Docker Overlay Networks

Performance analysis in high-latency environments

X

&

X
UNIVERSITY OF AMSTERDAM

MSc Research Project
System and Network Engineering

February 7, 2016

Abstract

With the advent of Docker, deploying microservices in application con-
tainers has become increasingly popular. The recent incorporation of
libnetwork in Docker provides out of the box support for connect-
Siem Hermans ing distributed containers via either a native or a third party overlay
driver. However, overlay networks introduces an implicit overhead.
Additionally, geographic dispersion of containers may have an adverse
effect on performance. In this paper, we explore the performance of
various Docker overlay solutions when deployed in a high latency en-
vironment. We evaluate the deployment feasibility of various overlay
Patrick de Niet solutions in the GEANT Testbeds Service. Subsequently we measure
the performance of the native Docker overlay driver and third party
solutions Flannel and Weave via means of a synthetic point-to-point
benchmark and a streaming media application benchmark. In either
benchmark no significant performance deterioration was identified re-
garding latency or jitter. UDP and TCP throughput measurements
exhibit irregular behavior and require further investigation.

siem.hermans@os3.nl

patrick.deniet@os3.nl

Supervisor:
Dr. Paola Grosso

CONTENTS

Contents

1 Introduction

2 Related Work

3 Background information

3.1
3.2
3.3

3.4
3.5

Docker containers & networking
Libnetwork
Third party overlay solutions
331 Weave
332 Flannel
333 Calico e
Key value stores
GEANT Testbed Services oo ..

4 Methodology

4.1 Deployment considerations.
4.2 Measurement tools
4.3 Experiment design

4.3.1 Baseline 0.

4.3.2 Point-to-Pointo

4.3.3 Star topology, streaming media

5 Results

5.1 Usability GTS
5.2 Overlay evaluation
5.3 Base infrastructure performance
5.4 Overlay performance
5.5 Media streaming scenario

6 Discussion

7 Conclusion

7.1

Future work

Acknowledgements

References

Appendices

Appendix A Dockerfile

Appendix B Performance measurement script

16

........... 18
........... 19
........... 21
........... 21
........... 22
........... 23

26

........... 26
........... 27
........... 28
........... 28
........... 30

32

34

........... 34

36

37

40

40

42

CONTENTS

Appendix C Baseline Latency 43
Appendix D Point-to-Point Latency Measurements 44
Appendix E Point-to-Point Throughput Measurements 46
Appendix F Streaming media measurements 48

INTRODUCTION

1 Introduction

Containers, and more specifically Linux containers, have been around for years. Histor-
ically, they have been relatively complex to deploy and interconnect on a large scale,
which inherently meant that the overall adoption rate has been limited. With the intro-
duction of Docker, the popularity of deploying applications in containers has drastically
increased. Docker provides a relatively easy way to to build, ship, and run distributed
applications in a uniform and portable manner. An increasing amount of companies
have started adopting Docker as an alternative or as a complement to virtualization at
a remarkable rate [1]. In contrast with traditional virtualization hypervisors, containers
share the operating system with the host machine, which results in a lower overhead,
allowing for more containers, and as such, more applications to be deployed.

The increasing popularity of containerizing applications sparks the need to connect
application containers together in order to create (globally) distributed microservices.
Up until recently this has been a problematic affair as multi-host networking was not
natively supported by Docker. However, with the recent introduction of libnetwork,
a standardized networking library for containers, Docker offers out of the box support
for creating overlay networks between containers whilst allowing third party overlay
providers to better integrate with the containers.

The high density factor of containers and rapid deployment rate require a high per-
formance overlay network which can harness the growing demands. However, as overlay
networks are built on top of an underlay network, a performance degradation is implicit.
Additionally, deploying applications in geographically dispersed containers may natu-
rally have an adverse effect on performance. Therefore, the aim of this research project
is to answer the following main research question:

What is the performance of various Docker overlay solutions when imple-
mented in high latency environments and more specifically in the GEANT
Testbeds Services (GTS)?

Several sub-questions have been posed to support the main question:

o Which technical differences exist between the selected Docker overlay solutions?

e Do performance differences occur when a topology is scaled up in terms of locations
and containers?

o What is the relative performance difference between containers connected through
the native 1ibnetwork overlay driver and various third party overlay solutions?

The scope of this research is limited by exclusively examining the performance of the
native overlay driver and third party solutions Calico, Flannel and Weave. These solu-
tions currently prove to have the most commercial and community backing and are most
likely to be deployed in production environments. Lastly, since performance is not the
ultimate metric for defining the quality of a solution, the operational flexibility of the
technologies is discussed.

INTRODUCTION

In order to execute performance measurements in a realistic setting, which resem-
bles a network distributed over the internet, the GEANT Testbeds Service (GTS) has
been utilized. This service offers the ability to create experimental networks at scale,
geographically dispersed over five European cities. During the course of this project,
high latency is defined as a connection with a latency between 10 and 100 milliseconds
round trip time. These latencies aim to represent a geographically dispersed environ-
ment within Europe.

The rest of the paper is organized as follows. We present the related work in Section
2, where we provide a brief summary of existing performance evaluations and measure-
ment methodologies. In Section 3 we briefly explain core concepts regarding Docker,
libnetwork in general and the selected overlay solutions. The two-part methodol-
ogy for measuring the performance of the overlay solutions is presented in Section 4.
A distinction is made between synthetic benchmarks and a real world scenario. The
results, discussion and conclusion are presented in Section 5, Section 6 and Section 7
respectively.

RELATED WORK

2 Related Work

The performance of Docker containers has been researched in the past multiple times.
The main points of interest are usually the differences in performance between tradi-
tional virtual machines and containers respectively. For example, Scheepers found that
Linux Container (LXC) hypervisors generally outperform traditional hypervisors such
as Xen [2]. Soltesz et al. [3] and Morabito [4] present similar results and show that
containers also outperform KVM virtual machines by a fair margin. Furthermore, the
performance of applications running in a container versus being directly deployed on a
host machine is currently a heavily studied topic. Rohprimardho measured the impact
of containerized applications on network I/O performance in a High Frequency Trading
(HFT) setting [5]. He found that the performance degradation of running an applica-
tion in a container was not significant. He also found that when the configuration of
the Docker container was tuned, the performance was identical to applications outside
of the container. Other papers focus on the performance implications of various kernel
modules in a local environment. Claassen performed an in depth comparison of various
kernel modules, used to interconnect containers on a single host. He concludes that for a
single host deployment, macvlan in bridge mode poses the best performance. However,
in a switched environment there is no significant performance degradation to be found
[6]. Marmol confirms Claassen’s findings and concludes that macvlan and also ipvlan
may indeed significantly improve performance [7].

All in all, due to their sudden popularity Docker containers are a heavily researched
topic. However, at this point in time, little official research has been done on the per-
formance of Docker overlay solutions in general. Claassen briefly investigated overlay
solutions and identified Weave, Socketplane and Calico as viable options. However, he
concludes on the notion that at the time of writing his paper, the identified overlay
solutions weren’t production ready yet. Kratzke goes into more detail and examines
the performance of containers logically connected by an overlay network on top of vir-
tual machines, which is a common use case in Infrastructure as a Service (IaaS) cloud
computing [8]. During his research Kratzke exclusively looked at Weave as an overlay
solution as he was interested in the performance of an overlay solution with encryp-
tion capabilities. In his experiments, Kratzke compares the performance of the Weave
overlay with a cross-regional experiment between Amazon Web Services (AWS) regions
eu-west-1c (EU, Ireland) and northeast-1-c¢ (Tokyo, Japan). However, the cross-regional
experiment exclusively serves as reference material and does not contain an overlay de-
ployment. Kratzke concludes that although containers are seen as lightweight entities,
they show a significant impact on network performance. Independent from Kratzke,
Michalek saw similar results [9] when evaluating the performance of Weave. He found
that two containers, networked via Weave provided a mere 6% of the TCP throughput
that two natively deployed services might, at four times the latency. Michalek attributes
this performance degradation to the fact that Weave did packet routing in userspace.
Important to note is that both Kratzke and Michalek evaluated version 1.1 of Weave.
Newer versions perform packet routing based on Open vSwitch (OVS) and provide bet-

RELATED WORK

ter integration with 1ibnetwork. As such, they form their opinion on a now outdated
version of Weave.

Due to the recency of Docker introducing 1ibnetwork, most performance analysis
have been outdated. Current performance analysis of the selected overlay solutions
are mainly to be found in the developer blogs of the respective projects. Each of the
selected projects has done their own performance measurements in the past. Flannel’s
performance measurements are spartan and only report the increase in UDP latency
and the decrease in TCP bandwidth when using the overlay. Little is known about
the test setup besides the fact that the measurements were done with gperf between
two m3.medium virtual machines in Amazon EC2. Yakubovich [10] notes that while
Flannel introduces a non-trivial latency penalty, it has almost no effect on the bandwidth.
Regarding latency, an increase of over 66% was examined while TCP bandwidth dropped
a mere 1,3%. Michalek also evaluated Flannel between two entry-level Digital Ocean
instances and saw a TCP bandwidth degradation of 3,4% and a UDP latency increase
of 40.52% [9]. However, both of these measurements were performed whilst Flannel was
still in an experimental phase meaning that the overall performance may have potentially
increased in the past year.

3
=)

150

§ 75-
=
8 3 100
5 50- z
g s
=2]
3 25- - %
=
S
=

I

0.0 1 1 I 1 0-
Weave Net 1.1.2 Weave Net 1.2.1, Weave Net 1.2.1, Host Woeave Net 1.1.2 Weave r‘\lal 1.21 Host
default MTU MTU=8950
1) 2)

Figure 1: Performance comparison of Weave versions in terms of throughput (1) and latency (2)

The developers of Weave and Calico go into more depth and present more detailed
results. Wragg [11] evaluated the performance of an older version (1.1) of Weave -which
has also been evaluated by Kratzke and Michalek- and the newer version (1.2) which
incorporates OVS. Measurements were performed between two Amazon EC2 ¢3.8xlarge
instances with enhanced networking enabled. During the experiment, the virtual ma-
chines were connected via a 10 Gbps link. Figure 1 presents the results of the comparison
between both Weave versions and native host performance respectively. Measurements
were performed with iperf3. Whilst using the default MTU of 1410 bytes, the per-
formance deterioration of the overall TCP throughput is significant. Wragg attributes
these results to a potential bottleneck inside the kernel’s network stack. When switching
to an MTU size of approximately 9000 bytes (including the VXLAN header) the overall
performance is much closer to the performance of the underlying host. He concludes
that there is some overhead due to the VXLAN encapsulation which Weave uses, but
the results are close to those of host networking. Newer versions of Weave only see a

RELATED WORK

slight decrease in performance and heavily outperform previous versions. Although this
performance analysis is executed in a cloud environment, only a single Amazon EC2
availability zone is used. As such, the experiments do not take geographical dispersion
into consideration.

White [12] presents a performance evaluation of Calico in which he deliberately
eliminates the influence of an external network by performing the measurements on two
directly connected machines, connected via 10 Gbps interfaces. In this instance the per-
formance is measured with gperf. Figure 2 presents the results of the throughput and
latency measurements. With regards to this research, the bare metal and the container
measurements are the main points of interest. Additionally a comparison is made with
a standard OpenStack deployment with OVS and VXLAN. The difference in latency
between bare metal machines and containers connected with Calico is not significant.
However the OVS deployment shows nearly thrice the latency. A similar pattern is seen
in the throughput evaluation.

