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Abstract

Intel Software Guard Extensions (SGX) is a hardware technology that provides a secure
execution environment for applications. When code is executed inside the SGX environ-
ment nobody can access the code. This means no kernel, hypervisor, operating system
or administrator is able to modify or view the code. Normally executing software inside
a trusted environment is a desired property, but what if malware is being executed using
SGX technology? In this report, we try to answer the following question: ”What would
be the consequence if malware writers use the features of SGX?” Here, we show two proof
of concepts in which malware benefits from SGX. The first proof of concept shows the
remote attestation process to guarantee authenticity before downloading an encrypted
payload. The second proof of concept implements a stalling mechanism, to delay the ma-
licious behavior of malware. As a result, the only remaining way to analyze and mitigate
SGX malware is system call heuristics.
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1 Introduction
Intel SGX [1] is an extension to the Instructions Set Architecture (ISA) that includes special instructions
regarding the interaction with memory. SGX aims to guarantee confidentiality and integrity on the
execution of code by separating the memory on the hardware level and implementing special semantics
for accessing the memory. According to Intel’s specification no kernel, hypervisor or other program can
access the code. Therefore, SGX will act as a secure vault for executing code. This secure vault is named
enclave. In addition, SGX also provides a method for software attestation to ensure that the enclave
is setup correctly and placed on an authentic Intel platform. The attestation process can be executed
both locally and remotely. A SGX-enabled program can start an enclave running on the same privilege
ring as itself. However, running in the same privilege ring as the application, it is not possible for higher
privileged rings to access the enclave due to the hardware level separation and detection enforced by
SGX.

This research describes the consequences when malware is starting to use SGX. Use of SGX can offer
malware developers a way to protect their malicious programs against analysis. When only the attacker
can access the malware running inside an SGX enclave this can make analysis of the malware more
troublesome. The features that SGX provides make it impossible to do static or dynamic code analysis.
Malware analysts use static and dynamic code analysis to study the behavior of malware. Therefore,
studying SGX malware needs a different approach than non-SGX malware.

Two proof of concepts were developed to illustrate the possibilities for malware to use SGX. At first
a program was developed that uses the remote attestation process to ensure that an enclave is setup
correctly. During the attestation process a bootstrap program will be executed outside an enclave. The
bootstrap program is susceptible for analysis up to the moment when an attestation is done successfully.
A successful remote attestation results in a secure environment for the attacker to sent malicious code to.
This could be a valid use case for malware writers to use SGX. The second proof of concept is a program
that implements stalling code inside an enclave. Malware writers use stalling code to keep the malware
in a dormant state. When the malware is being analyzed the stalling code will withhold the decryption
and execution of its malicious code. Using stalling code will not reveal the malicious code and therefore
make it harder to analyze. Executing stalling code inside an enclave could be useful from an attacker’s
perspective. Both proof of concepts were researched to determine possible analysis methods. The code
executed inside an enclave can be analyzed using system calls. Monitoring enclaves and generating system
call patterns can help in SGX malware analysis.

In summary, we make the following contributions:

• An initial exploration on the consequences of SGX-enabled malware.
• We developed two small proof of concept programs which illustrate the use of SGX in malware.
• We tested these proof of concept programs to determine which analysis methods would still be

useful.

This report is organized as follows: Chapter 2 includes related work. Chapter 3 provides background
related to this research. In chapter 4 the research questions are defined together with the design and
analysis of two example use cases for malware. Chapter 5 discusses some remaining issues and future
work. Chapter 6 concludes this research.
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2 Related work
In the past years research is done on shielding applications [2, 3] and providing secure computations on
untrusted platforms [4–7]. A different approach would be executing computations on encrypted data,
known as fully homomorphic encryption [8], or use Controlled Physical Uncloneable Functions (cPUFs)
as a method to certify and prove execution [9]. In addition, different hardware vendors have developed
products to aid in providing secure platforms. ARM has developed ARM TrustZone [10]. AMD has
embedded the ARM technology and adopted it as Platform Security Processor (PSP) [11, 12] and Intel
has developed TXT [13, 14]. There is also an international standard for securing hardware with the use
of a Trusted Platform Module (TPM) [15]. Software attestation is possible in multiple ways [16–18], Intel
has provided an open source project called ”The Open Attestation (OAT) Project” [19]. In SGX some
of the features mentioned above are combined to provide a Trusted Execution Environment (TEE) and
software attestation.

