# GSM Open-source intelligence

#### Kenneth van Rijsbergen<sup>1</sup>

<sup>1</sup> MSc System and Network Engineering Faculty of Science University of Amsterdam

30 June 2016

Results

# Table of Contents

1 Introduction

#### 2 Background

#### 3 Results

#### 4 Conclusion

#### **Research question**

#### How may GSM be used for gathering OSINT by a red team?

- How can a Software Defined Radio (SDR) be used to passively capture GSM traffic ?
- How can a Software Defined Radio (SDR) be used to actively capture GSM traffic ?
- What OSINT may be extracted from this GSM data?

## Software Defined Radio

- HackRF One
  - 1 MHz to 6 GHz
  - half-duplex transceiver
  - \$299.-
- BladeRF x40
  - 300MHz to 3.8GHz
  - full-duplex transceiver
  - \$420.-





FIGURE - HackRF One

FIGURE - BladeRF x40



#### FIGURE - Waterfall (jamming test inside faraday cage)

| File Edit View Go Capture Analyze St | atistics Telephony Tools In | ternals Help  |                  |                |             |     |
|--------------------------------------|-----------------------------|---------------|------------------|----------------|-------------|-----|
| 🔘 🖂 📕 🔬 🔛 🗎                          | x c Q ( )                   | ¥ 7 ±         |                  | - 6 2          | a 🗹 😒       | × 0 |
| These annual de l'anna               |                             |               | deside from      |                |             |     |
| Price: gamcap as ticmp               | * Exp                       | ression ciear | Abbility Parke   |                |             |     |
| No. Time Source                      | Destination                 | Protocol      | Length Info      |                |             |     |
| 2113 103.40/02000 127.0.0.1          | 127.0.0.1                   | WINCO         | 01 (CCCR) (NR)   | reging request | type 1      |     |
| 2114 103.45933500127.0.0.1           | 127.0.0.1                   | OSMTAP        | 81 (CCCH) (RR)   | Paging Request | Type 1      |     |
| 2115 103.46672100127.0.0.1           | 127.0.0.1                   | GSMTAP        | 81 (CCCH) (RR)   | Paging Request | Type 2      |     |
| 2116 183.47158486 127.8.8.1          | 127.0.0.1                   | GSMTAP        | 81 (CCCH) (RR)   | Paging Request | Type 1      |     |
| 2117 103.52682700 127.0.0.1          | 127.0.0.1                   | GSMTAP        | 81 (CCCH) (RR)   | Paging Request | Type 1      |     |
| 2118 103.53067800127.0.0.1           | 127.0.0.1                   | GSMTAP        | 81 (CCCH) (RR)   | Paging Request | Type 1      |     |
| 2119 103.58810900127.0.0.1           | 127.0.0.1                   | GSMTAP        | 81 (CCCH) (RR)   | Paging Request | Type 1      |     |
| 2120 103.59140900 127.0.0.1          | 127.0.0.1                   | OSMTAP        | 81 (CCCH) (RR)   | Paging Request | Type 1      |     |
| 2121 103.59774900 127.0.0.1          | 127.0.0.1                   | OSMTAP        | 81 (CCCH) (FR)   | System Informa | tion Type 4 |     |
| 2122 183.65574696 127.9.9.1          | 127.0.0.1                   | GSMTAP        | 81 (CCCH) (BR)   | Paging Request | Type 1      |     |
| 2123 183.65824586 127.8.8.1          | 127.0.0.1                   | LAPOn         | 81 U. funcaliska | IOND           |             |     |
| 2124 183 66262896 127 8 8 1          | 127.0.0.1                   | GSMTAP        | 81 (CCCH) (88)   | Paging Request | Type 1      |     |
| 2125 183 66615686 127 8 8 1          | 127.0.0.1                   | <b>GSMT4P</b> | 81 (0000) (88)   | Paging Request | Type 1      |     |
| 2126 183 22351186 127 8 8 1          | 127 0 0 1                   | OSMTAR        | 81 (0000) (88)   | Paging Request | Type 1      |     |
| 2127 103 22932106 127 0 0 1          | 127 0 0 1                   | OSMTAR        | 81 (CCCH) (88)   | Paning Request | Type 1      |     |
| 2125 101 22452300 127 0 0 1          | 177.0.0.1                   | OFMEN         | an (ccca) (m)    | Desing Former  | Town 1      |     |
| 2120 103.79403205 127.0.0.1          | 127.0.0.1                   | CONTIN        | 01 (CCOI) (NO)   | Paging Request | Type a      |     |
| 2129 103.76340306 127.0.0.1          | 127.0.0.1                   | CONTIN        | 01 (CCCH) (NO)   | Paying Request | Type 1      |     |
| 2130 103.75018900 127.0.0.1          | 127.0.0.1                   | GSMTAP        | 81 (CCCH) (RR)   | Paging Request | Type 1      |     |

FIGURE - GSM sniffing with HackRF

# Overview of mobile generations

First generation (1G)