Dataplane throughput (Gb/s) TCP packet latency (micro seconds)
9.4 9.4 9.4

10

EEE 20000 byte msg

70l 70
EEE 500 byte msg
1 60|
50 -
40}
4 301
. 25
20 |20
) I

0 Q
Bare metal Calico containers Calico OpenStack OVS with VXLAN Bare metal Calico containers Calico OpenStack OVS with VXLAN

@ &)

Figure 2: Performance evaluation of Calico in terms of throughput (1) and latency (2)

Unrelated to overlay networks, Barker and Shenoy [13] present a series of case studies
with which the performance of latency-sensitive applications in a cloud environment can
be evaluated. More specifically they present a media streaming setup which resembles
a real world scenario. During the course of this project a similar setup will be pursued.

At this point in time, no official research has been performed on the performance of
the native overlay driver in 1ibnetwork. Due to the fact that most overlay solutions
have restructured their product to work with the modular model of 1ibnetwork nearly
all current performance evaluations have become outdated. Moreover, most evaluations
exclusively focus on the network performance in a local environment. This paper is
a continuation of the work of Claassen and aims to contribute to science by perform-
ing a performance analysis of various overlay solutions while factoring in the effects of
geographical dispersion.

BACKGROUND INFORMATION

3 Background information

This section presents a brief overview of the inner workings of Docker and explores
the technical details of the selected overlay solutions. Moreover, the GEANT Testbeds
Service environment is introduced.

3.1 Docker containers & networking

Docker is an open platform which aims to make building, shipping (portability), and
running distributed applications easier [14]. In order to do so the applications are pack-
aged in a 'container’. A Docker container functions as an execution environment and
includes all of the dependencies and libraries required for the application to run. Each
container follows a layered model in which layers are added on top of a base image
as changes are made to the container. Figure 3 illustrates an example of this layered
structure. On top of the read-only layers a thin read-write layer is shown. Any time
a change is made to the running container, the changes are written to this read-write
layer. After all changes have been made, the layer can be committed, which creates a
new Docker image. At that point, new containers can be deployed from the same image.
Each container would have the same configuration and state as the container which was
used to create the image. Committing layers to an image follows a similar principle as
many version control systems employ.

i Thin R/W layer i*-— Container layer

1 l I

-~

91e54dfb1179

d74508fb6632 1.895 KB

m

[~ Image layers (R/0)
c22013c84729 194.5 KB

d3alf33e8a5a 188.1 MB

ubuntu:15.04

Container
(based on ubuntu:15.04 image)

Figure 3: Layered model employed by Docker containers [14]

As with traditional virtualization techniques, containers allow for running multiple
isolated user space instances on a single host. However, unlike traditional VMs, they
don’t require a hypervisor layer to be active on the host machine and instead directly
share the kernel with the host machine. [15]. Furthermore, containers exclusively contain
the necessary files to run. This inherently means that containers are lightweight and can
start almost instantly. Because containers are so quick to deploy, and because they are
deployed in a ’standardized’ container format, they lend themselves to building extensive

BACKGROUND INFORMATION

microservices consisting of a multitude of independent building blocks.

Figure 4 illustrates a generic workflow for deploying an application in a container.
In the figure, the Docker host is responsible for hosting the containers and maintaining
the images. By using the Docker client, the Docker daemon can be instructed to pull
an image from the Docker registry. This registry is a centralized repository hosted by
Docker, containing a large collection of official Docker images. This application can
be a pre-packaged application image, which in turn can directly be deployed in a new
container.

docker build - o4 o D\ockerdaemon e 1‘| A 2,
L N\ ~l . ¥
docker pull -{ |/ : b 1.
\
S

: Containers l— A @—
! \ g :

, @ NGHAX
af \‘“-.. i
™. /
S /

docker run —

-

0oy

&

Figure 4: Workflow for deploying applications to Docker containers [16]

The image illustrates how a Redis application is deployed in a single Ubuntu con-
tainer. Docker was originally developed to improve the application development process.
Docker allowed developers to build an entire multi-tier application on a single Linux
workstation without the complexity or overhead of multiple operating system images
[17]. Because all containers were initially hosted on a single machine, Docker used a
rather simple networking model. By default, Docker used private networking to connect
containers via a special virtual bridge, docker0. This bridge was allocated a subnet
from a private IP range. In turn, every deployed container was given a virtual Ethernet
interface (usually abbreviated to 'veth’ interface) which was attached to the docker0
bridge. From inside of the container, the veth interface appeared as a regular ethO
interface by using Linux namespaces. Each of the veth interfaces was addressed by the
docker0 bridge in the same private subnet. As a result, the containers were able to
communicate with each other when they were located on the same physical machine
and shared the same bridge interface. Prior tot Docker version 1.9, communicating with
containers on other hosts was difficult. In order for the containers to communicate with
each other they had to be allocated a static port on the hosting machine’s IP address.
This port number was then forwarded to other containers. Inherently this meant that
hosting a cluster of web servers on a single node was difficult, as ports were statically
mapped to specific containers. Connecting containers required a lot of coordination and

BACKGROUND INFORMATION

planning.

By linking containers with static ports, the overall configuration used to be relatively
static. Moving containers between hosts required reconfiguration and portability was
limited. Third party overlay projects were aiming to alleviate system administrators
from static network configurations by connecting the containers via an an allocated IP
address in an overlay network. Overlay networks allow for dynamically creating logical
links between endpoints which have no coupling to the hardware infrastructure of the
underlay network, effectively abstracting out the physical network. This meant that all
containers in the overlay network could communicate with each other, regardless of their
host placement or the IP address of the host machine. As such, containers do not have to
be statically linked anymore based on a port number. However, early overlay solutions
had to wrap around the Docker API as multi-host networking was not supported out of
the box.

3.2 Libnetwork

The Docker team recognized the problem of connecting containers and as of version
1.9, libnetwork is included in the main release of the project. The idea behind
libnetwork is to replace the networking subsystem that was in place in previous
versions of the Docker Engine with a model that allows local and remote drivers to
provide networking to containers. This means that Docker’s full networking code has
now been included in a separate library called “libnetwork”. Docker achieved their
modular ideal by implementing the Container Network Model (CNM). The premise of
the CNM is that containers can be joined to networks in a multitude of ways and based
on their configuration, all containers on a given network can communicate with each
other [18]. Previously, due to the static port bindings this proved to be difficult. With
the introduction of CNM, Docker aims to address containers more like standalone hosts
when they are deployed in overlay mode.

The innovation of the network stack was kickstarted when Docker acquired the Sock-
etPlane team in March 2015 [19]. SocketPlane was one of the many available Software-
Defined Networking solutions for containers on the market. Instead of connecting to
a virtual bridge, each container would connect to an Open vSwitch (OVS) port. Each
container host would have an OVS instance running which allowed them to form a vir-
tual overlay network that would carry traffic destined for any container connected to the
network via VXLAN. This allows containers to seamlessly communicate with each other
wherever they are and thus enabling true distributed applications [16].

The CNM relies on three main components: the sandbox, endpoints and networks.
Figure 5 presents a visual representation of the three components placed in the model. In
essence, the model is relatively simple. A (network) sandbox contains the configuration
of a container’s network stack. This includes management of the container’s interfaces,
routing table and DNS settings [20]. As would be the case with a standard virtual
machine, a sandbox can have multiple endpoints attached to a multitude of different
networks. This is also illustrated in figure 5. The middle container has two endpoints
connected to two different networks. In turn, an endpoint connects a sandbox and thus a

10

BACKGROUND INFORMATION

Container Container Container

Network Sandbox : Network Sandbox : Network Sandbox

‘ Backend Network ‘ ‘ Frontend Network. ‘

Figure 5: Visual representation of the Container Network Model [20]

container to a network. A real world implementation of an endpoint could be a veth pair
or in the case of various overlay solutions and Open vSwitch port for example. Docker
defines a network in the CNM as ”a group of Endpoints that are able to communicate
with each-other directly” [20]. An implementation of the network component could be
a bridged network interface or a VXLAN segment.

Although Docker is the first containerization project to implement the model, CNM
is a generic model that does not only apply to Docker exclusively, and can also be imple-
mented in more traditional container projects like OpenVZ and LXC. By employing a
modular model, 1ibnetwork functions as a common ground for other overlay solutions.
SocketPlane was only one of the available solutions on the market. Competing vendors
and projects that can be identified are Calico, Flannel and Weave [6]. As such there are
many networking solutions available, suited for a large set of diverse use-cases. In order
to standardize how containers are networked, 1ibnetwork employs a driver plug-in
model which allows third party solutions to plug directly into the Docker Engine. The
end user on the other hand is only exposed to a consistent Network Model. The CNM
abstracts the complexity of the third party plug-ins. For third party solutions, CNM
provides a consistent programming interface which makes integrating with the Docker
networking stack easier than in the past.

The driver is the most abstract component of 1ibnetwork and is not a user visible
object. Drivers provide the actual implementation that makes the network work. By de-
fault Docker provides four drivers: a null, bridge, overlay and remote driver. The most
commonly used driver is the ’bridge’ driver. The bridge driver allows for single-host
communication between containers by using Linux Bridging and iptables for segmenta-
tion. This driver is discussed in detail in Claassen’s paper [6]. The overlay driver is
based on SocketPlane and implements networking that can span multiple hosts using
VXLAN. Third party providers make use of the 'remote’ driver. Build-in drivers such
as ’bridge’ and ’overlay’ register inside of libnetwork, while remote drivers register
with 1ibnetwork via the plugin mechanism.

11

BACKGROUND INFORMATION

3.3 Third party overlay solutions

During the course of this project we focus on the overlay solutions Calico, Flannel
and Weave. Table 1 presents a quick overview of the technical differences between
the selected solutions. The successive subsections will to into more detail about each
individual product.

Native overlay Weave Net
Native integration Libnetwork plug-in
VXLAN forwarding VXLAN forwarding

Dedicated key-value store (any) No dedicated key-value store (CRDT)

Flannel Project Calico
No integration Libnetwork Plugin
UDP or VXLAN forwarding BGP routing

Dedicated key-value store (etcd) Dedicated key-value store (any)

Table 1: Overlay solution characteristics

3.3.1 Weave

Weave provides a Docker overlay solution named "Weave Net’. Weave overlay consists
of a multitude of Weave routers. Such a software router is placed on every machine
participating in the overlay. In practice, this means a Weave container is launched
within Docker. In addition to this container, a bridge interface is created on the host
itself. In turn, containers within the overlay (including the Weave router) connect to
this bridge using their veth interface which is supplied an IP address and subnet mask
by Weave’s IP address allocator [21]. As discussed in Section 2, Weave made use of
pcap to route packets in previous versions of the project. However, as all packets
had to be moved to userspace, this resulted in a significant performance penalty. In
addressing this issue, Weave has added "Weave Fast Datapath’ in Weave version 1.2,
which utilizes Open vSwitch [11]. This allows Weave Net to do in-kernel routing which
allows for significantly faster routing of packets between containers. Weave Router peers
communicate their knowledge of the topology (and changes to it) to other routers, so
that all peers learn about the entire topology.

