RESTORING TCP SESSIONS WITH A DISTRIBUTED
HASH TABLE

Advanced Networking RP2

Peter Boers
June 29, 2016

System and Network Engineering - FNWI - UVA

SCALING INFRASTRUCTURE

- Imagine you are one of the largest providers of web services in
the world...

- How do you make sure that you can service your infrastructure
and make sure your clients never know that this is happening?

LOAD BALANCERS

Why do you balance load?

- To maintain the integrity of the end to end session between the
Client who is trying to access a Service.

- To distribute load across multiple end points

TRADITIONAL SOLUTIONS

Traditional hardware and software Load Balancers can do some or
all of the following:

- Maintain a high available setup

- Layers 3,4 and/or 7 in the OSI stack
- TLS offloading

- Compression

- Marshaling of TCP sessions

- Proxying

TRADITIONAL SOLUTIONS

Traditional hardware and software Load Balancers can do some or
all of the following:

- Maintain a high available setup

- Layers 3,4 and/or 7 in the OSI stack
- TLS offloading

- Compression

- Marshaling of TCP sessions

- Proxying

However sometimes these solutions require high licensing fees and
they are unable to scale enough.

TRADITIONAL SOLUTIONS

i\

Lo

]
[

Figure: Simple high available setup

NEW NETWORK DESIGN

In a recent draft RFC by Facebook and Arista Networks, a new
network design for very large data centers is discussed[1]:

NEW NETWORK DESIGN

In a recent draft RFC by Facebook and Arista Networks, a new
network design for very large data centers is discussed[1]:

- "Environments of this scale have a unique set of network
requirements with an emphasis on operational simplicity and
network stability.”

NEW NETWORK DESIGN

In a recent draft RFC by Facebook and Arista Networks, a new
network design for very large data centers is discussed[1]:

- "Environments of this scale have a unique set of network
requirements with an emphasis on operational simplicity and
network stability.”

- This document proposes the use of EBGP as the only routing
protocol.

NEW NETWORK DESIGN

In a recent draft RFC by Facebook and Arista Networks, a new
network design for very large data centers is discussed[1]:

- "Environments of this scale have a unique set of network
requirements with an emphasis on operational simplicity and
network stability.”

- This document proposes the use of EBGP as the only routing
protocol.

- To distribute load and traffic, Anycast in combination with Equal
Cost MultiPath routing (ECMP) will be used instead of traditional
load balancers.

NEW NETWORK DESIGN

In a recent draft RFC by Facebook and Arista Networks a new network
design for very large data centers is discussed[1]:

- "Environments of this scale have a unique set of network
requirements with an emphasis on operational simplicity and
network stability.”

- This document proposes the use of an EBGP only as routing
protocol.

- To distribute load and traffic, Anycast in combination with Equal
Cost MultiPath routing (ECMP) will be used instead of traditional
load balancers.

The goal is to achieve greater horizontal scalability and use proven
Network protocols for simplicity

NEW NETWORK DESIGN

Exit Nodes

Spine Nodes

Anycast: 192.168.0.1

Figure: New Design

NEW NETWORK DESIGN

Features of the new network:

- Balancing no longer done at the edge but at the endpoints
- All hosts take part in the routing protocol

- Layer 3/4 balancing is no longer scalable through traditional
means

- How do you maintain the integrity of a TCP session?

RESEARCH QUESTIONS

How can a DHT be leveraged to maintain TCP session state in the

case of a failure in a Large BGP networks with thousands of
hosts [1]?

- What technical requirements are needed to maintain the TCP
session in the case of a failure?

- Does using a DHT to lookup invalid sessions provide enough
performance so that the session can continue?

METHOD - WHY A DHT?

What is good about a Distributed Hash Table in this situation?

- Nodes do not have all the information, but know where to look
it up.

- Distributes the information evenly over all nodes.

- Scales well: O(n) = log(n)

- Stores key-value pairs.

METHOD - WHY A DHT?

What is good about a Distributed Hash Table in this situation?

- Nodes do not have all the information, but know where to look
it up.

- Distributes the information evenly over all nodes.

- Scales well: O(n) = log(n)

- Stores key-value pairs.

Kademlia implementation chosen to build the Distributed Hash
Table.

METHOD - HOW TO HANDLE TCP

How do we detect on the node if the TCP session is wrong?

- Nodes must track connections
- If the connection is not NEW or ESTABLISHED do a look up on

the DHT.
- The 4-tuple is ideal for storing in the DHT: Client socket = key.

Server socket = value

METHOD - HOW TO HANDLE TCP

How do we detect on the node if the TCP session is wrong?

- Nodes must track connections
- If the connection is not NEW or ESTABLISHED do a look up on

the DHT.
- The 4-tuple is ideal for storing in the DHT: Client socket = key.

Server socket = value

{ "145.100.102.131:12445" : "10.100.10.1:80" '}

METHOD - HOW TO HANDLE TCP

How do we detect on the node if the TCP session is wrong?

- Nodes must track connections
- If the connection is not NEW or ESTABLISHED do a look up on

the DHT.
- The 4-tuple is ideal for storing in the DHT: Client socket = key.

Server socket = value

{ "145.100.102.131:12445" : "10.100.10.1:80" '}

When a wrong session arrives do a look up and redirect the traffic.

