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In specifying access control policies eXtensible Access Control Markup Language
(XACML) has become the de facto standard. In XACML, when a request is made
to access a protected resource, the access decision as returned by the responsible
component is obtained by parsing the XACML policy. As the policies can grow
very large, simply reading the policy in a top-down manner has a performance
penalty which make the whole system act unresponsive. In parsing XACML
policies alternative solutions have been developed which improve the speed by
which access decisions are generated. However, the existing solutions employ
(mostly) decision diagrams, which in continuously changing environments, have
a high memory impact when updating those diagrams. The solution presented
in this paper uses satisfiability to generate a formula in CNF which is an exact
representation of the policy. An existing SMT solver is used to find a solution
(if it exists) for the formula. This solution is then used to create the final access

decision which can be returned.
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1. INTRODUCTION

In today’s businesses, customer data is what makes
their business. Large tech companies make their money
using their customer’s data and as more and more
data is stored in the cloud, an important part of their
IT security is access control. How does a company
makes sure only users that are allowed access particular
information, have indeed access without having to
little restrictions i.e. allowing everyone to access this
information.

In specifying access control policies eXtensible Access
Control Markup Language (xacml)[1] has become the
de facto standard. xacml does not only provide an
xml-based language to specify policies, but also an
architecture for the enforcement those policies. It was
standardized by the Organization for the Advancement
of Structured Information Standards (OASIS) as an
open standard for the expression of security policies.
As a single common policy language allows for a
consolidated view of the security policy as implemented
by a system. This eases the management, updates and
enforcement of those policies. As xacml uses xml as
the policy language it has the extensibility benefits of
xml, in syntax as well as semantics, so policies can be
created which accommodate the unique requirements as
needed by the application [2].

In xacml, when a request is made to access a
protected resource, the request is submitted to the
Policy Enforcement Point (pep) which manages this
resource. The pep generates a request in the xacml

request language and sends this request to the Policy
Decision Point (pdp). The pdp has access to the user
created xacml policies (which are written in the xacml
policy language) and will based on the policies either
permit or deny access to the resource. It will generate
a responds in the xacml response language and send
it back to the pep which enforces this decision. In
this paper, we will develop an efficient policy evaluation
procedure that is applied by the policy decision point
(pep). The state-of-the-art in this research area
is represented by XEngine[3] which employs decision
diagrams to produce access decision. The problem
with this approach is that it is memory hungry and
may not scale in certain scenarios where memory is
limited. Especially in situations where policies change
frequently, rebuilding the policy becomes inefficient.

In this paper we will employ propositional encoding
to produce access decisions, by converting XACML
policies to logical expressions and use a propositional
solver to answer authorization queries. The paper is
structured as follows: the next section discusses related
work. Section 3 provides background information about
both xacml and sat. Section 4 describes in detail
the algorithm that was created during this research.
Section 5 will give an overview of the framework that
was created. Finally, section 6 concludes this paper.

2. RELATED WORK

Prior work in optimizing the policy evaluation
procedure in xacml can be split into two groups:
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using (adaptive) reordering [4] and using some decision
diagram based approach [3] [5] and [6]. The adaptive
reordering technique in [4] is based on statistics and
the categorization of policies and rules (within policy
sets and policies respectively) such that if a request is
received, it is redirected to the policies (or rules) that
correspond to its subjects, avoiding any unnecessary
evaluations from occurring [4]. However, the problem
with this approach is that it will not work as efficiently
if the requests do not follow a uniform distribution.

The decision diagram based approaches [3], [5] and [6]
work differently, Liu et al. [3] first convert the xacml
policy to a numerical policy, so they can use efficient
integer comparisons. Then the numerical policy is
normalized, so as to convert the hierarchical structure
to a flat structure and keeping only one rule combining
algorithm. Finally this normalized numerical policy
is converted to a (multi value) decision diagram for
efficient processing of requests.

Ros et al. [5] propose an optimization for policy
evaluations based on two tree structures: the Matching
tree (MT) as to allow for fast searching of applicable
rules (using a decision diagram) and the Combining
Tree (CT) which is used to evaluate the applicable rules.
Their approach allows for all comparison functions that
are available in xacml to be used and they also support
obligations1 which XEngine does not.