To application containers, the network established by Weave looks like a giant Ether-
net switch to which all the containers are connected. In version 1.2, Weave was developed
as a plug-in to 1ibnetwork. As such, the Weave Net plugin actually provides two net-
work drivers to Docker - one named weavemesh that can operate without a cluster store,
and one named weave that can only work with one. By default weavemesh is utilized.
As with all other overlays, Weave works alongside Docker’s existing bridge networking
capabilities which means that single-host communication is still possible without using
Weave. In version 1.2, Weave still allows for pcap based routing when it is needed

12

BACKGROUND INFORMATION

in specific scenarios. By default, Weave chooses their newly introduced Fast Datapath
method (fastdp). However, when packets have to traverse untrusted networks and
require encryption, the slower ’sleeve’ mode is used. At this point in time Weave can
not provide encryption when using fastdp [22].

3.3.2 Flannel

Flannel is another third party solution aimed towards building overlays between Docker
hosts. The solution is part of CoreOS’ product portfolio. Whereas Weave and Calico
deploy separate container instances to manage the network, Flannel creates an agent,
flanneld, on each container host which controls the overlay. All services are kept in sync
via a key-value store.

The containers and their physical hosts are stored in the etcd datastore which is
also created by CoreOS itself. Containers are assigned IP addresses from a pre-defined
subnet, which is stored in the key-value store. Other than the alternative overlays,
Flannel currently does not offer integration with the libnetwork plugin. However,
representatives have noted it may very well be included later [23]. By default Flannel uses
UDP tunneling to connect containers. In newer versions however VXLAN forwarding
with Open vSwitch has been introduced to increase the performance of the overlay
solution [24].

As Flannel was built for Kubernetes, the solution offers tight integration with the
open source container cluster manager by Google. Kubernetes is aimed at large scale
environments with a multitude of containers [10].

3.3.3 Calico

Project Calico is technically not an overlay network but a pure layer 3 approach to
virtual networking. Although we primarily evaluate overlay solutions, it is still worth
mentioning because Calcio strives for the same goals as overlay solutions. The idea
behind Calico is that data streams should not be encapsulated, but routed instead.
This is achieved by deploying a BIRD Internet Routing Daemon on each container host.
Calico uses the Border Gateway Protocol (BGP) as its control plane to advertise routes
to individual containers across the physical network fabric [25].

As with Flannel and Weave, every container is assigned its own IP address from
a pre-defined pool. As Calico does not connect containers via tunneling techniques,
segmentation between containers is achieved by modifying the iptables configuration
of the host machine. Effectively, Calico functions as a firewall between network segments.

All traffic between containers is routed at layer 3 via the Linux kernel’s native IP
forwarding engine in each host. This means that no overhead is imposed when containers
try to communicate. No additional encapsulation headers are added. Like Weave, Calico
functions as a libnetwork plug-in. The Calico network is controlled by a series of
Docker containers, managed by the calicoctl tool which exchange state information
via the BGP routing instances. State exchange of the network is achieved with BGP
route reflectors

13

BACKGROUND INFORMATION

3.4 Key value stores

One dependency almost all overlay solutions share is the utilization of a Key-Value
(KV) stores. This NoSQL datastore is used to create a key-value database to which
the overlays technologies write their data. While the exact way the datastore is used
differs slightly per overlay technology, generally the values stored are related to global
IP address allocation and node discovery. In some cases additional information such as
container names are also stored. Weave uses it’s own proprietary storage system based
on the 'Conflict-free Replicated Data Type’ (CRDT) principle, as they believe this is
best for the availability of the overlay [26]. The other technologies support a variety
of KV-stores which are ’Consensus-Based’ (CB). One example of an open-source CB
datastore is et cd, which is the only datastore supported by all overlay technologies we
will be using (Weave excluded). If any of the datastore-systems were to malfunction,
the following effects would occur:

e Inability to create new overlay networks;
e Inability to allocate global IP addresses;

e Inability to add a container to the overlay.

For the purposes of measuring the overlay performance, these implications are un-
related and not an issue. This is due to the fact that we are working with a fixed
environment and are testing performance rather than availability. Once the overlays
and containers required for testing have been created and added to the KV store, the
datastore will be idle. This means that the datastores used and their respective config-
urations are of no consequence to this project.

3.5 GEANT Testbed Services

In order to do performance measurements in a realistic setting, which resembles a net-
work distributed over the internet, the GEANT Testbeds Service (GTS) will be uti-
lized. This service offers the ability to create experimental networks at scale, geograph-
ically dispersed over five European cities. Figure 6 presents a high-level overview of the
GTS environment. GEANT is a European research network which focuses on services
aimed at research and education. GEANT has Points of Presence (PoPs) in Amsterdam,
Bratislava, Ljubljana, Milan and Prague. The sites are connected via dedicated point-
to-point circuits 10 Gbps optical waves in an Multi Protocol Label Switching (MPLS)
cloud.

The GTS physical infrastructure is assembled into a set of equipment pods which
contain the hardware components that make up the virtual machines, virtual circuits and
other resources. Figure 6 presents a high level overview of the GTS infrastructure. All
locations provide equal capabilities for provisioning (virtual) machines and provide equal
connectivity. The virtual machines in GTS are deployed in Kernel-based Virtual Machine
(KVM) by OpenStack. Each VM uses pci_passthrough, giving it full and direct

14

BACKGROUND INFORMATION

access to the network interface card (NIC) of the host machine. All virtual machines are
deployed with Ubuntu 14.04 LTS by default.

GN3+
Internet External Testbeds and other networks
Access
CSE Red= Control & Mgmt Net

Blue= Data plane infra.

(Central Server)
Green = external service

Facilities)
Eth/MPLS & 10G Waves

GTS Ctrl GN3+ Core
VRF Waves

PRA™.

Pods

Bratisiéva Amsférdam Ljubljana Milan Prague
Figure 6: The GTS distributed architecture across the GEANT core network

Each testbed created in the environment forms an isolated (virtual) environment
which shares resources with other users of the service. As such, interference with other
projects running within GTS is to be expected and cannot (and should not, for the
purposes of this project) be avoided. This way generic Internet traffic is resembled.
Preliminary tests in the testbed service have shown latencies between the PoPs ranging
between 15 ms and 60 ms which falls within our definition of high latency as presented
in Section 1.

15

~ o U W N

METHODOLOGY

4 Methodology

In order to evaluate the performance implications of geographic dispersion on the over-
lay solutions, a high latency simulation environment is required. As in section 3.5, we
have utilized the GEANT Testbeds Service for this purpose. Within this service, entire
topologies can be created using a domain-specific language (DSL) which follows a JSON
formatting. The DSL description defines the structure of the topology and the properties
of each requested resource, i.e. the required attributes of the resource. The deployment
application programming interface (API) hooks into GEANT’s OpenStack environment
and provisions the underlying technologies based on the provided DSL file. Listing 1
presents a snippet of a basic point-to-point topology in GTS.

FullMesh {
id="FullMesh_Dispersed"
host { id="hl" location="AMS" port {id="portll"} port {id="portl2"} }
link { id="11" port {id="src"} port {id="dst"} }
adjacency hl.portl4, 1ll.src
adjacency h2.port24, 11l.dst
b doool)

Listing 1: DSL example illustrating a simple host resource definition

In order to form an adjacency between hosts, links have to be statically defined in
the JSON schema and associated with a port on the host object. During the course of
the project the third version of GTS has been rolled out (v3.0.1). The new version of
GTS introduced ’second generation’ networks which allow for more advanced configu-
rations and dynamic in-site modification. For example, the ability to modify an active
topology without tearing down the entire existing testbed instance and the character-
istics of resources can be specified in more detail. However, at the time of writing, the
documentation on the newly introduced features in the DSL is not available yet. This
means that our topologies in GTS are defined using the older v2.0 DSL constructs. In
practice this means that the topologies are dynamically provisioned but remain static
throughout their reservation. Changes in the topology require tearing down the entire
testbed before reserving it again. Due to this limitation we have opted to create an as
flexible as possible topology within GTS: a full mesh topology between all sites.

Using the DSL we defined the full mesh topology and deployed it to a total of four
instances in GT'S, one for each of the overlay solutions to be tested. A full mesh topology
was primarily chosen to make measuring the performance as flexible as possible seeing
as a full mesh allows for a multitude of potential test scenarios. During the course of
the project we have divided the full mesh in a series of point-to-point topologies and
a star topology. Due to the software-based nature of an overlay, a full mesh would be
a feasible topology in a real world scenario. Lastly, a full mesh was preferable because
Calico utilizes the Border Gateway routing protocol (BGP) to route traffic through the
network. Due to this property the solution may potentially utilize unequal cost load
balancing which would benefit from redundant paths.

16

METHODOLOGY

At first an instance of the full mesh topology was deployed in a single site in GTS
to assess the deployment feasibility of the selected overlay solutions. The full results of
this assessment are presented in Section 5. After the initial feasibility validation, the
topology was scaled out to all available sites in GTS and overlay networks were created
in each instance. Figure 7 is a visual representation of the full mesh as defined in the
DSL file. Each host is directly connected via their network interfaces to all other hosts.

H1 H2

pa1 pd4

H4

Figure 7: Full mesh topology between all sites in GTS

It should be noted that during the course of the project, the virtual machines deployed
in the Prague site have become unresponsive for an extensive period of time. This
means that the Prague site has not been taken into consideration whilst measuring
the performance, effectively reducing the topology to a four-node mesh. Additionally,
because we make use of the GTS v2.0 DSL grammar, the placement of the virtual
machine on a specific physical host cannot currently be controlled with the DSL and
are as such, assigned by OpenStack based on available resources. This means that it
is very well possible that all four nodes in Amsterdam (one per instance) are placed
on the same physical host. While in Milan, each node is placed on a separate physical
host. If we would run all performance measurements simultaneously, a discrepancy
unrelated to the actual functioning of the overlays can be expected. To avoid this
external influence, the tools will be timed and scheduled to ensure no two distinct hosts
are running simultaneously. A detailed explanation of this procedure can be found in
section 4.2.

17

g w N

METHODOLOGY

Additionally, due to the way the virtual machines are provisioned in GTS, it is
infeasible to create a fully functional meshed topology as depicted in figure 7 with Calico.
The BIRD routing daemon, which lies at the core of Calico, refuses to import a route from
the kernel if the next-hop is not in a directly connected network. This essentially means
that only physically connected networks can be included in the routing table as a correct
BGP route, effectively limiting the topology to a point-to-point link. A workaround in
order to include the links that are not directly connected to the routing table would be
to issue a route to the link and specify the route as "onlink’. By issuing this next
hop flag (NHFLAG) with the ip command, the networking stack will pretend that the
next-hop is directly attached to the given link, even if it does not match any interface
prefix. The NHFLAG parameter essentially instructs the kernel to treat the route as a
connected network. However, specifying this flag in the GTS returns that the NHFLAG
is an invalid argument for the specified virtual interface. Moreover, whilst attempting
to create a point-to-multipoint topology, forming adjacencies between the shared node
failed. This means that Calico’s overlay solution is limited to point-to-point topologies
between sites in GTS specifically. Because Calico is not suited for all desired test cases
in GTS, we have have opted to drop this solution from the performance measurements.