- 1980's
- Analogue
- Voice only
- Technologies : AMPS, NMT, TACS, C-450, Radiocom 2000, RTMI, JTACS, TZ-801, TZ-802, and TZ-803
- Second generation (2G)
  - 1990's
  - Digital signalling,
  - SMS, MMS, voice mail, call forwarding
  - Encryption (A5/1 and A5/2)
  - technologies : GSM, IS-95 (a.k.a. cdmaOne), PDC, iDEN and IS-136 (a.k.a. D-AMPS)
  - 2.5G : GPRS
  - 2.75G : EDGE

## Overview of mobile generations

Third generation (3G)

- 2000's
- Improved crypto (A5/3) and two-way authentication between MS and BS.
- Faster data transfer
- Technologies : W-CDMA (UMTS), TD-SCDMA (only in China), HSPA, and HSPA+, CDMA2000, LTE
- Recently allowed to use the 900 and 1800 Mhz band (same as GSM).

Fourth generation (4G)

- IP based, no more circuit-switched telephone
- Technologies : LTE Advanced and Mobile WiMAX

Results

#### GSM Architecture + Lingo



FIGURE - GSM Architecture

- MS Mobile station
- **BS** Base Station
- BSC Base Station Controller
- MSC Mobile Switching Center
- VLR Visitor Location Register
- HLR Home Location Register
- AUC Authentication Center
- EIR Equipment Identity Register

#### GSM authentication sequence





## **IMSI** catcher



FIGURE - IMSI catcher

## **GSM** Authentication

A5 used to encrypt the data transmission between the MS and BS.

- A5/1 Developed in 1987. Workings kept secret.
  - Reverse engineered in 1999 and published.
  - Can be cracked in seconds using rainbow tables.
- A5/2 Extremely weak, developed for export markets
  - Can be cracked in real-time.
  - Discontinued by the GSM association since 2006.
- A5/3 In use today.
  - Designed for 3G but also used for GSM.
  - Based on the MISTY block cypher which was later simplified into the KASUMI block cypher.

- A faster than an exhaustive search attack has been found but nothing practical.

#### **IMSI** catcher

IMSI International Mobile Subscriber Identity

- Can be used to identify a mobile subscriber.
- The IMSI is send by GSM unencrypted over the air during authentication. This enables tracking.
- Full IMSI catchers (full MITM)
- Half IMSI catchers (outgoing only)
- Both require a spoofed basestation.

## **IMSI** catcher



FIGURE – NSA GSM Tripwire (NSA's ANT Division Catalog)

![](_page_12_Picture_7.jpeg)

#### FIGURE - Stingray I (http://arstechnica.co.uk/)

![](_page_12_Picture_9.jpeg)

FIGURE – IMSI catcher on planes (Brian McGill | The Wall Street Journal)

| Introduction      | Background | Results | Conclusion |
|-------------------|------------|---------|------------|
|                   |            |         |            |
| Passive Capturing |            |         |            |

- Possible but all is encrypted
- Some IMSI's may (in theory) be captured when in initial authentication. But nothing that can be practically used.

![](_page_13_Figure_3.jpeg)