As Cahn et al. [6] point out that the approach taken
by [5] still has some drawbacks: it lacks handling of
missing attributes and different indeterminate states.
The lack in missing attributes leaves the approach
open to so-called missing attribute attacks. These
attacks work by sending crafted requests, which lack
some attributes, as to circumvent the PDP. The
lack in indeterminate state handling means rules with
indeterminate states are ignored by Ros et al. [5],
which in certain cases could result in wrong final
decisions. Cahn et al. [6] improve on the research
by Ros et al. [5] by introducing multi-data-types
interval decision diagrams (MIDD) which are created by
analyzing xacml policies as logical expressions. This
approach provides correctness and completeness, but
still make use of decision diagrams. This approach
can cause problems in situations where memory is
limited or when xacml policies change often and the
decision diagram needs to be recreated which is a costly
operation.

3. BACKGROUND

This section gives some background information about
xacml and sat.

3.1. XACML

xacml is declarative language which provides attribute-
based access control (abac). This means the language

1New in xacml version 3.0 [7]

uses attributes associated with a request to determine if
the desired access to a resource is allowed. xacml uses
three elements to describe a policy: a <Policyset>,
<Policy> and a <Rule>. A <Rule> element contains an
expression which, based on attributes, returns an access
decision i.e. a rule returns either permit or deny given
a request with attributes. <Rule> elements may contain
a <condition> element which restricts the space of
applicable requests. A <condition> is a function which
determines if a rule applies. A <Policy> element
contains (a set of) <Rule> elements and describes how
to combine them to a single decision i.e. how to combine
the decisions of each individual rule. A <Policyset>

element contains other <Policyset> elements or (a set
of) <Policy> elements and describes how to combine
the individual decisions to a single decision [2]. All
three elements contain <target> (they can be empty)
elements which contain definitions that describe for
which (values of) attributes an element applies.

Given a <Policyset> or <Policy>, xacml defines
algorithms (the rule-combining algorithm for <Policy>
elements and the policy-combining algorithm for
<Policyset> elements) for combining the individual
decisions (for rules or policies respectively) to a final
decision. The most common combining algorithms2 are
the deny-overrides, permit-overrides, first-applicable,
only-one-applicable. The deny-overrides and permit-
overrides work as their name suggests, if a single
element returns deny or permit the combined decision
is deny or permit respectively. The result of the first-
applicable combining algorithm is the same as the result
of the first applicable element that is encountered. The
only-one-applicable combining algorithm can only be
applied to policies, it ensures that only one policy (or
policy set) is applicable by looking at the <target>

elements of the respective policies. It results in
NotApplicable if no policy is applicable and the result
is Indeterminate if more than one policy can be applied
[2].

Each rule in xacml has an effect associated with
it. An effect can either be permit or deny. If a
rule evaluates to true the rule return the associated
effect (i.e. permit or deny). If the rule evaluates
to false it returns NotApplicable. If for some reason
an error occurs when evaluating the rule, it returns
Indeterminate.

3.2. SAT

The Boolean satisfiability problem (also satisfiability or
sat) is, given a Boolean function f with n variables,
the problem of finding appropriate values (i.e. true or
false) of the variables such that f evaluates to true or
prove that none exists [8].

f(x1, x2, . . . , xn) (1)

2See [2] for all combining algorithms.
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The formula f in equation (1) is called a propositional
logic formula. It consists of:

• variables, which can either have the value true or
false

• operators:

– conjunction, the logical and operator, de-
noted by ∧.

– disjunction, the logical or operator, denoted
by ∨.

– negation, the logical not operator, denoted
by ¬.

• parentheses, for the logical grouping of proposi-
tions.

Where a proposition is a function of the type:

g : X → B (2)

In equation (2) X is some arbitrary set and B is a
boolean domain, a set consisting of two elements which
represent logical values e.g. B = {true, false}.