4.1 Deployment considerations

Disregarding the local site topology, each of the deployed instances houses one of the
selected overlay solutions. Due to the large amount of instances and nodes per instance,
a bootstrap script has been created which handles basic machine configuration tasks and
automates the deployment of Docker. Furthermore, if desired, the script also performs
the installation and configuration of one of the respective third-party overlay solutions.
For quick reference, all created scripts have been made available on GitHub .

The configuration of the overlay solutions has been kept default as much as possible.
Still, some deployment specific choices have been made. Flannel for example has been
configured to utilize in-kernel VXLAN to encapsulate the packets. By default Flannel
used UDP encapsulation to tunnel packets between containers. Because both the native
overlay driver and Weave use VXLAN out of the box, we have opted to make Flannel
use VXLAN as well. This has been achieved by setting a specific value in the etcd
store.

etcdctl set /coreos.com/network//config ' {
"Network": "10.1.0.0/16", "Backend": {
"Type": "vxlan"

}
} 4
Listing 2: Configuring Flannel to use VXLAN instead of UDP tunneling
Regarding the key-value store, both Flannel and the native Overlay driver require

a dedicated key-value store to hold information about the network state. As Flannel
is a product of CoreOS, this overlay natively works with etcd. In order to maintain

LAll configuration scripts are made available at https://github.com/siemhermans/gtsperf

18

https://github.com/siemhermans/gtsperf

METHODOLOGY

a homogeneous environment, et cd has been used for all overlays which require a key-
value store. The Amsterdam site has been selected to house the etcd instance. In a
real world scenario it would be desirable to deploy the key-value store as a distributed
system in itself. However, due to the fact that process resilience is of lesser importance
during this project we have opted to deploy a standalone instance of etcd without any
clustering. As previously discussed, the key-value store is only used by containers to
register their service and by the overlays to store the network state. As such, etcd
doesn’t negatively affect performance. Because Weave utilizes an eventually consistent
distributed configuration model (CRDT), no key-value store is required for this particular
overlay.

Lastly, no specific configuration steps have been taken to integrate the overlay so-
lutions with libnetwork. Current versions of Weave automatically run as a plugin,
given the Docker version on the system is 1.9 or above. This means that Weave does
not function as a wrapper to the Docker API anymore but gains more native integra-
tion. As Flannel works separately from libnetwork, this overlay has been tested as
a standalone. Implicitly, the native overlay driver exclusively functions as a plug-in to
libnetwork. Since the native overlay driver requires a kernel version of at least 3.16,
we have upgraded all machines in GTS from their default 3.13 kernel to version 3.19
with the bootstrap script.

4.2 Measurement tools

To measure the performance, iperf and netperf are used. These tools are both
industry standard applications for benchmarking connections and are used in a multitude
of scientific papers [5], [6], [8], [13]. During our research iperf is primarily used to
measure the UDP and TCP throughput, while netperf is primarily used to measure
the latency between sites and the effect of employing an overlay solution on the overall
latency. While iperf could technically be used to measure latency, netperf provides
more detailed statistics out of the box. Furthermore we are interested in the potential
jitter introduced by each overlay solution. Here, jitter refers to the variability in delay
between receiving packets. Naturally, a connection with irregular intervals will have an
undesirable amount of jitter which may be disruptive for latency sensitive applications.
We have opted not to tune the measurement tools (e.g. the TCP window size or segment
sizes), as we are merely interested in the relative performance difference between the
overlay solutions. Whilst measuring the performance, the default parameters for both
iperf and netperf have been used. The main point of interest is running the exact
same benchmark in every situation.

Because the measurements will be performed between containers, the measurement
tools have been ’dockerized’. This term refers to converting an application to run in
a Docker container. This inherently means that the measurement tools are initiated
from within the Docker container and perform their measurements through the virtual
ethernet interfaces (veth) of the container and the overlay specific interfaces. Thus, by
dockerizing the tools we can guarantee that we are measuring the impact of the overlay
solution and the container on performance. To dockerize the tools, a Dockerfile has

19

Sw N

METHODOLOGY

been created which is displayed in full in Appendix A. The Dockerfile includes common
performance measurement tools like iperf 2.0.5, iperf 3.0.11 and netperf 2.6.0.
The Dockerfile guarantees that every deployed container is homogeneous and uses the
exact same configurations and resources.

Important to note is that a patch is included in the Dockerfile for iperf 2.0.5. This
patch, courtesy of Roderick W. Smith [27], fixes a bug that causes iperf on Linux to
consume 100% CPU at the end of a run when it’s run in daemon mode (e.g., " iperf
-sD’). After running a measurement against the iperf daemon, the process would
remain at 100% CPU utilization. Subsequent measurements would cause the server in
question to quickly be brought to its knees.

Client Server

iperf ([UDP) »
iperf (TCP)
netperf

Figure 8: Client server model employed by the measurement tools

All of the selected measurement tools follow a client-server model and require a server
component to be active and running on the opposing site. This principle is illustrated
in figure 8. The Dockerfile in Appendix A includes a CMD statement which refers to a
performance measurement script. This way, the script is ran as the initial command
when deploying a container from the image. The script was built to accept a variety of
environment variables by specifying the ' —e’ flag when running the container. These
variables are used in the performance measurement script to differentiate between client
and server mode, the type of measurement (TCP or UDP) and the available tools. The
full performance measurement script is presented in Appendix B. Listing 3 presents a
generic example of a container deployment. The full set of environment variables is
displayed in the latter command and includes logging specific variables like the source
and destination site (for point-to-point measurements) and the specific overlay used.

Create a server container

docker run —-e MODE="SERVER" S$SIMAGE_ID

Create a client container

docker run —-e MODE="CLIENT" -e TEST="IPERF" -e TYPE="TCP" -e SRCSITE="AMS" -e
DSTSITE="PRG" —-e ADDRESS="192.168.0.1" —-e OVERLAY="WEAVE" -v /data
SIMAGE_ID

Listing 3: Creating the server and client container

When running the first command, a server container is deployed. This means that a
netperf server is started and iperf daemons for both UDP and TCP communication
are invoked on alternating ports. The $IMAGE_ID variable refers to the identifier of the
image which is a result of building the container image from the Dockerfile. This can

20

~N o U W N

METHODOLOGY

be done via the " docker build’ command. Lastly, the client command includes a
" —v’ flag with an arbitrary directory. This directory, located on the underlying host, is
attached as a volume to the container and is used to write logging data to.

When the client container is started, a performance measurement is ran for 115 seconds,
based on the environment variables specified. When the script finishes, the container
moves to an exited state. In order to automate the measurements, cronjobs have been
used. The cronjob schedule restarts a container that has exited to perform another
measurement at a given interval. Generally we use a two minute interval in between
the cronjobs. The measurement is only ran for 115 seconds, which leaves 5 seconds of
overhead for the application or possibly the Docker container to start and exit. It is
worth noting that the daemon processes on the server never finish, and therefore will
keep running forever. This means that they are not included in any cronjobs. Because
we are running three separate tests, three client containers are created, one for each
measurement tool and type. Listing 4 presents an example of a crontab and shows mea-
surements for the link between the virtual machines in Bratislava and Ljubljana and the
link between the containers in each site respectively.

m h dom mon dow user command
0 * x» root bash /root/netperf.sh 192.168.4.4 VM AMS LJU
2 x * * * root docker start PERF_CLT_AMStoLJU
4 x % x x root bash /root/iperf TCP.sh 192.168.4.4 VM AMS LJU
6 * * x * root docker start PERF_CLT_AMStoLJU_TCP
8 % % * *x root bash /root/iperf UDP.sh 192.168.4.4 VM AMS LJU

10 x x x root docker start PERF_CLT_AMStoLJU_UDP

Listing 4: Crontab example for the point-to-point link between AMS and LJU

During the course of the project, Ubuntu was used as the distribution of choice
within the virtual GTS environment as well as for the base image of the containers
because it is a commonly available distribution with practically all cloud providers of
TaaS environments. Furthermore, Ubuntu forms a common ground for all the tested
overlay solutions with sufficient amounts of documentation available.

4.3 Experiment design

As previously discussed, the full mesh topology has been divided into multiple smaller
topologies to evaluate the performance of the overlay solutions. A point-to-point topol-
ogy and a star topology have been selected.

4.3.1 Baseline

In order to gain insight into the 24-hour utilization of the GTS environment, We need to
start with an initial baseline of the topology. The need for this baseline is strengthened
given the fact we can’t enforce the host placement of a specific virtual machine in GTS.
So ideally, we would want to verify if node placement within a site is of any consequence

21

METHODOLOGY

to the performance during any point of the day. To do so, the VMs in the sites Am-
sterdam and Ljubljana have been tested in parallel with Bratislava and Milan for all
instances within GTS. Only these two links have been selected for this baselining, as to
increase the amount of measurements that can be taken within a short time span. The
links have been chosen randomly as sites are presumed identical from the information
gathered thus far. Additionally, it has been verified some VMs reside on the different
physical host in its respective site. Other connections of the full mesh cannot be utilized
during the sequential tests as to avoid pollution of the results. Effectively, this functions
as a double sequential testing setup.

Each measurement taken, regardless of the tool used, will run for two minutes an hour.
This is scheduled using Cronjobs. A sample of a crontab is illustrated in listing 4.

4.3.2 Point-to-Point

Ideally, we would want to introduce links with different performance characteristics into
the test setup. This would give a more complete picture of the overlay performances in
different situations. We can do this by repeating the first test but measuring all links
in the full mesh, whereas before, two specific circuits were chosen. Regrettably, this
would introduce a scheduling problem. Assuming 6 distinct circuits exist in our full
mesh (as seen in figure 5), with each measurement requiring 2 minutes to complete, this
would take 12 minutes. Each circuit has to run 6 measurements (3 docker and 3 VM)
bringing the runtime to 72 minutes. This has to be done for all 3 instances bringing the
total time to 216 minutes. Only a couple of these measurements can be run in parallel
without interfering each other. The problem that occurs is that there is not enough time
available to produce as many measurements as before with this kind of runtime. The
two options we have is to either scale down the topology or accept fewer measurement
per circuit.

Client

Client / Server Client / Server

Server

Figure 9: Bechmark server container placement

22

METHODOLOGY

The option chosen is dependent on the characteristics the previous 24-hour measure-
ments have shown. If these results have shown stable performance across the board,
it would be safe to conduct the four-node full mesh tests with fewer measurements. If
the 24-hour measurements show unsteady performance, it is best to scale the topology
down. Additionally, the 24-hour test results can be cross referenced to the new ones, to
check if any significant deviation exists.

4.3.3 Star topology, streaming media

The previous test scenarios attempt to quantify the performance of the overlay solutions
by means of a synthetic benchmark. To provide more insight in a real world use case,
we also briefly explore the effect of deploying a latency sensitive distributed application
in each of the selected overlay solutions.

A common example of a latency sensitive system would be a streaming server, which is
capable of serving multiple clients with a video stream on demand. Streaming servers
generally require a fast, reliable connection to prevent deterioration of the media stream,
especially when the total amount of parallel streams increases. Server- and client-side
buffering can be utilized to hide sudden variation in the network. However, high vari-
ation in latency and an unpredictable throughput can still prove to be problematic for
the quality of a media stream in general.