Earlier SGX specific research, named Haven, has shown the possibility to execute unmodified legacy
applications inside SGX [20]. Haven uses the Drawbridge project [21] and a library operating system
(LibOS). Although, Haven code was executed inside an enclave it was still possible to analyze it. Xu,
Cui and Peinado [22] published a side-channel attack that uses page faults to extract large amounts of
sensitive information. The vulnerabilities lie in the implementation as Intel did not intend SGX to be used
this way. Another SGX research allows the execution of a MapReduce computation while maintaining
the confidentiality and integrity by executing the computation inside SGX [23]. Costan and Devadas [24]
recently published a detailed summary of the publicly available information on SGX.

Malware developers use different techniques such that malware evades analysis [25, 26]. Communic-
ation in botnets is getting more resilient [27] and has moved to peer-to-peer communication models [28,
29]. Yan, Chen and Eidenbenz researched the possibilities of making peer-to-peer botnets resilient to
enumeration [30]. Yan, Ha and Eidenbenz did some research on developing a peer-to-peer botnet that is
more resilient to pollution [31]. Malware also focuses on the use of low level hardware access, by using
Direct Memory Access (DMA) [32] and by hiding itself in the firmware of hard drive controllers [33].
SGX is a hardware technology that can execute code without being able to view or access the code. In
addition SGX technology looks promising for applications and is actively researched. Malware developers
are making malware more resilient to analysis. Malware developers could combine the SGX technology
to make malware more resilient to analysis. This research focuses on the consequences of SGX malware
in the design and analysis of malware.
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3 Background
This chapter will explain the fundamentals needed to understand the working of SGX. First, in 3.1 we
will briefly describe SGX itself. Then, in 3.2 we will explain software attestation which is used by SGX to
verify if an enclave is authentic. In 3.3 the needed steps to develop SGX-enabled programs are described.
Section 3.4 describes a benign use case of SGX in cloud computing. In section 3.5 some background
information is given on botnet analysis. To conclude, in section 3.6 we explain what stalling code is and
why malware developers use stalling code.

3.1 Intel SGX
SGX provides a hardware based trusted execution environment. SGX provides confidentiality and in-
tegrity of the code being executed. The trusted execution environment can be described as a vault to
execute code in. Intel named this vault an enclave. Intel has implemented SGX by extending the exist-
ing instruction set to allow for special instructions regarding these enclaves. These include but are not
limited to the creation and deletion of enclaves and entering and exiting the enclave. When the Central
Processing Unit (CPU) has entered an enclave it is switched to enclave mode. Only then can the CPU
access, decrypt and execute the code belonging to that enclave.

Executing an application with SGX support will use the extended instruction set to initiate an enclave.
After initiation and attestation the enclave can be trusted with secret data. The application can still
communicate with the code executing inside the enclave using a SGX specific application design. The
enclave will execute in the same privilege ring as the application it is created by. When the code of an
enclave needs to transfer from CPU cache to memory it is encrypted before being placed into memory.
Snooping on the memory bus or memory itself will only result in encrypted data.

3.2 Attestation
To guarantee that an enclave is setup correctly software attestation is used. This attestation process
provides a way to verify if an enclave passes the initial integrity check and is initiated on an authentic
Intel platform. A verifying party can make sure that the enclave is set up as meant to be before confidential
code is being loaded inside the enclave. This attestation is a key part of SGX as it builds a trust relation
with the enclave placed on a possibly compromised system. Intel recommends to use attestation when
setting up an enclave [34, chap. 1.3].

Intel has developed two ways of attestation: local attestation and remote attestation. Local attestation
provides mutual authentication between two enclaves. Remote attestation can be used for verifying
enclaves from a remote location. A key role in the attestation process is the use of two registers called
MRENCLAVE and MRSIGNER. The MRENCLAVE is a SHA-256 digest of the enclave code, data and
stack. The MRSIGNER identifies the builder of the enclave, most likely the developer or its company.
An RSA signed certificate, with the supposed initial values of the MRENCLAVE and MRSIGNER, can
be used to verify if these values correspond with the actual registers of the enclave. If so, the enclave is
set up as it is supposed to and can be used to load and execute confidential code.

For this research the remote attestation is of more importance than the local attestation. Here, we
will only describe the details of remote attestation. For more information on local attestation we point
to the Intel documentation [35, 36].
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Figure 2: Remote attestation [35].

In figure 2 the remote attestation is described, starting from a third party called Challenger. Most likely
this third party would be the software vendor. The SGX-enabled application would be executed on a
remote machine, illustrated with the dotted line in figure 2. The description below is partly taken from
Intel’s documentation [35].