It is proven that determining if the function f in
equation (1) has a satisfying solution belongs to the
class of problems known as np-complete [9]. In addition,
sat is applicable in a wide range of domains such as test
case generation [10] and finding bugs in software [11].
As a result, practical sat solvers are a highly researched
subject [12]. Most sat solvers work on problems where
formulas are represented in conjunctive normal form
(or cnf) [8] [12]. This form consists of a conjunction
of clauses. Where a clause is a disjunction of one or
more literals. A literal is the smallest logical unit in the
problem i.e. a variable or the negation of one (called
a positive literal or a negative literal respectively). An
example cnf formula may look like:

(p1 ∨ p2) ∧ (p3 ∨ p4) ∧ (p5 ∨ p6) (3)

Where p1, . . . , p6 are literals and (p1 ∨ p2) is a clause.
The advantage of using cnf is that for a formula to
be satisfied, each individual clause must be satisfied.
Using cnf is not a limitation on the formulas that can
be handled as it is possible to translate any formula into
cnf [8].

4. ALGORITHM

This section presents our algorithm which is used
to encode xacml policies into cnf formulas. Our
algorithm consists of three consecutive steps: the
construction of the attribute domains, the flattening
of the hierarchical structure of an xacml policy and
the final encoding into cnf formulas. We describe the
aforementioned steps in detail, showing examples to
clarify our approach.

4.1. Constructing attribute domains

xacml policies contain attributes (in the form of the
attributeValue, attributeSelector and attributeDesigna-
tor elements) with values associated with them. They

describe the applicability of the xacml rules. For ex-
ample, a policy could have a rule stating (the example
is edited for brevity):

. . .
<ru l e E f f e c t=”Permit”>
. . .
<Attr ibuteValue DataType=” Str ing ”>admin</Attr ibuteValue>
<Attr ibuteDes ignator Att r ibute Id=” r o l e ” DataType=” Str ing ”/>
. . .
</ ru l e>
. . .

Example 1. An example of a rule element in a XACML
policy (edited for brevity)

In this case if the request has a role of admin the
requested action would be permitted (assuming no
other rules exist). To implement this behavior in our
framework, we had to look at what such a rule actually
meant. The AttributeId specifies the name of the
attribute, in this case it’s an attribute named role. The
DataType specifies the type of the attribute, in this case
it’s an attribute of type String. Assuming the xacml
policy contains more rules, it probably will also contain
a few different values for that specific attribute. This
means the attribute turns into a set of possible values
which exist in the xacml policy, call this set the domain
Dattr for attribute attr. Now let’s assume the policy in
Example 1 also has rules defined for the role attributes:
manager, hr and user ; the example then turns into
the expression admin ∈ {admin,manager, hr, user}.
The approach of constructing a set of possible values
for each type of attribute is the approach we took in
our implementation. The type of the attribute has to
allow for enumeration i.e. is has to have different yet
related values throughout the policy (as with the role
attribute). To implement this, the first step we took
was deciding which attributes we thought were usable
for enumeration, and we decided to go for attributes
of the type String. The second step was enumerating
all different values which exist in the xacml policy,
the algorithm in pseudo code is shown in Algorithm 1.
The algorithm will recursively parse a xacml policy
and when an attribute of the correct type is found, the
respective value is added as a value to the map m with
DataTypes.

4.2. Policy flattening

As xacml uses a hierarchical structure for a policy i.e.
<Policyset> elements can contain other <Policyset>

elements (see section 3.1), we need a way to flatten
this structure to allow for an efficient encoding and
optimizing performance by only re-encoding parts of the
policy that have changed. To keep the consistency with
[13] we use the notation they introduced. For reasons
of clarity and as a means to help the reader we give
the definition of the applicability space and the decision
space as introduced by [13].