For the purpose of this project we have opted to deploy Apple’s open-source Dar-
win Streaming Server (DSS). This is the open source equivalent of Apple’s proprietary
QuickTime Streaming Server. The method utilized to perform the real world use case
roughly resembles the setup as proposed by Barker and Shenoy [13]. In their research
the performance of several latency-sensitive applications in the Amazon EC2 cloud envi-
ronment are evaluated. One of their experiments describes measuring the performance
of a media streaming server with varying amounts of background load in a point-to-point
topology.

The topology in figure 10 illustrates the setup used to perform the application bench-
mark. Both the client and server component are part of the Media Streaming benchmark
which in turn is part of the CloudSuite benchmark suite. CloudSuite is packaged by the
PARSA lab at EPFL and contains a series of benchmarking tools aimed at measuring
various performance aspects of cloud environments 2. The star topology provides flex-
ibility in the sense that it allows for dynamically scaling up the topology in terms of
client locations and parallel client requests.

Measuring the quality of a media stream is challenging. Solely relying on the time
required to download a stream doesn’t necessarily indicate whether the stream was
played back correctly. Furthermore, extreme jitter can potentially cause packets to be
lost in transit or get dropped due to buffer overflows. When performing the real world
use case, we measure performance by looking at the throughput of the streaming server

2The used benchmark suite is packaged by the PARSA lab at EPFL and is available at
parsa.epfl.ch/cloudsuite/streaming.html/.

23

parsa.epfl.ch/cloudsuite/streaming.html/

METHODOLOGY

Faban
n workers

Faban
n workers

Faban
n workers

Figure 10: Streaming media server topology

with a varying amount of parallel streams. Ultimately we are interested in the potential
jitter introduced by the overlay solutions.

In our scenario, the DSS is placed in Bratislava and uses the Real-time Transport
Protocol (RTP) for delivering the video stream to the clients via UDP. To simulate
clients, Faban has been used. Faban is an open source performance workload creation
and execution framework. The Faban component functions as a workload generator and
emulates real world clients by creating Java workers which send requests via curl to the
streaming server. curl is compiled to support a Real-time Streaming Protocol (RTSP)
library. The Media Streaming benchmark includes basic configuration file templates
which have been modified to let Faban wait until all workers are fully up and running
before requesting a stream. This way a simultaneous stress-test is guaranteed without
a variable ramp up period.

On both the server and client side the network interfaces are rate limited by utilizing
wondershaper. Wonder Shaper functions as a front-end to iproute’s tc command
and can limit a network adapter’s bandwidth. Limiting the bandwidth of the network
interfaces allows us more granular control over the division of the link as well as making
the resulting dataset from the measurements more manageable. Furthermore, by limiting
the speed of the interface the performance influence of the CPU is reduced to a minimum.

To visualize the effect of increasing the amount of clients, each of the sites is tested
with one, three and nine Java workers respectively. At maximum this results in a total
of 21 streams originating from the DSS to the clients divided over three links. For the
purpose of this experiment DSS serves up a synthetic dataset, comprising of exclusively
a stresstest video with a bit rate of 1 Mbps. The selected video contains a gradually
increasing animation which is repeated a series of times during the measurement. This

24

QO J oy U1 W DN

[= S S
S WD R oW

METHODOLOGY

ensures that the bit rate of the video is sent in irregular bursts, as would be the case in
a real world scenario. Listing 5 shows a snippet of the configuration file Faban uses to
initiate a stresstest.

<?xml version="1.0" encoding="UTF-8"7?>
<streamBenchmark>
{...}
<driverConfig name="StreamDriver">
<agents>3</agents>
<runtimeStats target="9988"/>
<operationMix>
<name>Stresstest</name>
<r>100</r>
</operationMix>
</driverConfig>
</fa:runConfig>

{loaol

</streamBenchmark>

Listing 5: Faban driver configuration pointing to the stresstest operation

The throughput of the streams is measured by starting a series of parallel streams and
averaging the bit rate of the streams on the client side. When the maximum amount of
workers is started, the load of the streams takes up around 9000 Kbps on each of the
links shown in figure 10 link. Due to the fact that the video bursts its bit rate, congestion
is created on the rate limited links depending on the amount of workers. To evaluate
jitter, the remainder of the link is saturated with three netperf sessions originating
from the server, each consuming 1 Mbps. This way jitter statistics are collected for
each of the connected links while saturating the available bandwidth. Each performance
measurement is ran for three minutes and repeated five times for each of the indicated
amounts of workers.

25

REsSULTS

5 Results

This sections presents results of the performance measurement experiments as described
in Section 4. Because the experiments are specific to GTS, we start by commenting on
the usability of the test environment and the deployment characteristics of the overlay
solutions. Subsequently we present the results of the synthetic and the application
benchmark respectively.

5.1 Usability GTS

The GTS has proven to be an excellent environment for us to perform our measurements
in. The extensive documentation and rapid support enabled us to deploy topologies,
specifically catered to our experiments. Still, some shortcomings in the service regarding
the usability and functionality have been identified throughout the course of the project.
Shortcoming we experienced are:

e Unstable VPN initialization to the topology;
e VMs which fail to finish booting on multiple occasions;
e VMs permanently losing connectivity with the provisioning network (eth0);

e Not all DSL-features appear to be fully functional;

Limited control over VM resources, physical placement and imaging;
e Limited control over virtual NIC of the VMs.

Mostly, these shortcomings were caused due to general availability issues. However,
they did not highly impact our ability to perform the research. More significant were
the limited control options in the DSL and limited control over the networking interface
of the virtual machine as they limited the amount of overlay solutions we were able to
evaluate, as discussed in Section 4.

Whilst performing the experiments we noticed that the virtual machines deployed
in GTS are relatively limited in terms of performance. By default each VM is assigned
a single-core vCPU with a default speed of 2 gigahertz (GHz). Problems occurred
when running performance measurements with iperf. The vCPU is unable to generate
enough network traffic to saturate the 1 Gbps link connected to the virtual machines.
Performance-wise, the only attribute which can be altered regarding the VM via the DSL
is the speed of the processor with the cpuSpeed attribute. However, even when scaling
up the cpuSpeed attribute to an arbitrarily high number, the speed of the processor is
capped at 2.5GHz by OpenStack. Moreover, when attempting to deploy a full mesh with
an increased cpuSpeed, the instance fails to deploy. Increasing the amount of cores per
vCPU is not a documented attribute and as such does not seem to be a publicly available
APT call.

A trivial solution would be to limit the speed of the network interface card (NIC) via
ethtool. However, attempting to change the speed of the interface within the virtual
machine results in an error and is not supported by the VM. Another option was to

26

REsSULTS

limit the speed of the ports attached to the containers. For this purpose the 1ineRate
attribute can be specified in the DSL whilst defining the ports. However, the 1ineRate
attribute is set at 1 Gbps by default and only accepts increments of 1 Gbps. Lastly, the
speed of the link between the containers can be defined within the DSL by specifying the
capacity attribute. The GTS user guide notes that the default value is 10 Mbps which
doesn’t seem to be valid [28]. Additionally, when statically defining the capacity to be
100 Mbps, the limitation does not seem to get applied. Arbitrary iperf measurements
between containers still indicate speeds far north of the limit. Therefore we resorted to
setting a software limit on the interface by using Wonder Shaper in the star topology
experiment. This is also explained in Section 4.3.3

Fortunately the GTS is being frequently updated which means that some of the
identified shortcomings may be fixed in newer iterations of the service. Additionally,
some of the shortcomings may be caused due to the fact that we are limited to the 2.0
DSL while the service is currently running on v3.0.1. An updated user guide might solve
of the issues related to deployment and control of resources.

5.2 Overlay evaluation

As previously discussed in Section 4, only Calico was infeasible to deploy due to the
limited control over the VM NIC in GTS. Flannel, Weave and the native overlay driver
were fairly straight forward to set up. During the deployment we have noticed that
Weave is by far the easiest overlay to deploy due to the fact that Weave uses CRDT to
share the network state between Weave nodes. The other overlay solutions all require
a separate key-value store for this purpose, effectively making the overall configuration
more complex. In our experiments this was achieved by by deploying a single-key value
store in one of the sites. However, in a real world deployment where process resilience is
an important factor, a clustered key-value store distributed over multiple nodes may be
desirable. This inherently means that an overlay network with these solutions requires
management of another separate distributed system. Due to Weave’s ease of deployment
the solution seems to be especially suited for Agile development and rapid prototyping.

In operation we have noticed that the control method of the overlay varies between
each solution. For example, Calico and Weave deploy separate containers which run
the main overlay processes for routing and state exchange. Flannel on the other hand
creates a service, running on each host machine. In the case of 1ibnetwork the overlay
is controlled by the already in place Docker engine. Although we are impartial to the
method for controlling the overlay we do note that in an environment with limited
resources, the overlay process or container(s) may contend for the CPU. As discussed in
Section 5.1, whilst performing our synthetic benchmark, the CPU utilization is 100%.
Nevertheless, no significant performance deterioration was measured between the native
overlay driver and the evaluated overlay solutions. The full results of this experiment
are presented in Section 5.4.

27

REsSULTS

5.3 Base infrastructure performance

As we were unable to control the placement of the virtual machines on a specific host
within the topology instances, we initially verify that the node placement within a site is
of no consequence to the performance. Figure 11 presents a point-to-point measurement
between virtual machines in the Amsterdam and Ljubljana sites. The measurements
show an almost identical mean latency regardless of the underlying host the VMs are
placed on. Additionally, the results in Appendix C show that currently no day/night
cycle exists within GTS.

305 PtP AMS to LJU - Mean latency

304

w
e
w

Latency in ms

w
2
N

30.1

30.0
0 5 10 15 20

Nr. of measurements

[VM LIBNET-instance VM FLANNEL-instance -— VM WEAVE-instance]

Figure 11: Single site VM measurements within three instances

This means that later on, we can safely compare the overlay performances on the
VMs which reside on different topology instances and possibly on different physical hosts.
Based on the measurements above we can assume that all physical hosts within a site
are identical in resources and utilization. Additionally, the absence of a day-night cycle
and the insignificant amount of jitter indicates that there is little to no concurrent use
of GTS taking place.

5.4 Overlay performance

Subsequently, we evaluate the general degradation of performance when introducing the
overlay solutions into the equation. We started with the point-to-point measurements
in the full mesh topology using netperf. In doing so, we have seen no significant
differences in the jitter between the VMs and docker containers in any of the overlays.
Any discrepancy within these results are small enough (< 0.1 ms) to contribute to the fact
that tests were ran subsequently to one another. When comparing overlay performances
between each other, similar results are seen as portrayed in Table 2. Some outliers exist
due to the limited amount of measurements that could be taken.

28

REsSULTS

Circuit Instance

In Milliseconds (ms)
Min. Latency Mean Latency 99th % Latency

AMS - MIL Libnet 36.3 36.5 37.0
Weave 36.2 36.5 37.0
Flannel 42.5 42.9 43.0
AMS - LJU Libnet 30.1 30.3 31.0
Weave 29.8 30.3 31
Flannel 29.8 30.3 31.0
AMS - BRA Libnet 17.6 17.7 18.0
Weave 17.4 17.7 18.0
Flannel 17.4 17.7 18.0
MIL - LJU Libnet 61.8 62.1 62.4
Weave 59.8 59.8 60.0
Flannel 55.6 55.8 56.0
MIL — BRA Libnet 12.7 13.0 14.0
Weave 12.9 13.1 14.0
Flannel 12.9 13.1 14.0
BRA - LJU Libnet 47.1 47.4 48.0
Weave 43.1 59.5 130.0
Flannel 43.1 43.3 44.0

Table 2: Point-to-point latency measurements through the overlays

Next, we saturate the link using iperf. Strangely enough, as figure 12a illustrates,
we found that the TCP throughput in most cases resulted in the container out-performing
the VM it is running on. The UDP throughput displayed in figure 12b shows a very

different pattern.