1. The challenger does an attestation request to the application.
2. The application forwards the request to its enclave.
3. The enclave is generating a REPORT [37, p. 22] using the EREPORT instruction [37, p. 143].

This REPORT resembles the enclave including the measurement registers. The REPORT is being
sent to the application. The enclave can also start an asymmetric key exchange in the REPORT
such that after the attestation the challenger can communicate confidential information back to the
enclave directly [36, chap. 6] [35, chap. 3.2.3].

4. The REPORT is being forwarded to the Quoting Enclave.
5. The Quoting Enclave is a special enclave Intel has developed and is always available on an SGX-

enabled platform. The Quoting Enclave can verify the REPORT and can sign the result using the
EPID key. This results in a QUOTE. The QUOTE resembles a verification done by the CPU itself.

6. The QUOTE is being sent to the Challenger.
7. The Challenger can then verify if the application enclave is setup correctly by checking the QUOTE.

The Challenger could use the EPID public key certificate or use an Intel provided Attestation
Verification Service.

REPORT and QUOTE are data structures that describe either the enclave or the result of the check
executed by the Quoting Enclave. The REPORT and QUOTE structures are documented by Intel [37–
39]. For a basic understanding the exact structure format can be left out, but keep in mind that the
details are important to proof the authenticity and integrity of an enclave.

3.3 Development
Developing SGX-enabled programs has a different development cycle compared to non-SGX programs.
There are a five important steps during the process of developing applications that are different compared
to the development of non-SGX applications. Documentation on using the Software Development Kit
(SDK) under Windows, can be found on Intel’s website [40]. This section describes the additional steps
that developers need to take to develop SGX-enabled programs:

• Writing enclave code is similar to writing normal code.
• To make use of the enclave code an interface needs to be defined which describes the functions that

can be called from the untrusted part of the program to the trusted part of the program inside the
enclave. This definition plays a key role as it determines the communication channel of an enclave.
Mistakes in this definition can lead to a compromise or memory leakage of enclave code [36, chap.
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2]. The language used for describing this interface is called Enclave Definition Language (EDL)
[41].

• Then the enclave code and the EDL can be imported in an application. After importing the enclave
code it is possible for the untrusted code to call the functions that are described in the EDL and
provided by the enclave code.

• After compiling the program, the enclave code is placed inside a separate enclave file.
• The enclave file needs to be signed by the developer, which is required by the SGX architecture [36,

chap. 4.1].

3.4 Benign Use Case
Cloud-based computation on sensitive data needs to be implemented such that the confidentiality of the
data is preserved. SGX could be used for this purpose. A benign use case would be the execution of a
distributed MapReduce instruction in a cloud-based environment. An example implementation of this
instruction is Verifiable Confidential Cloud Computing (VC3) [23]. VC3 uses SGX for executing a secure
MapReduce instruction. The process of executing the MapReduce instruction is illustrated in figure 3.

Figure 3: High-level concept of the VC3 implement-
ation of the MapReduce job [23, chap. III].

The encrypted input is uploaded to the memory of a remote machine. Once an enclave is initiated
and attested the input is placed in the enclave and decrypted. After decryption, the entire MapReduce
instruction is executed in the protected environment of the enclave. The result of the MapReduce
instruction is encrypted and placed back in memory.

3.5 Botnet Analysis
Botnet research on non-SGX malware could first focus on intelligence gathering and later switch to a
disruption and destruction of the botnet [27, 29]. A researcher has possibilities to interfere with the code
by changing or reverse engineering the program. Another possibility is to interfere with the structure of
the botnet by changing the code to delete edges or inject peers into a peer-to-peer botnet. Having the
ability to interfere with the code is of importance when researching botnet related malware.

3.6 Malware Stalling Behavior
A desired feature for malware is that it is not detected when searched for. There are multiple ways of
trying to evade analysis. One of the techniques used is called stalling. Most often this is combined with
an encrypted payload which is only decrypted after the stalling code is done. When the malware is being
analyzed stalling code keeps executing a certain loop which does nothing harmful but only generates
bogus data to create a haystack of analysis information. Furthermore analysis tools are generally capable
of running a certain amount of time. Having malware stall long enough will keep it’s malicious intent
hidden. As a reaction to stalling code, malware researchers have developed ways to evade or skip stalling
code. One of the approaches is called Hasten [42]. Hasten uses system call heuristics and a Control Flow
Graph (CFG). This CFG is generated by conducting dynamic analysis on the memory that’s being used
by the malware. Hasten also implements a way of interfering with the code such that stalling loops can
be skipped.
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4 Research
This chapter describes the approach of this research. At first, 4.1 describes the research questions which
were defined. Section 4.2 describes the platform we’ve used to develop the proof of concepts. Section 4.3
describes two possible use cases for malware to leverage the features of SGX. As an example we used the
attestation process and developed a way to execute stalling code inside an enclave. The attestation and
stalling examples are described respectively in 4.4 and 4.5.

