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WHY 
§ Customer data more and more valuable 

§ Data stored in cloud 

§ Access control becomes critical 



XACML 
§ eXtensible Access Control Markup Language 

§ XML-based language 

§ Also an architecture 

§ OASIS standard for the expression of security policies 



XACML ELEMENTS 
<PolicySet> 
  <Policy RuleCombiningAlg="..." > 
      <Target/> 
      <Rule RuleId="..." Effect="Permit"> 
        <Target/> 
        <Condition/> 
      </Rule> 
      <Rule RuleId="..." Effect="Deny"> 
        <Target/> 
        <Condition/> 
      </Rule> 
  </Policy> 
  <Policy RuleCombiningAlgId="..."> 
      ... 
  </Policy> 
<PolicySet> 
	



EXAMPLE XACML POLICY 
<Policy 
    RuleCombiningAlgId="identifier:rule-combining-algorithm:permit-overrides"> 
    <Target/> 
    <Rule RuleId="urn:oasis:names:tc:xacml:3.0:example:SimpleRule1" Effect="Permit"> 
        <Target> 
            <AnyOf> 
                <AllOf> 
                    <Match MatchId="string-equal"> 
                        <AttributeValue DataType="string">admin</AttributeValue> 
                        <AttributeDesignator AttributeId="role" DataType="string"/> 
                    </Match> 
                </AllOf> 
            </AnyOf> 
        </Target> 
        <Condition> 
           ... 
        </Condition> 
    </Rule> 
    <Rule RuleId="urn:oasis:names:tc:xacml:3.0:example:SimpleRule2" Effect="Deny"> 
        ... 
    </Rule> 
</Policy> 



XACML IN 
ACTION 
1.  Request intercepted 

by PEP 
2.  Request converted 

to XACML 
3.  PDP evaluates 

policy 
4.  If needed retrieve 

additional attributes 
5.  PDP reaches 

decision and 
forwards this to PEP 

6.  Request arrives at 
resource 

Source: Wikipedia 



RELATED RESEARCH 

(Adaptive) reordering 

§ Based on statistics and 
categorization 

Decision Diagrams 

§ XEngine 
§ Matching Tree (MT) and 

Combining Tree (CT) 
§ SNE-XACML with MIDD 

Algorithm 3: XACML Policy Normalization
Input: An XACML policy X.
Output: A sequence of range rules that is equivalent to X.

rewrite each XACML rule’s decision as an origin block;1
R−1 := true → First-Applicable;2
return ⟨ Normalize(X, X’s combining algorithm) |R−1⟩;3

Normalize(⟨X1, · · · , Xn⟩,A)4
if A = First-Applicable then5

output = ⟨⟩;6
for i := 1 to n do7

if Xi is a rule then8
X′

i := range rule converted from Xi;9

else if Xi is a policy or policy set then10
X′

i :=Normalize(Xi, Xi’s combining algorithm);11

output := output|X′

i ;12

return output;13

else if A = Only-One-Applicable then14
output = ⟨⟩;15
for i := 1 to n do16

if Xi is a rule then17
X′

i := range rule converted from Xi;18

else if Xi is a policy or policy set then19
X′

i :=Normalize(Xi, Xi’s combining algorithm);20

output := output|X′

i ;21

for every pair 1 ≤ i ̸= j ≤ n do22
for every rule r in Xi

′ do23
for every rule r′ in Xj

′ do24
if r and r′ overlap then report error;25

return output;26

else if A = Permit-Overrides or Deny-Overrides then27
for i := 1 to n do28

if Xi is a rule then29
X′

i :=range rule converted from Xi;30

else if Xi is a policy or policy set then31
X′

i :=Normalize(Xi, Xi’s combining algorithm);32

return AllMatch2FirstMatch(⟨X′

1, · · · , X′

n⟩,A);33

r1 : S ∈ [0, 0] ∧ R ∈ [0, 0] ∧ A ∈ [0, 0] → [R1]d

r2 : S ∈ [1, 1] ∧ R ∈ [0, 0] ∧ A ∈ [0, 0] → [ [R1]d, [R2]p ]d

r3 : S ∈ [1, 1] ∧ R ∈ [0, 0] ∧ A ∈ [1, 1] → [R2]p

r4 : S ∈ [1, 1] ∧ R ∈ [1, 1] ∧ A ∈ [0, 1] → [R2]p

r5 : S ∈ [2, 3] ∧ R ∈ [0, 1] ∧ A ∈ [0, 1] → [R2]p

r6 : S ∈ [0, 0] ∧ R ∈ [1, 1] ∧ A ∈ [0, 1] → [R3]p

r7 : S ∈ [0, 3] ∧ R ∈ [0, 1] ∧ A ∈ [0, 1] → [R−1]na

Figure 8: The final sequence of range rules con-
verted from the XACML policy in Figure 1

XACML policies, the condition of a rule could be a com-
plex boolean function that operates on the results of other
functions, literal values, and attributes from requests. There
are no side effects to function calls and the final result is a
boolean value indicating whether or not the rule applies to
the request. An example condition of a rule in an XACML
policy could be “salary > 5000 or date > January 1, 1900”.
How to model complex functions of XACML policies in the
sequential range rule representation is a challenging issue.