AMS to BRA TCP Throughput

Vi

Flannel I

Solution

Weave [
Libnet

0 50 100 150 200
Mbps

(a) TCP throughput

250

VM

Flannel

lon

Solut

Weave

Libnet

AMS to BRA UDP Throughput

|

|

|

0 50 100 150 200 250 300

Mbps

(b) UDP throughput

Figure 12: UDP and TCP throughput as measured on the Amsterdam - Bratislava circuit

29

REsSULTS

The measured data indicates that the overlay solutions do not perform well during
UDP testing. The full results of the experiment are presented in Appendix D. Figure
12 presents the results of the Amsterdam - Bratislava circuit. However, the measured
anomalies are not specific to an individual circuit as is shown in Appendix E. In some
measurements the overlay outperforms the underlay whereas in other scenarios the op-
posite is true.

Regarding the UDP throughput, Claassen examined similar behavior and hypoth-
esized that the anomaly may be caused due to iperf consuming more CPU cycles
for measuring the jitter of the UDP packets [6]. However, in his work no anomalies
were found regarding TCP throughput. This observation will be further explored in the

discussion in Section 6.

5.5 Media streaming scenario

After the point-to-point measurements, the performance of the overlays in a star-topology
was evaluated by stressing a central node with a gradually increasing amount of con-
current sessions. In this scenario performance is defined by measuring the jitter on the
link and the bit rate of the stream as measured on the client side. The streaming media
measurements have been performed sequentially and within a single topology instance.

Figure 13a presents the jitter results from the streaming test with a varying amount
of Faban workers for the underlay and each of the overlays, specifically on the Bratislava
- Amsterdam circuit. Little to no jitter is measured with a low amount of workers (e.g.
one and three workers) is used as there is no real congestion on the link. In both cases
the jitter remains below or around 0.5 milliseconds. However, when the total amount of
requested streams is increased to nine, artificial congestion is created on the 10 Mbps
rate limited link. This inherently causes the jitter to increase.

BRA - AMS Concurrency Jitter BRA - AMS Concurrency Bitrate

m Mean ® Maximum
23 2.00

= 1.5

9 Worker I
itrate per stream in Mbps

[= Q= QS SRR Ry
QO N DD
oOcScoo0ooo

Mean litter in ms

o

w = o]
3 Worker I
9 Worker I
9 Worker I
9 Worker I

w® 040 I I I I
0 I I 11 o 0 0 1 I
VM LIBNET WEAVE FLANNEL VM LIBNET WEAVE FLANNEL
BRA - AMS BRA — AMS

Instance Instance

(a) Jitter measurements (b) Bit rate measurements

Figure 13: Concurrency measurements through the overlays and VM in the star topology

During the stresstest the amount of jitter fluctuates between approximately 2 and

30

REsSULTS

2.3 milliseconds. Figure 13a shows a slight increase in jitter for Weave and Flannel
respectively, but this fluctuation is not significant and may be flattened out over the
course of additional consecutive measurements. Furthermore, the difference in jitter
between the virtual machines and the overlay solutions are not significant.

The measured values are below the recommendations from Cisco which state that a
video stream should have less than 30 milliseconds of one way jitter [29]. Still, Claypool
and Tanner show that even low amounts of jitter can have a high impact on the perceived
quality of a video stream by end users [30]. Client- and server-side buffering can be
utilized to cope with slight increases in jitter.

As expected, the results from the bit rate evaluation indicate that bit rates per stream
deteriorate when the amount of requesting clients increase. Figure 13b illustrates that
the deterioration holds a very similar pattern between the underlay and the overlay solu-
tions. There is no significant performance difference between a specific overlay solution
and the underlay. Appendix F presents the full results of the media streaming scenario
for each of the circuits as displayed in figure 10.

31

DISCUSSION

6 Discussion

During the course of this project we measured the performance of various overlay so-
lutions when implemented in a high latency environment. When starting out with the
research, our hypothesis was that the overlay solutions would perform worse than the
underlay in any given situation. This was based on the general notion that an overlay
solution introduces an implicit performance overhead by adding another layer to the
network. Additionally, as most overlay solutions now resort to in-kernel traffic handling,
we did not expect the decrease in performance to be very large.

The results of the point-to-point UDP and TCP throughput measurements with iperf
did not match our expectations. We saw irregular behavior whilst measuring TCP
throughput. In most situations the overlay solution outperforms the underlay but some-
times the opposite is true. The measurements as presented in Appendix E indicate that
this behavior is not specific to an individual circuit. Similarly, we expected a small de-
terioration in performance whilst measuring the UDP throughput between containers in
the overlays, but not with a margin of circa 100 to 150 Mbps. Interestingly enough, our
results indicate that the anomalies regarding UDP throughput are constant. Regardless
of the tested circuit a significant performance drop is seen.

We are not the first ones to find anomalies in UDP throughput measurements.
Claassen examined similar behavior in his paper regarding Docker network performance
in a local environment [6]. He hypothesized that the deterioration could be related to
the way iperf functions with regards to its utilization of CPU cycles whilst measur-
ing. Regarding the disappointing UDP throughput measured with iperf, Claassen’s
hypothesis holds. The fact that the streaming media tests also utilize UDP and do not
show such losses does support the notion that this is indeed an iperf specific problem.
Nevertheless, this does not explain why the overlay solutions outperform the underlay
when TCP throughput is measured, which leads us to believe that this issue is specific
to the GEANT Testbeds Service. Further investigation is required.

Due to the irregular results, we will presume the measurements in the point-to-point
topology regarding UDP and TCP throughput are unreliable and as such, will not be
used as a basis to form a conclusion. This decision does not impact the latency measure-
ments however. These measurements consistently show that the underlay outperforms
the overlay by a very small margin (below 1 millisecond).

With regards to latency, surprisingly enough, the latency measured within GTS re-
sembled that of a non-shared environment. This is likely the case due to the fact that
the environment is not intensively being used by other researchers. Because of this, we
have been able to get unadulterated results regarding the performance of these overlays.
As a consequence we have not experienced a level of congestion which would be expected
in a real world scenario. It is possible that performing the experiments in an environ-
ment with a high(er) level of congestion would yield different results. This is especially

32

DISCUSSION

true for the streaming media tests as in our current experiment we have only been able
to see the effect of artificial congestion.

During the feasibility-check of the overlay solutions, we have noticed a difference in
ease of setup between the different overlay technologies. Weave has proven to be the
most inclusive package requiring no additional software to be installed while the other
overlays require at least a separate key-value store. Considering there are no signifi-
cant performance differences observed between the overlays -with regards to latency-,
Weave could be considered the preferred solution within this specific environment. How-
ever, we feel that the choice for a certain solution is very specific to the use case of the
network. For example, due to the fast deployment capabilities of Weave, the solution
lends itself especially well for rapid prototyping. Flannel on the other hand is built to
specifically to integrate with Google’s Kubernetes orchestration tool which allows for
the administration of very large clusters. Calico pursues a different model and is mainly
aimed at high performance data center deployments. As a closing remark we think that
the integration a solution offers with third party tools will be a hugely deciding factor
when selecting a solution, as all of the solutions pursue a similar goal: interconnecting
containers dispersed over multiple hosts, regardless of their physical location.

33

CONCLUSION

7 Conclusion

In this paper, we have evaluated the performance of various Docker overlay solutions in
a high latency environment, and more specifically, in the GEANT Testbeds Service. We
assessed the native overlay driver included in 1ibnetwork and third party solutions
Flannel and Weave by means of a synthetic point-to-point benchmark and a streaming
media application benchmark in a star topology. During the project, Calico was found
to be infeasible to deploy in the GTS. We saw that the remaining solutions are very
similar on a technical level and employ similar VXLAN tunneling techniques to connect
containers.

Our results indicate that the performance of the overlay solutions with regards to la-
tency as well as jitter is very similar. The level of overhead introduced by the overlay
can be considered almost negligible (in the range of 0.1 ms). The same behavior was
found whilst measuring the performance of the overlays in the streaming media bench-
mark. All overlays exhibit similar performance, regardless of the amount of locations
in the topology or clients requesting a stream. As such, we conclude that the native
overlay driver performs equal to the evaluated third party solutions. Our point-to-point
measurements show irregular behavior with regards to UDP and TCP throughput and
require further investigation.

Taking all of the measurements into account, we conclude that geographic dispersion
has no significant effect on either latency or jitter when evaluated in the GTS specifi-
cally.

7.1 Future work

During the course of this project a GitHub repository® has been maintained which is
designed to make future deployments of the evaluated overlay solutions easier, particu-
larly in GTS. However, although GTS is an excellent environment to test the synthetic
performance of the overlays, it would be interesting to reconduct the performance anal-
ysis in a heavily shared environment (e.g. Amazon EC2 or Azure). This would require
a slight modification of the provided scripts but would illustrate the effect of real world
congestion on performance. Additionally, the measurements should be repeated in an
environment which is less pressed for resources, in order to eliminate the CPU as a vari-
able whilst measuring. With regards to the measured results, further investigation is
required to identify the root cause of the anomalies seen in UDP and TCP throughput.

With regards to the environment, the current measurements have been performed
with a generic Infrastructure as a Service use case in mind. This means that the Docker
containers have been deployed within virtual machines. In the future it would be inter-
esting to see how the performance of the overlay solutions compares when the containers
are deployed in a special container hypervisor like LXD [31]. This would require a cloud

3All created resources are available at https://github.com/siemhermans/gtsperf

34

https://github.com/siemhermans/gtsperf

CONCLUSION

provider to provide (near) bare metal provision resources. At this point in time, bare
metal provisioning is not supported in GTS, however, it is a confirmed road-mapped
functionality. Therefore, the GTS may potentially be used for this purpose in the fu-
ture.

35

ACKNOWLEDGEMENTS

Acknowledgements

We would like to thank Dr. Paola Grosso for guiding us throughout the course of the
project and for proofreading our initial proposal and the final report. Furthermore we
would like to thank Susanne Naegele-Jackson for providing us (preliminary) access to
the GEANT Testbeds Service. Lastly we thank Fabio Farina and Nicolai Iliuha for their
rapid response times regarding technical questions and feature requests with respect to
the GTS infrastructure.

36

REFERENCES

References

1]

Stackengine. State of containers 2015 docker adoption survey. http:
//www.stackengine.com/infographic-state-containers-2015-
docker—-adoption/, February 2015.

Mathijs Jeroen Scheepers. Virtualization and containerization of application in-
frastructure: A comparison. In 21st Twente Student Conference on IT, pages 1-7,
2014.