4.1 Research Questions
Assuming that SGX is going to be used widely this would offer malware writers a possibility to harden
their malware. The main reason to investigate the possibilities for malware to use SGX is the changes
it may cause for malware analysis. The fact that SGX provides confidentiality and integrity guarantees
over the code being executed inside an enclave can make analyzing this code hard. This research aims to
get more acquainted with the possibilities for malware to use SGX and the possibilities for researchers
to analyze SGX-enabled programs. In this report we try to answer the following research question:

”What are the consequences of SGX-enabled malware?”

In order to answer the main research question we defined subsidiary questions. Malware writers are using
different techniques to make hardware more resilient or harder to analyze. The first subsidiary question
is:

”How could malware benefit from using SGX?”

Some adjustments need to be made in order to use the features that SGX offers. The phases an SGX
application has are different compared to a non-SGX application. This leads to our second subsidiary
question:

”What adjustments in the design of malware need to be made in order to make use of SGX?”

SGX is developed to achieve confidentiality and integrity on the code executed in the protected environ-
ment. When researchers study the behavior of malware that executes inside SGX this would most likely
cause changes in the approach of malware analysis. Our third subsidiary question would be:

”What methods for analyzing malware still work and which are obsolete?”

4.2 Development Platform
At the start of this research Intel had not made their SGX SDK publicly available yet. Only a few
research groups had access to the official SGX code and platform. Jain et al. [43] have developed a
platform, called OpenSGX, meant for researchers to study the capabilities and features offered by SGX.
During this research OpenSGX was used to develop and test the proof of concept programs of section
4.3. Although, OpenSGX does not offer the same level of protection as SGX, it is still representative for
the high-level separation that SGX offers.

4.3 Use Cases
There are multiple use cases one can think of when developing code for SGX enclaves. To scope the
research we decided to turn the two following use cases into working proof of concepts:

1. For malware purposes we can use the attestation process to verify a remote platform and only
upload the malicious payload when attestation is successful. SGX will guarantee that the enclave
is authentic and trusted. Therefore, malware developers will have a trusted execution environment.

2. Executing stalling code inside an enclave will keep the stalling code protected against modification.
Therefore, analysis of stalling code executed inside SGX will be different compared to normal
malware analysis.

The reason for the attestation example is that remote attestation is a unique feature of SGX and has
interesting possibilities from a malware perspective. The reason for the stalling code example is that it
illustrates the challenges that malware analysts are going to face.
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4.4 Attestation
This section describes our first proof of concept. We use the remote attestation process to illustrate
the use for malware developers to harden their malware? In 4.4.1 we describe our design. Section 4.4.2
describes the analysis done on the developed proof of concept. Using the remote attestation feature
available in SGX provides a way to verify that an enclave is initialized on an authentic Intel platform.
After attestation the malware developer is assured of a trusted execution environment to execute its
malware in. For analysis this results in a approach focused on system call heuristics.

4.4.1 Design

The initial application is placed on a remote platform without providing confidentiality or authenticity.
Initializing the enclave is done in plain sight. No secrets can be provided before the initial set up of the
enclave. Only once initialized and attested successfully one knows that the platform is authentic and
can transfer secrets to an enclave [24, chap. 6.6.1]. This approach of writing a program will result in a
generic bootstrap program which can have any use case.

Figure 4: An abstract design of the different phases that malware can be in.

Figure 4 illustrates the phases of possible SGX malware. A generic bootstrap application with download-
ing capabilities is placed on a remote platform. The bootstrap application has no payload which makes
the use of obfuscation and different packers unnecessary. When the initial bootstrap program is started
it will setup an enclave. This enclave is then verified and attested using the remote attestation process.
At the same time it will do a key exchange with the malware developer. After a successful attestation an
encrypted payload can be sent directly to the enclave. This payload can contain basic malware function-
ality. After receiving, this code is decrypted in the enclave and executed inside the enclave waiting for
further instructions, be it a command, targeted payload or update. Using a generic bootstrap program
could also be used to evade anti-virus systems [24, chap. 5.9.5].