Solution: For a rule that has a condition specified using
XACML functions, we treat such a condition as part of the
decision of the rule. More formally, for a rule P ∧ f() →
permit, we convert it to rule P → (if f() then permit). In
dealing with rules, we treat the decision (if f() then permit)
as a distinct decision. In dealing with rule/policy combining
algorithms, we treat the decision (if f() then permit) as a
special type of a permit decision. Our idea applies similarly
to deny rules.

Example: Suppose R1 in Figure 2(b) has a function f(),
that is, the predicate of R1 is S ∈ [0, 1] ∧ R ∈ [0, 0] ∧ A ∈
[0, 0] ∧ f() → d. If so, we treat R1 as S ∈ [0, 1] ∧ R ∈
[0, 0] ∧ A ∈ [0, 0] → (if f() then deny).

4.9 Correctness of XACML Normalization
The correctness of XACML policy numericalization is ob-

vious. The correctness of XACML policy normalization fol-
lows from Lemma 4.1, Lemma 4.2, Theorem 4.1, and The-
orem 4.2. The proofs of these lemmas and theorems are
elided in this paper due to space limitations, but they are
available in [2].

Lemma 4.1. Given an XACML policy (or policy set) X
with combining algorithm A, where A ∈ {Permit-Overrides,
Deny-Overrides}, for any request Q, the origin block of the
first rule that Q matches in AllMatch2FirstMatch(X, A)
consists of all the rules that Q matches in X.

Lemma 4.2. Given an XACML policy (or policy set) X
with combining algorithm A, where A ∈ {Permit-Overrides,
Deny-Overrides}, for any request Q, using OB(Q) to de-
note the origin block of the first rule that Q matches in
AllMatch2FirstMatch(X,A), the winning decision of OB(Q)
is the same decision that X makes for Q.

Theorem 4.1. Given an XACML policy X and its nor-
malized version Y , for any single-valued request Q, X and
Y have the same decision for Q.

Theorem 4.2. Given an XACML policy X and its nor-
malized version Y , for any multi-valued request Q, X and
Y have the same decision for Q.

5. THE POLICY EVALUATION ENGINE
After converting an XACML policy to a semantically equiv-

alent sequence of range rules, we need an efficient approach
to search the decision for a given request using the sequence
of range rules. In this section, we describe two approaches to
efficiently processing single-valued requests, namely the de-
cision diagram approach, and the forwarding table approach.
We further discuss methods for choosing the appropriate ap-
proach in real applications.

5.1 The Decision Diagram Approach
The decision diagram approach uses the policy decision

diagram converted from a sequence of range rules to improve
the efficiency of decision searching operation. Constructing
a PDD from a sequence of first-match rules is similar to the
algorithm for constructing a PDD from a sequence of all-
match rules. Figure 9 shows the PDD constructed from the
sequence ⟨r1, r2, r3, r4, r5, r6, r7⟩ in Figure 8.
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Figure 9: The PDD constructed from the sequence
of range rules in Figure 8

Source: XEngine: A Fast and Scalable XACML Policy Evaluation Engine 



RESEARCH QUESTION 
• Propositional encoding 

• PDP 



SAT & CNF 
§ Boolean function: 

§ Variables, operators and parentheses:  

§ SAT solvers 

§ CNF: 
§  Conjunction of clauses 
§  Disjunction of literals 

f (x1, x2,..., xn )

x1,∧,∨,¬, ()

(p1∨ p2 )∧(p3∨ p4 )∧(p5∨ p6 )



ALGORITHM 
• Constructing attribute domains 

• Policy flattening  

• SAT encoding  



CONSTRUCTING ATTRIBUTE DOMAINS (1) 

§ Attributes 
§  AttributeValue 
§  AttributeDesignator 
§  AttributeSelector 

<rule Effect=”Permit”> 
  ... 
  <AttributeValue DataType=”String”>admin</AttributeValue> 
  <AttributeDesignator AttributeId=”role” DataType=”String”/> 
  ... 
</rule> 
	



CONSTRUCTING ATTRIBUTE DOMAINS (2) 

 
 
 

 

admin ∈ {admin,manager, hr, user}

Drole ∈ {admin,manager, hr, user}



CONSTRUCTING ATTRIBUTE DOMAINS (3) 

 
 
 

Algorithm 1 EnumerateVariables

Input: A map m containing the DataTypes as keys
and (empty) arrays as values and a policy p

1: procedure EnumerateVars(p,m)
2: for all target elements do
3: update m with values found in the policy

target
4: end for
5: for all variable definitions do
6: update m with values found in the variable

definitions
7: end for
8: for all policy elements do
9: if element is a policy then

10: enumerateVars(element,m)
11: else if element is a rule then
12: update m with values found in the rule

targets
13: update m with values found in the rule

condition
14: end if
15: end for
16: end procedure

constraints in their targets we define the applicability

space of p as the triple < ASA, ASIN , ASNA > where

ASA represents the access requests to which p applies

i.e. the access requests that are allowed by the target

constraints of p. ASIN represents the access requests

for which the access requests are missing required

information, hence the applicability of p cannot be

determined. ASNA represents the access requests for

which p does not apply.