Stephen Soltesz, Herbert Potzl, Marc E Fiuczynski, Andy Bavier, and Larry Peter-
son. Container-based operating system virtualization: a scalable, high-performance
alternative to hypervisors. In ACM SIGOPS Operating Systems Review, volume 41,
pages 275-287. ACM, 2007.

Roberto Morabito, Jimmy Kjallman, and Miika Komu. Hypervisors vs. lightweight
virtualization: a performance comparison. In Cloud Engineering (IC2E), 2015 IEEE
International Conference on, pages 386-393. IEEE, 2015.

Rohprimardho. Measuring the Impact of Docker on Network I/O performance.
http://rp.delaat.net/2014-2015/p92/report.pdf/, August 2015.

Joris Claassen. Container Network Solutions. http://rp.delaat.net/2014-
2015/p45/report.pdf/, July 2015.

Victor Marmol, Rohit Jnagal, and Tim Hockin. Networking in Containers and
Container Clusters.

Nane Kratzke. About microservices, containers and their underestimated impact
on network performance. In Proceedings of CLOUD COMPUTING 2015 (6th. In-
ternational Conference on Cloud Computing, GRIDS and Virtualization), pages
165-169, 2015.

Laurie Michalek. Weave is kinda slow. http://www.generictestdomain.net/
docker/weave/networking/stupidity/2015/04/05/weave—is—kinda-
slow/, April 2015.

Eugene Yakubovich. Introducing flannel: An etcd backed overlay network for con-
tainers. https://coreos.com/blog/introducing-rudder/, 2014.

David Wragg. Weave networking performance with the new fast data path.
http://blog.weave.works/2015/11/13/weave—docker—networking-
performance-fast-data-path/, November 2015.

Peter White. Calico dataplane performance — Project Calico. http://
www.projectcalico.org/calico-dataplane-performance/, 2015.

37

http://www.stackengine.com/infographic-state-containers-2015-docker-adoption/
http://www.stackengine.com/infographic-state-containers-2015-docker-adoption/
http://www.stackengine.com/infographic-state-containers-2015-docker-adoption/
http://rp.delaat.net/2014-2015/p92/report.pdf/
http://rp.delaat.net/2014-2015/p45/report.pdf/
http://rp.delaat.net/2014-2015/p45/report.pdf/
http://www.generictestdomain.net/docker/weave/networking/stupidity/2015/04/05/weave-is-kinda-slow/
http://www.generictestdomain.net/docker/weave/networking/stupidity/2015/04/05/weave-is-kinda-slow/
http://www.generictestdomain.net/docker/weave/networking/stupidity/2015/04/05/weave-is-kinda-slow/
https://coreos.com/blog/introducing-rudder/
http://blog.weave.works/2015/11/13/weave-docker-networking-performance-fast-data-path/
http://blog.weave.works/2015/11/13/weave-docker-networking-performance-fast-data-path/
http://www.projectcalico.org/calico-dataplane-performance/
http://www.projectcalico.org/calico-dataplane-performance/

REFERENCES

[13]

[25]

[26]

[27]

Sean Kenneth Barker and Prashant Shenoy. FEmpirical evaluation of latency-
sensitive application performance in the cloud. In Proceedings of the first annual
ACM SIGMM conference on Multimedia systems, pages 35—46. ACM, 2010.

Docker. What is docker? https://www.docker.com/what-docker, 2015.
James Turnbull. The Docker Book. Lulu. com, 2014.

Dave Tucker. Multi-host docker networking is now ready for production. https://
blog.docker.com/2015/11/docker-multi-host-networking-ga/, 2015.

Keith Townsend. Socketplane strives to alleviate docker networking challenges
- techrepublic. http://www.techrepublic.com/article/socketplane-
strives—-to—-alleviate-docker—networking-challenges/, 2015.

Michael Bridgen. Weave as a docker network plugin. http:
//blog.weave.works/2015/06/22/weave—as—a-docker—-network-
plugin/, 2015.

Brent Salisbury. Socketplane excited to be joining docker to collabo-
rate with networking ecosystem. https://blog.docker.com/2015/03/
socketplane-excited-to-be-joining-docker-to-collaborate-
with—-networking—-ecosystem/, 2015.

Docker. Libnetwork design document. https://github.com/docker/
libnetwork/blob/master/docs/design.md, 2015.

Weave Works. How weave works. http://docs.weave.works/weave/
latest_release/how-it-works.html, 2015.

David Wragg. Weave 1.2 docker container networking is fast, 2015.

Fugene Y. Coreos, flannel and docker networking. https://
groups.google.com/forum/#!topic/coreos-user/Kl7ejtcRxbec, Octo-
ber.

CoreOS. Configuring flannel for container networking. https://coreos.com/
flannel/docs/latest/flannel-config.html, 2015.

Project Calico. Difficulties with traditional overlay networks. http://
www.projectcalico.org/learn/, 2015.

Alexis Richardson. Docker networking 1.9 and weave technical deep-
dive. http://blog.weave.works/2015/11/03/docker—-networking-1-9-
technical-deep-dive/, 2015.

Roderick W. Smith. Iperf CPU consumption at the end of a run in daemon mode.
http://sourceforge.net/p/iperf/patches/28/, July 2014.

38

https://www.docker.com/what-docker
https://blog.docker.com/2015/11/docker-multi-host-networking-ga/
https://blog.docker.com/2015/11/docker-multi-host-networking-ga/
http://www.techrepublic.com/article/socketplane-strives-to-alleviate-docker-networking-challenges/
http://www.techrepublic.com/article/socketplane-strives-to-alleviate-docker-networking-challenges/
http://blog.weave.works/2015/06/22/weave-as-a-docker-network-plugin/
http://blog.weave.works/2015/06/22/weave-as-a-docker-network-plugin/
http://blog.weave.works/2015/06/22/weave-as-a-docker-network-plugin/
https://blog.docker.com/2015/03/socketplane-excited-to-be-joining-docker-to-collaborate-with-networking-ecosystem/
https://blog.docker.com/2015/03/socketplane-excited-to-be-joining-docker-to-collaborate-with-networking-ecosystem/
https://blog.docker.com/2015/03/socketplane-excited-to-be-joining-docker-to-collaborate-with-networking-ecosystem/
https://github.com/docker/libnetwork/blob/master/docs/design.md
https://github.com/docker/libnetwork/blob/master/docs/design.md
http://docs.weave.works/weave/latest_release/how-it-works.html
http://docs.weave.works/weave/latest_release/how-it-works.html
https://groups.google.com/forum/#!topic/coreos-user/Kl7ejtcRxbc
https://groups.google.com/forum/#!topic/coreos-user/Kl7ejtcRxbc
https://coreos.com/flannel/docs/latest/flannel-config.html
https://coreos.com/flannel/docs/latest/flannel-config.html
http://www.projectcalico.org/learn/
http://www.projectcalico.org/learn/
http://blog.weave.works/2015/11/03/docker-networking-1-9-technical-deep-dive/
http://blog.weave.works/2015/11/03/docker-networking-1-9-technical-deep-dive/
http://sourceforge.net/p/iperf/patches/28/

REFERENCES

[28] Susanne Naegele-Jackson, Michal Hazlinsky, Fabio Farina, and Nicolai Iliuha.
GEANT Testbed Service (GTS) User and Resource Guide. 2 edition, 2015.

[29] Tim Szigeti and Christina Hattingh. Quality of service design overview ; qos require-
ments of voip. http://www.ciscopress.com/articles/article.asp?p=
357102&segNum=2, 2004.

[30] Mark Claypool and Jonathan Tanner. The effects of jitter on the peceptual quality
of video. In Proceedings of the seventh ACM international conference on Multimedia
(Part 2), pages 115-118. ACM, 1999.

[31] Ubuntu.com. LXD: the next-generation container hypervisor for Linux. http:
/ /www.ubuntu.com/cloud/1xd.

39

http://www.ciscopress.com/articles/article.asp?p=357102&seqNum=2
http://www.ciscopress.com/articles/article.asp?p=357102&seqNum=2
http://www.ubuntu.com/cloud/lxd
http://www.ubuntu.com/cloud/lxd

O J o U W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

27

28
29
30

31
32
33
34

35
36
37

38
39

DOCKERFILE

Appendix A Dockerfile

In order to write the logs to a file on the host, the container should be
started as ’docker run --name perf _meas -v /data SIMAGE_ID’. The
SIMAGE_ID is the ID of the image built with this Dockerfile. To view the
logs, the following command should be run docker inspect —-f ’{{range
Mounts}}{{.Source}}{{end}}’ SCONTAINER NAME.

FROM ubuntu:14.04

MAINTAINER Siem Hermans, <siem.hermans@os3.nl>
LABEL version="1.0"

LABEL role="Performance measurement"

Set timezone
ENV TZ=UTC

Default to server mode with iperf TCP test
Set correct directory
ENV dir /root

WORKDIR ${dir}

Update sources & install essential tools

RUN apt-get -qgg update && apt—-get install -yqg \
wget \
build-essential \
git

Pull and build testing tools (iperf3 & netperf)

RUN wget --no-check-certificate https://iperf.fr/download/iperf_3.0/iperf3_3
.0.11-1_amd64.deb https://iperf.fr/download/iperf_3.0/libiperf0_3.0.11-1
_amdo64 .deb

RUN dpkg —-i libiperf0_3.0.11-1_amdé64.deb iperf3_3.0.11-1_amd64.deb && rm
libiperf0_3.0.11-1_amd64.deb iperf3_3.0.11-1_amd64.deb

RUN wget —-—-no-check-certificate ftp://ftp.netperf.org/netperf/netperf-2.7.0.
tar.gz && tar —xzvf netperf-2.7.0.tar.gz

RUN cd netperf-2.7.0 && ./configure —--enable-demo=yes && make && make install

&& rm ../netperf-2.7.0.tar.gz

Install netperf binaries and clean up directories
RUN mv -t /usr/bin netperf-2.7.0/src/netperf netperf-2.7.0/src/netserver &&
rm —-rf netperf-2.7.0/

Install iperf (2)

WORKDIR ${dir}

RUN wget —--no-check-certificate http://heanet.dl.sourceforge.net/project/
iperf/iperf-2.0.5.tar.gz

RUN tar -xzvf iperf-2.0.5.tar.gz && cd iperf-2.0.5/src

Patch iperf 2.0.5 in order to fix the 100% utilization bug when running
iperf as a daemon

ADD scripts/nomaxcpu.patch ${dir}/iperf-2.0.5/src/nomaxcpu.patch

WORKDIR ${dir}/iperf-2.0.5/src/

40

40
41

42
43
44
45
46
47
48
49
50
51
52

53

DOCKERFILE

RUN patch < nomaxcpu.patch
RUN ed .. && ./configure && make && make install && cp src/iperf /usr/bin/
iperf

Include netperf and iperf scripts

WORKDIR ${dir}

ADD scripts/perf_measurement.sh ${dir}/perf.sh
RUN chmod +x perf.sh

Execute performance measurements
CMD ./perf.sh
#STOPSIGNAL SIGKILL

Expose the default ports, statically linked (iperf TCP/UDP, iperf3, netperf

)
EXPOSE 5001:5001 5002:5002 5201:5201 12865:12865

41

PERFORMANCE MEASUREMENT SCRIPT

Appendix B Performance measurement script

1 #!/bin/bash

2 # This script reads ENV variables set by the Dockerfile by default. To

3 # override this behaviour, specify variables with docker run -e "VAR=value".