Here, a proof of concept program was developed to test the possibilities of using SGX and remote
attestation for malware purposes. A simple bootstrap program was used to initialize and enter an SGX
enclave. Listing 1 illustrates the code that is used for the bootstrap part of the program.

1 int main(int argc, char **argv)
2 {
3 tcs_t *tcs = prepare_enclave(argc, argv);
4 void (*aep)() = exception_handler;
5

6 enter_enclave(tcs, aep, argc, argv);
7

8 return 0;
9 }

Listing 1: Basic bootstrap code.

Inside the enclave we use the attestation functions, as shown in listing 2. When the attestation is
successful we know that an enclave is setup securely and we can provide our secrets to that enclave.

10



1 void enclave_main()
2 {
3 int challenger_port, ret;
4 char *ff_domain = "20ajf412.biz";
5 char *ff_payload = "49fhsb24.biz";
6 challenger_port = 8024;
7

8 ret = sgx_remote_attest_target(ff_domain, challenger_port, QUOTE_PORT);
9 if(ret == 1) {

10 puts("Remote Attestation Success!");
11 get_payload(ff_payload, 443);
12 } else {
13 puts("Remote Attestation Fail!");
14 }
15 sgx_exit(NULL);
16 }

Listing 2: Attestation and download code.

4.4.2 Analysis

As mentioned earlier, no secrets should be provided before a successful attestation is done. As the
bootstrap code is not encrypted this means that domain names or IP addresses can be extracted from
the program. From a malware perspective this means that it is still necessary to use fast flux techniques
[44] or similar to obfuscate the communication endpoints.

Our enclave code is running in the same privilege ring as the host application, being the bootstrap
program. In this case the privilege ring would be ring 3. This means that for every IO operation a
system call needs to be executed. When executing the attestation example from listing 2 The GNU
Project Debugger (GDB) [45] can be used to debug the code. Placing a monitor on the connect system
call allows for intercepting the IP address of the host that the program is trying to communicate with.

Catchpoint 1 ( c a l l to s y s c a l l connect ) , 0 x 0 7 f e f c 3 4 c 5 7 f 0 in c o n n e c t n o c a n c e l ( )
( gdb ) n
connect ( ) at . . / sysdeps / unix / s y s c a l l−template . S : 8 6
( gdb ) n
do connect ( so c k f d =6, t a r g e t a d d r =2155874016 , addr len =16)
( gdb ) x/2xb t a r g e t a d d r
0 x808006e0 : 0x02 0x00
( gdb ) x/2xb t a r g e t a d d r+2
0 x808006e2 : 0 x1f 0x58
( gdb ) x/4xb t a r g e t a d d r+4
0 x808006e4 : 0 x7f 0x00 0x00 0x01

Listing 3: GDB output of connect system call.

The domain in listing 2 is changed to use the localhost address to connect to. The connect system call
takes three variables of which the second one is a const struct sockaddr pointer. This struct includes the
port and IP address [46, 47]. When debugging the system call the port and IP address can be retrieved
by investigating this struct, named target addr in listing 3. In table 1 the values that were found are
converted to a more readable format.

HEX value readable value description
0x1f58 8024 port
0x7f000001 127.0.0.1 IP address

Table 1: Hexadecimal and readable values.

Capturing the hexadecimal values illustrates the possibility for using system calls in analyzing SGX
programs. In this example the system call is setting up an connection. When an encrypted channel is
established the monitoring of system calls relating to the communication would result in encrypted data.
Assuming the encryption is strong enough this would be less interesting. From an attacker’s perspective
this means that the code itself remains hidden and only allows for system call heuristics. Changing the
system call pattern will evade known pattern detection.
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4.5 Stalling Code
This section describes our second proof of concept. This proof of concept illustrates the use of SGX
to implement stalling behavior inside an SGX enclave. Section 4.5.1 describes our design. Section 4.5.2
describes the analysis done on the proof of concept. Researchers studied the stalling behavior in malware,
as a result there are possibilities to skip stalling loops. The availability of SGX gives malware developers
new possibilities to execute stalling code inside the protected environment of SGX. Using functions that
don’t create system calls can make the malware hard to analyze.

4.5.1 Design

During the analysis of the attestation example in 4.4.2 we’ve already determined that system calls can
be viewed when interaction occurs with higher privileged rings. This means that for a sleep function the
corresponding system call can also be monitored. The sleep function can be evaded during analysis by
blocking the system call in a way that it is being skipped. To harden the sleep function we need to verify
if an actual sleep has occurred. By verifying the sleep function we can make sure that no stalling code is
being skipped.