Definition 4.1. Applicability space: Given a xacml
policy element p (either a <Policyset>, <Policy> or
<Rule> element) which has a (possibly empty) set of
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Algorithm 1 EnumerateVariables

Input: A map m containing the DataTypes as keys
and (empty) arrays as values and a policy p

1: procedure EnumerateVars(p,m)
2: for all target elements do
3: update m with values found in the policy

target
4: end for
5: for all variable definitions do
6: update m with values found in the variable

definitions
7: end for
8: for all policy elements do
9: if element is a policy then

10: enumerateVars(element,m)
11: else if element is a rule then
12: update m with values found in the rule

targets
13: update m with values found in the rule

condition
14: end if
15: end for
16: end procedure

constraints in their targets we define the applicability
space of p as the triple < ASA, ASIN , ASNA > where
ASA represents the access requests to which p applies
i.e. the access requests that are allowed by the target
constraints of p. ASIN represents the access requests
for which the access requests are missing required
information, hence the applicability of p cannot be
determined. ASNA represents the access requests for
which p does not apply.

The overall goal of evaluating a xacml policy is
to come to an access decision (see section 3.1). The
decision space groups access requests which have the
same access decision together.

Definition 4.2. Decision space: Given a xacml
policy element p (either a <Policyset>, <Policy>

or <Rule> element) we define the decision space
of p as the tuple < DSP , DSD, DSIN , DSNA >
where each element of the tuple refers to the set
of access requests that evaluate to the same access
decision. The access decisions are: Permit, Deny,
Indeterminate and NotApplicable respectively. Note
that the Indeterminate decision space DSIN is a tripe
< DSIN(P ), DSIN(D), DSIN(NA) > which represent the
decisions Indeterminate Permit, Indeterminate Deny,
Indeterminate NotApplicable respectively.

The algorithm as shown in Algorithm 2 is based
on the work done by [13], they also provide the
mathematical proof that the decision space is mutually
exclusive which is very important as it makes sure the
pdp will only return a single access decision. Our
implementation differs from the one created by [13]

Algorithm 2 FlattenPolicy

Input: A policy p
Output: Decision space

< DSP , DSD, DSIN(P ), DSIN(D), DSIN(NA), DSNA >
1: procedure flattenPolicy(p)
2: if p is a rule then
3: ASP

A = AST
A ∩ASC

A

4: ASP
IN = ASC

IN ∪AST
IN

5: if effect of p is Permit then
6: DSP = ASP

A

7: DSD = ∅
8: DSIN(P ) = ASP

IN

9: DSIN(D) = ∅
10: else if effect of p is Deny then
11: DSP = ∅
12: DSD = ASP

A

13: DSIN(P ) = ∅
14: DSIN(D) = ASP

IN

15: end if
16: DSIN(PD) = ∅
17: DSIN(NA) =

(DSP ∪DSD ∪DSIN(P ) ∪DSIN(D) ∪DSIN(PD))
18: return

(DSP , DSD, DSIN(P ), DSIN(D), DSIN(PD), DSIN(NA))
19: else if p is a policy (set) then
20: policies = ∅
21: for all elements e of p do
22: result = flattenPolicy(e)
23: add result to policies
24: end for
25: combiningAlg = combining algorithm of p
26: return applyCA(policies, combiningAlg)
27: end if
28: end procedure

in that we use only sat formulas i.e. only boolean
predicates, whilst they use smt formulas and are hence
not bound by using only boolean predicates. We only
implemented the encoding of a single policy containing
a set of rules, their implementation is able to parse a
complete policy including nested policy sets. Algorithm
2 works as follows: we feed the algorithm a policy p,
the first step is to find the first available applicability
constraints. As these applicability constraints work in a
top-down manner i.e. the applicability constraints get
more specific as you come closer to a specific rule. In
our case the first constraints we find are the ones for
the rule’s target, the applicability space of the target is
combined with the applicability space as induced by the
condition’s constraints. The applicability Indeterminate
space is created in the same way, using both the rule
target and condition.

The decision spaces are obtained from the applica-
bility spaces. The decision spaces are created starting
from the atomic unit of a xacml policy i.e. a rule and
grow in a bottom-up manner. The combined decision
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space of a policy can be combined with the decision
space of another policy and so on. The combining of
the decision spaces is performed according to the com-
bining algorithm as specified by a policy (or policy set).
Combining the decision spaces is the task of the func-
tion applyCA.