4 # Examples:

5 # docker run —-e MODE="CLIENT" -e TEST="IPERF" -e TYPE="UDP" -e SRCSITE="AMS"
—e DSTSITE="PRG" —-e ADDRESS="172.17.0.2" —-e OVERLAY="NONE" -v /data 18
c2d4864eb3

6 # docker run —-e MODE="SERVER" SIMAGE_ ID
7
8 if [[SMODE == "CLIENT"]]; then
9 # netperf measurement
10 if [[$TEST == "NETPERF"]]; then
11 # Generate timestamp (start)
12 psstart=$ (date +%YSmMdSH%MSS)
13
14 # Run performance measurement
15 psresult=$ (netperf -1 115 -H S$ADDRESS -t UDP_RR -- -0 min_latency,
mean_latency,p99_latency, stddev_latency | tail -n 1 | awk ' {$1=$1}1"
OFS=",")
16
17 # Generate timestamp (end)
18 psend=$ (date +%YmdSHIMSS)
19
20 # Write log to file
21 echo $psstart", "$psend", "SOVERLAY", "$SRCSITE", "SDSTSITE", "Spsresult >> /
data/’MSMT_’ $SRCSITE’_’ SDSTSITE’_ ' $TEST’_’ SOVERLAY’ .csv’
22
23 elif [[STEST == "IPERF"]]; then
24 # Differentiate between TCP and UDP bandwidth test
25 if [[STYPE == "UDP"]]; then
26 # Run performance measurement & write to CSV
27 iperf -c $ADDRESS -u -p 5002 -b 1000M -y C -t 115 | tail -n 1 >> /data
/"MSMT_’ $SRCSITE’ _’ $DSTSITE’_’$TEST’_’$STYPE’_’ SOVERLAY’ .csv’
28
29 elif [[STYPE == "TCP"]]; then
30 # Run performance measurement & write to CSV
31 iperf -c $ADDRESS -p 5001 -y C -t 115 >> /data/’MSMT_’$SRCSITE’_'
SDSTSITE’ _’ STEST’_’ STYPE’_’ SOVERLAY’ .csv’
32 fi
33 fi
34
35 else
36 # Enter server condition if the S$MODE != client
37 # Start netserver daemon
38 netserver
39 # Run iperf server as daemon mode (TCP and UDP respectively)

40 iperf -s -D -p 5001
41 iperf -s -u -p 5002
42 fi

42

BASELINE LATENCY

Appendix C Baseline Latency

205 24-Hours AMS to LJU - Mean latency

- T T T
304 e]

g 303

£

>

2

s

® 302

301

30.0

o
w

10 15 20
Nr. of measurements

— VM AMS_LJU

Figure C14: Mean Latency on all AMS to LJU circuits

24-Hours BRA to MIL - Mean latency
T T T

w
£
£
> 13.0
c
3
(]
-

12.9

12.8

o
w

10 15 20
Nr. of measurements

— VM BRA_MIL

Figure C15: Mean Latency on all BRA to MIL circuits

43

POINT-TO-POINT LATENCY MEASUREMENTS

Appendix D Point-to-Point Latency Measurements

Instance Circuit Platform In Milliseconds (ms)
Min. Mean 99th % Stddev

Libnetwork AMS - MIL VM 36.3 36.5 37.0 0.1
Docker 36.3 36.5 37.0 0.1
Difference 0.0 0.0 0.0 0.0
AMS - LJU VM 30.1 30.3 31.0 0.1
Docker 30.1 30.3 31.0 0.1
Difference -0.1 -0.1 0.0 0.0
AMS - BRA VM 17.5 17.7 18.0 0.1
Docker 17.6 17.7 18.0 0.0
Difference -0.1 -0.1 0.0 0.0
MIL - LJU VM 61.6 62.1 62.4 0.1
Docker 61.8 62.1 62.4 0.1
Difference -0.2 0.0 0.0 0.0
MIL - BRA VM 12.7 13.0 14.0 0.1
Docker 12.7 13.1 14.0 0.0
Difference 0.0 -0.1 0.0 0.0
BRA - LJU VM 47.1 47.4 48.0 0.0
Docker 47.2 47.4 48.0 0.0
Difference 0.0 -0.1 0.0 0.0
Weave AMS — MIL VM 36.1 36.4 37.0 0.0
Docker 36.2 36.5 37.0 0.0
Difference -0.1 -0.1 0.0 0.0
AMS - LJU VM 29.9 30.2 31.0 0.0
Docker 29.8 30.3 31.0 0.0
Difference 0.0 -0.1 0.0 0.0
AMS - BRA VM 174 17.7 18.0 0.1
Docker 174 17.7 18.0 0.1
Difference -0.1 0.0 0.0 0.0
MIL - LJU VM 59.6 59.8 60.0 0.1
Docker 59.6 59.8 60.0 0.1
Difference 0.0 -0.1 0.0 0.0

44

POINT-TO-POINT LATENCY MEASUREMENTS

MIL - BRA VM 12.8 13.0 14.0 0.1
Docker 12.9 13.1 14.0 0.1

Difference -0.1 -0.1 0.0 0.0

BRA - LJU VM 43.0 43.3 44.0 0.1
Docker 43.1 59.5 130.0 0.1

Difference -0.2 -16.2 -86.0 0.0

Flannel AMS - MIL VM 42.4 42.8 43.0 0.0
Docker 42.5 42.9 43.0 0.0

Difference -0.1 -0.1 0.0 0.0

AMS - LJU VM 29.8 30.2 31.0 0.0
Docker 29.8 30.3 31.0 0.0

Difference 0.1 -0.1 0.0 0.0

AMS - BRA VM 17.3 17.7 18.0 0.0
Docker 17.4 17.7 18.0 0.0

Difference -0.1 0.0 0.0 0.0

MIL - LJU VM 55.5 55.8 56.0 0.0
Docker 55.6 55.8 56.0 0.0

Difference -0.1 -0.1 0.0 0.0

MIL - BRA VM 12.8 13.0 14.0 0.0
Docker 12.9 13.1 14.0 0.0

Difference -0.1 -0.1 0.0 0.0

BRA - LJU VM 43.1 43.4 44.0 0.0
Docker 43.1 43.4 44.0 0.0

Difference -0.1 0.0 0.0 0.0

45

POINT-TO-POINT THROUGHPUT MEASUREMENTS

Appendix E Point-to-Point Throughput Measurements

Instance Circuit Platform Throughput in Mbps
TCP UDP

Libnetwork AMS - MIL VM 150.7 231.6
Docker 213.2 110.6

Difference -62.5 121.1

AMS - LJU VM 152.5 223.3
Docker 165.3 110.0

Difference -12.8 113.3

AMS - BRA VM 148.9 225.5
Docker 207.1 109.9

Difference -58.2 115.6

MIL - LJU VM 127.4 238.4
Docker 128.3 130.1

Difference -0.8 108.3

MIL - BRA VM 181.2 254.5
Docker 167.0 129.2

Difference 14.2 125.4

BRA - LJU VM 158.8 226.7
Docker 133.7 111.8

Difference 25.0 114.8

Weave AMS — MIL VM 179.0 272.8
Docker 243.0 130.5

Difference -64.0 142.2

AMS - LJU VM 189.2 249.9
Docker 201.6 129.3

Difference -12.4 120.6

AMS - BRA VM 188.5 255.4
Docker 209.8 128.9

Difference -21.2 126.5

MIL - LJU VM 131.7 255.3
Docker 161.5 128.5

Difference -29.8 126.8

46

POINT-TO-POINT THROUGHPUT MEASUREMENTS

MIL - BRA VM 188.5 261.0
Docker 217.9 130.4

Difference -29.3 130.6

BRA - LJU VM 149.9 229.0
Docker 43.9 17.2

Difference 106.0 211.8

Flannel AMS - MIL VM 177.1 271.9
Docker 187.5 126.9

Difference -10.4 145.0

AMS - LJU VM 180.2 268.1
Docker 225.6 128.3

Difference -45.4 139.8

AMS - BRA VM 187.2 267.0
Docker 169.8 127.8

Difference 17.4 139.2

MIL - LJU VM 142.2 278.8
Docker 210.7 131.9

Difference -68.6 146.9

MIL - BRA VM 194.2 254.0
Docker 211.3 130.6

Difference -17.1 123.4

BRA - LJU VM 151.7 243.2
Docker 214.6 110.0

Difference -63.0 133.2

47

STREAMING MEDIA MEASUREMENTS

Appendix F Streaming media measurements
Circuit Workers Bit rate (Kbps) Jitter (ms)

Min. Mean Mazx.
VM BRA - AMS 1 112.09 957.59 1853.68 0.08
3 69.59 681.23 1429.48 0.45
9 41.18 27217 944.11 2.10
BRA - MIL 1 111.19 955.46 1854.89 0.09
3 69.13 671.21 1426.39 0.55
9 39.40 27345 932.24 2.00
BRA - LJU 1 111.33 948.15 1851.54 0.09
3 68.99 670.25 1421.54 0.49
9 40.49 268.25 919.55 1.92
Weave BRA - AMS 1 113.20 958.70 1851.37 0.10
3 68.93 654.39 1422.14 0.47
9 40.17 270.41 941.41 2.14
BRA - MIL 1 108.47 948.94 1849.74 0.09
3 70.52 648.69 1409.49 0.49
9 39.35 272.28 935.86 1.86
BRA - LJU 1 109.74 944.86 1834.43 0.09
3 66.23 650.13 1414.70 0.47
9 41.09 269.38 928.17 2.29
Libnetwork BRA - AMS 1 113.79 963.13 1868.45 0.06
3 67.78 659.49 1445.72 0.46
9 40.22 27733 941.81 2.01
BRA - MIL 1 109.93 949.45 1799.31 0.06
3 69.98 650.90 1416.16 0.48
9 38.96 273.05 934.06 1.74
BRA - LJU 1 112.00 948.27 1833.70 0.08
3 72.79 642.49 1426.46 0.50
9 3744 271.10 917.75 1.98
Flannel BRA - AMS 1 109.87 947.41 1837.20 0.11
3 64.24 632.10 1402.66 0.40
9 40.33 274.38 944.66 2.28
BRA - MIL 1 105.56 947.71 1829.12 0.13
3 66.53 621.74 1427.34 0.45
9 40.10 272.09 928.99 1.91
BRA - LJU 1 110.88 946.26 1844.49 0.10
3 62.97 623.68 1467.22 0.46
9 41.26 267.24 916.67 2.43

48

	Introduction
	Related Work
	Background information
	Docker containers & networking
	Libnetwork
	Third party overlay solutions
	Weave
	Flannel
	Calico

	Key value stores
	GÉANT Testbed Services

	Methodology
	Deployment considerations
	Measurement tools
	Experiment design
	Baseline
	Point-to-Point
	Star topology, streaming media

	Results
	Usability GTS
	Overlay evaluation
	Base infrastructure performance
	Overlay performance
	Media streaming scenario

	Discussion
	Conclusion
	Future work

	Acknowledgements
	References
	Appendices
	Appendix Dockerfile
	Appendix Performance measurement script
	Appendix Baseline Latency
	Appendix Point-to-Point Latency Measurements
	Appendix Point-to-Point Throughput Measurements
	Appendix Streaming media measurements