In the Intel architecture there is a instruction called Read Time-Stamp Counter (RDTSC) [48, p.
307]. This RDTSC instruction reads the time-stamp counter which returns the number of clock ticks
passed since the last reset of the CPU. However, this seems not exact enough to measure time precisely.
The exact behavior of the time-stamp counter is out of scope in this research. Important to notice is that
executing the RDTSC instruction will not cause a system call.

1 static inline uint64_t get_cycles_x64()
2 {
3 uint64_t lo, hi;
4 __asm volatile ("rdtscp" : "=a"(lo) , "=d"(hi));
5 return (hi<<32)|lo;
6 }
7

8 void enclave_main()
9 {

10 uint64_t c1, c2, diff;
11 float div, time;
12 int count=0;
13

14 for (int i=0; i<600; i++){
15 c1 = get_cycles_x64();
16 sleep(1);
17 c2 = get_cycles_x64();
18 diff = c2-c1;
19 if (diff > 500000000){
20 count++;
21 } else {
22 sgx_exit(NULL);
23 }
24 }
25 if (count == 600)
26 execute_payload();
27 }

Listing 4: Stalling enclave code.

In this proof of concept we still use the bootstrap code from listing 1 to enter the SGX enclave. We assume
that a remote attestation was successful and that the code in listing 4 is downloaded in the enclave after
doing attestation. Therefore, the confidentiality and integrity of the stalling code are preserved. The
instruction RDTSCP in listing 4 is slightly different from the RDTSC instruction. This derivative of the
RDTSC instruction is executed serialized [48, p. 547], which guarantees the correct order of executing
the instruction just before and after our sleep function on line 15-17.

When comparing both variables c1 and c2 we can verify that clock cycles have passed. On line 19 we
check if half a billion clock cycles passed by. The exact value of this number is not important as long as
it is high enough to determine some amount of time has passed. We will discuss the reason of this value
in section 4.5.2.
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4.5.2 Analysis

Just by looking at the code of listing 4 we can already point out which lines would be interesting to skip
when analyzing this code. If we skip the sleep function and the comparison on line 25, the fictive payload
would be executed and therefore accessible for analysis.

( gdb ) catch s y s c a l l nanos leep
Catchpoint 1 ( s y s c a l l ’ nanosleep ’ [ 3 5 ] )
( gdb ) c
Continuing .

Catchpoint 1 ( c a l l to s y s c a l l nanos leep ) , x7f8a69d75c40 in n a n o s l e e p n o c a n c e l ( )
( gdb ) n
d o s y s c a l l ( cpu env=0x5591a152a1e0 , num=35, arg1 =274886290560 , arg2 =274886290560 , arg3

↪→ =2155873280 , arg4 =1845 , arg5 =0, arg6 =1, arg7 =0, arg8 =0)
( gdb ) x arg1
0 x40007fec80 : 0 x00000001
( gdb )

Listing 5: GDB output of nanosleep system call.

The system call that is done when executing the sleep function can be detected, as shown in listing 5.
The comparison on line 25 of listing 4 however can not be detected as it does not cause a system call to
occur. This means that skipping the sleep will result in a count value not being equal to 600. Even if
one manages to change the memory inside the enclave this will trigger the integrity checks and will stop
the enclave and therefore stop the analysis.

Since the RDTSCP instruction is not precise some measurements were done to determine the variance
of time measurement using the RDTSCP instruction. We tested the code of listing 4 without OpenSGX
support. The reason why we tested the code outside OpenSGX is that SGX is an ISA extension and
OpenSGX uses QEMU to emulate the SGX instructions. Testing the code with OpenSGX needs some
basic libc functions to log timing results to a file. OpenSGX didn’t have these libc functions implemen-
ted. Implementing the needed functions in OpenSGX was possible but would create more overhead and
therefore a deviation in the timing compared to non-emulated instructions.

Measuring the timing of a sleep function was done by calculating the difference of the RDTSCP before
and after the sleep function was called. The values before and after, respectively c1 and c2, would then
be divided by the base clock speed of the CPU.

c2− c1
CPU cycles per sec.

