" $number"
 fi

 if [[${#data3} < 3]]; then
 tab=" "
 elif [[${#data3} < 4]]; then
 tab=" "
 elif [[${#data3} < 5]]; then
 tab=" "
 elif [[${#data3} < 6]]; then
 tab=" "
 elif [[${#data3} < 7]]; then
 tab=""
 fi

 echo -e "$number $src => $dst $proto $type ${tpbold}$data3${tpreset} $tab $id_key $seq $chksum"

done < <(tshark -l -T fields -E separator=' ' -e frame.number -e ip.src -e ip.dst -e ip.proto -e icmp.type -e gre.proto -e data.data -e gre.key -e gre.sequence_number -e gre.checksum "$@" 2>/dev/null)

targets/simple_router_auth_poc/wireshark.sh

wireshark -i s1-eth1 -i s1-eth2 -k "$@"