FIGURE – GSM Decoding

| File I | File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help |             |                                                 |  |  |
|--------|-----------------------------------------------------------------------------|-------------|-------------------------------------------------|--|--|
| 0      | 0 🛋 📕 🔬 🗎 🤉                                                                 | ( C   Q ( ) | 🎙 🕇 🛓 🗐 🖬 o o c 🖾 🚆 🕅 🐚 🗶 🎯                     |  |  |
| Filter | gsmtap && licmp                                                             | • Eq        | xpression Clear Apply Save                      |  |  |
| No.    | Time Source                                                                 | Destination | Protocol Length Info                            |  |  |
| 4.     | 115 185.48/82898 127.8.8.1                                                  | 151.0.0.1   | sommer all (CCH) (RE) reging request type 1     |  |  |
| 23     | 14 103.45933506127.0.0.1                                                    | 127.0.0.1   | GSMTAP 81 (CCCH) (RR) Paging Request Type 1     |  |  |
| 23     | 115 103.46672106127.0.0.1                                                   | 127.0.0.1   | GSMTAP 81 (CCCH) (RR) Paging Request Type 2     |  |  |
| 21     | 16 103.4715040€127.0.0.1                                                    | 127.0.0.1   | GSMTAP 81 (CCCH) (RR) Paging Request Type 1     |  |  |
| 23     | 117 103.52602706127.0.0.1                                                   | 127.0.0.1   | GSNTAP 81 (CCCH) (RR) Paging Request Type 1     |  |  |
| 23     | 18 103.53067806 127.0.0.1                                                   | 127.0.0.1   | GSMTAP 81 (CCCH) (RR) Paging Request Type 1     |  |  |
| 21     | 19 103.58810906127.0.0.1                                                    | 127.0.0.1   | GSNTAP 81 (CCCH) (RR) Poging Request Type 1     |  |  |
| 23     | 20 103.59140906 127.0.0.1                                                   | 127.0.0.1   | GSMTAP 81 (CCCH) (RR) Paging Request Type 1     |  |  |
| 23     | 121 103.59774906 127.0.0.1                                                  | 127.0.0.1   | GSNTAP 81 (CCCH) (RR) System Information Type 4 |  |  |
| 21     | 22 103.65574606 127.0.0.1                                                   | 127.0.0.1   | GSMTAP #1 (CCCH) (RR) Paging Request Type 1     |  |  |
| 23     | 23 103.65824506 127.0.0.1                                                   | 127.0.0.1   | LAPOn 81 U, func+Unknown                        |  |  |
| 23     | 124 103.66262006 127.0.0.1                                                  | 127.0.0.1   | GSNTAP 81 (CCCH) (RR) Poging Request Type 1     |  |  |
| 21     | 125 103.66615606127.0.0.1                                                   | 127.0.0.1   | GSMTAP #1 (CCCH) (RR) Paging Request Type 1     |  |  |
| 23     | 26 103.72351106 127.0.0.1                                                   | 127.0.0.1   | OSMTAP 81 (CCCH) (RR) Paging Request Type 1     |  |  |
| 23     | 127 103.72932106127.0.0.1                                                   | 127.0.0.1   | GSNTAP 81 (CCCH) (RR) Poging Request Type 1     |  |  |
| 21     | 28 103.73403206127.0.0.1                                                    | 127.0.0.1   | GSMTAP #1 (CCCH) (RR) Paging Request Type 1     |  |  |
| 23     | 129 103.78548306 127.0.0.1                                                  | 127.0.0.1   | GSNTAP 81 (CCCH) (RR) Paging Request Type 1     |  |  |
| 21     | 10 162 76619966127 6 0 1                                                    | 127 8 8 1   | GENTAR 91 (///W) (99) Project Respect Tune 1    |  |  |

FIGURE - GSM data in Wireshark

| Introduction | Background | Results | Conclusion |
|--------------|------------|---------|------------|
|              |            |         |            |
| Demo         |            |         |            |

| Introduction     | Background | Results | Conclusion |
|------------------|------------|---------|------------|
|                  |            |         |            |
| Spoof limitation |            |         |            |

- YateBTS only supports 2.5G GPRS
- OpenBTS-UMTS offers 3G UMTS but requires more expensive hardware (a recent USRP)

| 🖸 🕴 🖉        | 🤊 📢 🖄          | 0 🔶           | 1 🔿 21:32       |
|--------------|----------------|---------------|-----------------|
| (••) Network | Cell Info      | L (           | b 🔓             |
| PLOT STATS   | RAW            | MAP           | DEVICE+SIM      |
|              | Country: Net   | herlands (204 |                 |
|              | Operator: Tele | 2 NL (16)     | SIM state: Rear |
| Serving      |                |               | N: 2            |
| LAC: 1520 U  | CID: 133924    | 183 PSC       | 848             |
| RNC: 204 CI  | D: 23139       |               |                 |
| RSSI: -99 AS | SU: 7          | Pow           | er: 125.9fW     |
| Neighbor #1  |                |               |                 |
| LAC:         | UCID:          | PSC:          | 84              |
| RNC:         |                |               |                 |
| RSCP: -    4 | ASU: 7         | Powe          |                 |
| Neighbor #2  |                |               |                 |
| LAC:         | UCID:          | PSC:          | 478             |
| RNC:         |                |               |                 |
| RSCP: - 117  | ASU: 4         | Powe          |                 |
|              |                |               |                 |
|              | wilysis.c      | com           |                 |

The phone will always prefer a higher standard, even if the signal is weak

- 4G LTE-Advanced
- 2 3G UMTS
- 3 2.75G EDGE
- 4 2.5G GPRS <- YateBTS
- 5 2G GSM

| Introduction | Background | Results | Conclusion |
|--------------|------------|---------|------------|
|              |            |         |            |
| Jamming      |            |         |            |

The HackRF is not suitable for jamming

- Test was conducted inside a Faraday cage.
- Jamming a specific 900Mhz GSM channel was possible, but only for the old 2G Nokia.
- 3G HTC phone disconnects, then recovers when setting up a new call.
- Higher bands (like 1800) are too wide for the HackRF to cover.
- Transmitting at a higher frequency requires more power; HackRF did not have enough to disrupt 2G 1800.
- 3G jamming is even more hopeless due to spread spectrum.

![](_page_16_Picture_8.jpeg)

- Would be nice to test with a real 3G jammer.
- The hypothesis would be that the phone drops down to EDGE instead of GPRS.

## Conclusion and Future work

#### Conclusion

- Passive attacks are not effective due to encryption.
- Active attacks can only be effective versus 2G phones or when using jamming attacks (illegal).
- If, however a phone connects, everything outgoing can be intercepted (Internet, Voice, SMS).

#### Future Work

- Full IMSI Catcher (still relies on a successful spoof)
- Selective jamming\* (jam all but one channel)