= sleeptime in sec. (1)

The boxplot of figure 5 illustrates the amount of time in seconds that was calculated using the CPU
speed and the difference between two RDTSCP instructions. The tests were conducted on a laptop with
an Intel i7-3520m processor and repeated 5000 times. The CPU was set with the constant tsc option
enabled. The base CPU speed of this processor is 2.9 GHz. To summarize we can say that the number
of clock cycles for a 1-second sleep needs to be around 2.9 billion clock cycles. The little circles in figures
5 and 6 represent the outliers.
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RDTSCP measurement of sleep(1)

Figure 5: Boxplot of the results when calculating the
passed time using the RDTSCP instruction before
and after executing the sleep(1) function.

To measure the lower boundary, the stalling program was executed while suppressing the sleep function.
The boxplot in figure 6 illustrates the results when the sleep(1) function is being skipped. We use the
amount clock cycles instead of the calculated time since it makes the scale on the y-axis more readable.
The amount of clock cycles that have passed can be calculated by measuring the difference of variable c1
and c2. Figure 6 shows a median of around 275 clock cycles.

RDTSCP measurement skipping sleep(1)

Figure 6: Boxplot of the results when calculating the
amount of clock cycles passed between two RDTSCP
instructions while skipping the sleep(1) function.

The results from our tests show that there is a variance when using the RDTSCP for calculating time.
However, this approach is precise enough to detect if the sleep function is skipped or not. An estimation
can be made for the number of clock cycles that need to pass for every 1-second sleep. Choosing a value
of half a billion clock cycles seems sufficient to determine that a sleep(1) function is skipped or not. Intel
CPUs with SGX support don’t have a base clock speed lower than 1.6 billion cycles per second (1.6 GHz)
[49]. Therefore, we can assume that using half a billion clock cycles will also work as expected on an
SGX platform with a different clock speed. To conclude SGX can aid an attacker in hiding the malicious
intent. The malware is able to stall the decryption and execution of the payload without the use of
system calls while avoiding modification to the stalling code.
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5 Discussion and Mitigations
This chapter will discuss the results of this research. At first, section 5.1 discusses the privilege ring
that enclave code is running in. Section 5.2 describes the consequences for botnet research. Section 5.3
describes the limitation of our stalling example. Section 5.4 describes a possible mitigation for the stalling
proof of concept. In section 5.5 generic mitigations are discussed. Section 5.6 discusses the ability of Intel
to monitor attestation results. To conclude this chapter some future work is discussed in section 5.7.

5.1 Privilege Ring
Intel has made a design choice to let the enclaves run under the same privilege level as the application,
being ring 3. The design of SGX makes it impossible for higher privileged rings to access the enclave.
This design is the reason why enclave code can be shielded against malicious intent by for example the
operating system. Running enclaves under the same privilege ring means that every operation related to
IO, reading/writing files or network communications, need to be done using system calls.

5.2 Botnet Research
When malware developers are implementing SGX malware, botnet analysis will become harder. If mal-
ware uses the remote attestation provided by SGX this means that the malware authors can verify that
the platform is based on genuine Intel hardware. The malicious payload will only be downloaded when
the enclave is set up and attested for. Furthermore, the code is only available decrypted in the cache of
the CPU, and changing it somehow during execution will trigger the integrity checks, stop the malware
and empty the cache. The features of SGX take away the possibility to modify the malware running
inside the SGX enclave. As a result the techniques to take over and take down a botnet that are available
now will become obsolete.

5.3 Stalling Code Limitations
Hypervisors can emulate the RDTSC instruction [50, 51] and SGX is a hardware based technology. When
enclaves are initialized by an application executing in a hypervisor this could have consequences for the
reliability of the RDTSC instruction. At this moment no research is known regarding hypervisors initiat-
ing enclaves. How SGX is used by hypervisors still needs to be seen. For now there is no documentation
about trustworthy timing sources available from within an SGX enclave.

5.4 Stalling Code Mitigation
The stalling code example from chapter 4.5 has proven to be effective. Code that can be identified with
stalling behavior causes difficulties in analysis when executed inside an enclave. Due to the features
provided by SGX there is no way to interrupt and modify the code executed in the enclave without
breaking the process. To mitigate our stalling example Intel would need to make the RDTSC and related
instructions not callable from within an SGX enclave. Making the RDTSC instruction not callable
will disable the use of the RDTSC instruction for time measurement as shown in our proof of concept,
documented in section 4.5.