This function will combining the provided decision
spaces according to the provided combingingAlg. The
details of how to combine the elements of the decision
spaces is clearly described in [13] (see Figure 1:
Encoding of xacml v3 combining algorithms), so we
are not going to repeat that here. This function
will recursively combine the decision spaces and when
finished return the final decision space.

4.3. SAT encoding

Given the final decision space as returned by the
function applyCA, the final step of our algorithm is
combining the individual elements of the decision space
to form the cnf formula. As the individual elements
are mutually exclusive, the final cnf formula has the
following form:

DSP ∪DSD ∪DSIN(P ) ∪DSIN(D)

∪DSIN(PD) ∪DSIN(NA)

(4)

The formula in Equation 4, if satisfiable, should
return true and this means only a single element e.g.
DSP is true (as the elements are mutually exclusive).
Knowing which element is true, we can deduce the
resulting access decision. Which is the final result of
our algorithm.

5. FRAMEWORK

The goal of the framework that was created during this
research is evaluating a xacml request against a user-
defined xacml policy and — using sat — generating a
access decision. It was based on the work done by [13],
with the main difference that they used smt (a superset
of sat) instead of sat. Hence our framework was also
implemented in Java and also employs z3, a theorem
prover developed by Microsoft [10], compiled with the
Java bindings. As the latest version of xacml (xacml
v3) was standardized in January 2013 [2], we decided to
only support the latest version as the authors assume it
is the most widely used version. However, to the best
of our knowledge no current usage statistics exist. The
general architecture of the framework is discussed in
section 5.1.

5.1. Overview

The framework consists of three components: the
preprocessor, the smt solver and the post processor.
A schematic representation of the framework is shown
in Figure 1. The preprocessor is used to parse a xacml
document (in this case both the xacml and the request)

and convert it to cnf as described in section 4. In our
implementation the preprocessor only was used to parse
the xacml policy and a set of predicates was used to
represent the request which made the implementation
of the preprocessor considerably easier.

The resulting formulas, describing the policy and
request, are then passed on to the smt solver, which as
described before is the open source smt solver z3 [10].
The smt solver takes the formula and outputs either
of two possible answers: sat or unsat. If the output is
satisfiable i.e. sat it means z3 was able to find boolean
assignments for the predicates such that the formula
returned true. If the output is unsatisfiable i.e. unsat
it means z3 was unable to find such an assignment. In
any case the output is not enough for the pdp to return
an access decision (recall that the pdp evaluates the
request against the xacml policy/policies). Because at
this point the output needs to be interpreted as in the
case of sat z3 only tells us that there is an assignment,
but not what it is. To further process the output the
post processor was created.

Given the sat output of z3 and the mutual
exclusivity of the four possible outcomes: Permit, Deny,
Indeterminate, NotApplicable only one of the outcomes
can be true. The post processor calls z3 one more time,
this time asking for the variable assignment...

If, however, the output is unsat it means neither of
the four possible outcomes evaluated to true, which
in this case points to an error somewhere in the
implementation, as an xacml request should always
receive one of the four available answers. In this case the
post processor will return an error describing in which
component the problem occurred.

6. CONCLUSION

In this paper we presented a novel approach for the
evaluation of xacml policies. Our solution makes use
of sat by converting the xacml policy to a sat formula
which can be solved by using existing (and proven) smt
solvers. Using sat has the advantage over existing
approaches in that is thus not rely on creating tree
structures to represent the xacml policy which when
created are costly in their memory usage.

In our framework we have only implemented a
limited set of functions that are available in the xacml
specification [2]. The other existing functions are for
now being ignored.

As future work we are planning on evaluating the
performance and accuracy of our framework against the
existing solutions. This experimental analysis will show
if the encoding of xacml to sat will have the expected
performance benefits.
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FIGURE 1. A graphical representation of the framework as created during this research. Step (1) shows the XACML policy
being parsed by the preprocessor creating the cnf formula. Step (2) is feeding the formula combined with the parsed request
(in step (3) and (4)) to the SMT solver which returns either sat or unsat. Depending on if the formula was satisfiable or not
the output is fed to the post processor which returns the final access decision (step (6)).
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