SCENARIO

In the scenario we assume the following:

- N amount of servers hosting a website and taking part in a DHT

overlay
- The website is balanced using ECMP and Anycast on the network

- All new TCP sessions are stored in the DHT

SCENARIO

In the scenario we assume the following:

- N amount of servers hosting a website and taking part in a DHT

overlay
- The website is balanced using ECMP and Anycast on the network

- All new TCP sessions are stored in the DHT

Then we simulate a link failure:

- Let ECMP recalculate the path of the traffic
- Lookup the "Key” (Client socket)
- Forward traffic to the "Value” (Server Identifier)

SCENARIO - STEP 1

Pl F
=" s
'+ 145.100.102.131:1455 £
'

Anycast: 192.168.0.1

SCENARIO - STEP 2

.= Y
'+ 145.100.102.131:1455 {
‘

S S5

eﬁgﬁ

-— w w

10.100.10.1 10.100.10.2 10.100.10.3 10.100.10.4

Anycast: 192.168.0.1

SCENARIO - STEP 3

.= Y
'+ 145.100.102.131:1455 {
‘

Anycast: 192.168.0.1

IN WHAT CASE IS THE TEST SUCCESSFUL?

How do you measure when a fail over is within an industry standard
acceptable window?

- Amazon Web Services load balancing health check has a default
of 30 seconds and a minimum of 5 seconds, with a timeout of 30
seconds|2]

IN WHAT CASE IS THE TEST SUCCESSFUL?

How do you measure when a fail over is within an industry standard
acceptable window?

- Amazon Web Services load balancing health check has a default
of 30 seconds and a minimum of 5 seconds, with a timeout of 30
seconds[2]

- Kemp technologies has a default health check of 9 seconds and
a minimum of 3 seconds, with a timeout of 15 seconds|3]

IN WHAT CASE IS THE TEST SUCCESSFUL?

How do you measure when a fail over is within an industry standard
acceptable window?

- Amazon Web Services load balancing health check has a default
of 30 seconds and a minimum of 5 seconds, with a timeout of 30
seconds[2]

- Kemp technologies has a default health check of 9 seconds and
a minimum of 3 seconds, with a timeout of 15 seconds|3]

- f5 technologies has a default health check every 5 seconds, with
a timeout of 15 seconds[4]

IN WHAT CASE IS THE TEST SUCCESSFUL?

How do you measure when a fail over is within an industry standard
acceptable window?

- Amazon Web Services load balancing health check has a default
of 30 seconds and a minimum of 5 seconds, with a timeout of 30
seconds[2]

- Kemp technologies has a default health check of 9 seconds and
a minimum of 3 seconds, with a timeout of 15 seconds|3]

- f5 technologies has a default health check every 5 seconds, with
a timeout of 15 seconds[4]

This means: in the worst case scenario there is a timeout of 20
seconds to around one minute before TCP session restoration

RESULTS

Results for the test setup of this research:

- Setting Time - The time that it takes to set a key in the DHT
- Detection Time - The time that it takes to detect a Link Failure

- Lookup Time - The Time it takes to Lookup a key on the DHT.

SETTING TIME

Attempts — 15 } ,,,,,, |

[T T T 1
0.200 0.202 0.204 0.206 0.208

Seconds

Figure: This plot shows the time in seconds that it takes to set the Key -
Value pair on the DHT

DETECTION TIME

Attempts — 10

T T T T T 1
10 2 14 1.6 18 2.0

Seconds

Figure: This plot shows the time in seconds that it takes between the failure
of a link and the rerouting of packets

LOOKUP TIME

Attempts — 11 } + |
[T T T 1
0.1000 0.1005 0.1010 0.1015 0.1020
Seconds

Figure: This plot shows the time in seconds that it takes for a node to
lookup a key on the DHT

CONCLUSION - DISCUSSION

Key findings:

- On this small scale it is fast enough to detect a failure and act
on it.
- No protocol changes needed.

- Horizontal scalability is very simple in this model

22

CONCLUSION - DISCUSSION

Key findings:
- On this small scale it is fast enough to detect a failure and act
on it.
- No protocol changes needed.

- Horizontal scalability is very simple in this model

Future Efforts:

- What is the performance cost when it scales?
- Convert script to binary and integrate with other software
- How do you make sure it is reliable?

22

REFERENCES

[

P. Lapukhov, A. Premji, and J. Mitchell. Use of BGP for routing in
large-scale data centers. Tech. rep. Technical report, IETF, 2016
URL: https://datatracker.ietf.org/doc/draft-ietf-
rtgwg-bgp-routing-large-dc/

Amazon. Elastic Load Balancing - Configure Health Checks.
2016. URL: http://docs.aws.amazon.com/
ElasticLoadBalancing/latest/DeveloperGuide/elb-
healthchecks.html (visited on 06/28/2016).

Kemp Technologies. Frequently Asked Questions. 2016. URL:
https://kemptechnologies.com/faq/ (visited on
06/28/2016).

f5 solutions. Manual Chapter: Configuring Monitors. 2016. URL
https://support.f5.com/kb/en-us/products/big-
ip_ltm/manuals/product/ltm_configuration_guide_
10_0_0/1tm_monitors.html#1201151 (visited on
06/28/2016).

23

https://datatracker.ietf.org/doc/draft-ietf-rtgwg-bgp-routing-large-dc/
https://datatracker.ietf.org/doc/draft-ietf-rtgwg-bgp-routing-large-dc/
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-healthchecks.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-healthchecks.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-healthchecks.html
https://kemptechnologies.com/faq/
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm_configuration_guide_10_0_0/ltm_monitors.html#1201151
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm_configuration_guide_10_0_0/ltm_monitors.html#1201151
https://support.f5.com/kb/en-us/products/big-ip_ltm/manuals/product/ltm_configuration_guide_10_0_0/ltm_monitors.html#1201151