5.5 Generic Mitigation
When looking at earlier research on system call heuristics [42] a conclusion can be drawn that only part
of the Hasten approach is still usable. Doing system call heuristics and thereby building a signature of
the malware can still be used. Building a CFG however is not possible anymore due to the fact that the
code is protected by the confidentiality measures of SGX. These will take away the possibility to build a
CFG to get a better understanding of the program flow. The same applies to interfering and modification
of the code running inside an enclave. Skipping over stalling loops using the Hasten approach will not
work in SGX malware. From a prevention perspective system call heuristics could be helpful as system
calls from applications can be blocked and therefore malware inside enclaves can be blocked as well.
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5.6 Intel Attestation Verification Service
During the remote attestation process a third party can verify the enclave. This third party will most
likely be the software vendor that provides the SGX-enabled application. The third party can use Intel’s
Attestation and Verification Service to determine the integrity and authenticity of the platform where
the enclave is setup. During this process there can be communication between the third party and Intel’s
Attestation and Verification Service. The fact that this communication happens also means that Intel
has the ability to monitor the requests for this service and by whom the requests are made. Being able
to monitor the attestation verification could be valuable when doing SGX malware analysis. Having a
better understanding who is doing a remote attestation verification can add insight on the inner workings
of SGX-enabled malware, especially botnet infrastructures. Intel has the ownership of the network traffic
considering the verification service. Having this data places Intel in a position that it can decide who can
do analysis on this data and who not. This would enforce their near-monopoly position on the market.
Intel should use this information with integrity and responsibility as it can damage their reputation and
the ability to do research.

5.7 Future Work
There are two topics that still remain to be researched. Section 5.7.1 describes the porting from OpenSGX
to SGX. Section 5.7.2 describes improvements on the remote attestation proof of concept.

5.7.1 Intel SDK

At the end of this research Intel published their official SDK for Windows and Linux [52–55]. OpenSGX
programs are not binary compatible with SGX. In order to execute the two example proof of concepts in
SGX one needs to rewrite them. Interesting research can be porting the proof of concept code (OpenSGX)
to SGX. One of the differences with the OpenSGX framework is that OpenSGX uses a technique called
Trampoline and Stub which allows the implementation of wrappers around libc functions. Using Trampo-
line and Stub makes it possible to execute libc functions from within an enclave. When such function is
invoked the trampoline makes sure that the function is getting called and the result is stored in a shared
memory location before being passed to the enclave. This approach makes sure that there is a way of
separating memory between the enclave and the ’untrusted’ platform.

Intel uses a slightly different approach by defining the trusted and untrusted interface between the
host process and the enclave using the EDL [41]. The tool that compiles the EDL file into source code is
called Edger8r [56]. The exact workings and output of Edger8r can be interesting since that determines
the way how the host process and the enclave can communicate. This communication interface plays a
key role in the security of enclaves.

5.7.2 Remote Attestation

The remote attestation in OpenSGX has multiple dissimilarities compared to SGX. In SGX the REPORT
is generated using a hardware instruction. OpenSGX doesn’t have this instruction, but uses a config-
uration file with the same structure as the REPORT data structure [37, p. 22]. During this research
a couple of bugs were found in the implementation of the attestation process in OpenSGX. For these
a bug report was made [57, 58]. The issues that were found are pointing to incorrect parsing of the
REPORT configuration file when the program is in enclave mode. The exact cause of the problem was
not discovered during this research. Intel has made their SDK public which means it is now possible to
use supported hardware and interact with the Attestation Server of Intel. Interesting research would be
the investigation of the workings and limits of this Attestation Verification Service that Intel provides.
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6 Conclusion
The consequence of SGX-enabled malware is that malware analysts can only use system call heuristics.
Malware can benefit from the features provided by SGX. From a attacker’s perspective SGX provides
a Trusted Execution Environment (TEE). The attestation proof of concept shows that after doing a
remote attestation the enclave can be proven authentic. This SGX feature allows malware developers
to determine if an infected host can be provided with a confidential payload. An enclave provides
confidentiality and integrity, this makes static code analysis obsolete. In our stalling proof of concept
we showed that otherwise easily detectable stalling code can be hard to analyze when executed inside
an enclave. Every SGX application needs to define the interface between the host application and the
enclave. Malware writers need to adjust their code in order to make a generic loader that starts an enclave
for their payload. Furthermore, the attestation process will cause changes in the design of malware. A
malware designer also needs to think about the system calls that his code executes. Enclave code is
executed on the same privilege ring as the application, being ring 3. For investigating SGX malware this
would result in a method focused on monitoring system calls. Building different system call patterns
can aid in the detection and identification of different malware payloads. Modifying malware code while
executed inside an SGX enclave will not be possible due to the features SGX provides. Static analysis of
the payload will become obsolete since the payload will only be decrypted inside an enclave.
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