The overall goal of evaluating a xacml policy is
to come to an access decision (see section 3.1). The
decision space groups access requests which have the
same access decision together.

Definition 4.2. Decision space: Given a xacml
policy element p (either a <Policyset>, <Policy>

or <Rule> element) we define the decision space

of p as the tuple < DSP , DSD, DSIN , DSNA >

where each element of the tuple refers to the set

of access requests that evaluate to the same access

decision. The access decisions are: Permit, Deny,

Indeterminate and NotApplicable respectively. Note

that the Indeterminate decision space DSIN is a tripe

< DSIN(P ), DSIN(D), DSIN(NA) > which represent the

decisions Indeterminate Permit, Indeterminate Deny,

Indeterminate NotApplicable respectively.

The algorithm as shown in Algorithm 2 is based
on the work done by [13], they also provide the
mathematical proof that the decision space is mutually
exclusive which is very important as it makes sure the
pdp will only return a single access decision. Our
implementation di↵ers from the one created by [13]

Algorithm 2 FlattenPolicy

Input: A policy p

Output: Decision space
< DSP , DSD, DSIN(P ), DSIN(D), DSIN(NA), DSNA >

1: procedure flattenPolicy(p)
2: if p is a rule then
3: AS

P
A = AS

T
A \AS

C
A

4: AS

P
IN = AS

C
IN [AS

T
IN

5: if e↵ect of p is Permit then
6: DSP = AS

P
A

7: DSD = ;
8: DSIN(P ) = AS

P
IN

9: DSIN(D) = ;
10: else if e↵ect of p is Deny then
11: DSP = ;
12: DSD = AS

P
A

13: DSIN(P ) = ;
14: DSIN(D) = AS

P
IN

15: end if
16: DSIN(PD) = ;
17: DSIN(NA) =

(DSP [DSD [DSIN(P ) [DSIN(D) [DSIN(PD))
18: return

(DSP , DSD, DSIN(P ), DSIN(D), DSIN(PD), DSIN(NA))
19: else if p is a policy (set) then
20: policies = ;
21: for all elements e of p do
22: result = flattenPolicy(e)
23: add result to policies
24: end for
25: combiningAlg = combining algorithm of p
26: return applyCA(policies, combiningAlg)
27: end if
28: end procedure

in that we use only sat formulas i.e. only boolean
predicates, whilst they use smt formulas and are hence
not bound by using only boolean predicates. We only
implemented the encoding of a single policy containing
a set of rules, their implementation is able to parse a
complete policy including nested policy sets. Algorithm
2 works as follows: we feed the algorithm a policy p,
the first step is to find the first available applicability
constraints. As these applicability constraints work in a
top-down manner i.e. the applicability constraints get
more specific as you come closer to a specific rule. In
our case the first constraints we find are the ones for
the rule’s target, the applicability space of the target is
combined with the applicability space as induced by the
condition’s constraints. The applicability Indeterminate

space is created in the same way, using both the rule
target and condition.

The decision spaces are obtained from the applica-

bility spaces. The decision spaces are created starting
from the atomic unit of a xacml policy i.e. a rule and
grow in a bottom-up manner. The combined decision

4



ALGORITHM 
• Constructing attribute domains 

• Policy flattening  

• SAT encoding  



Policy Flattening (1) 
• Applicability space <ASA, ASIN, ASNA> 

• Decision space <DSP, DSD, DSIN, DSNA> 



Algorithm 1 EnumerateVariables

Input: A map m containing the DataTypes as keys
and (empty) arrays as values and a policy p

1: procedure EnumerateVars(p,m)
2: for all target elements do
3: update m with values found in the policy

target
4: end for
5: for all variable definitions do
6: update m with values found in the variable

definitions
7: end for
8: for all policy elements do
9: if element is a policy then

10: enumerateVars(element,m)
11: else if element is a rule then
12: update m with values found in the rule

targets
13: update m with values found in the rule

condition
14: end if
15: end for
16: end procedure

constraints in their targets we define the applicability

space of p as the triple < ASA, ASIN , ASNA > where

ASA represents the access requests to which p applies

i.e. the access requests that are allowed by the target

constraints of p. ASIN represents the access requests

for which the access requests are missing required

information, hence the applicability of p cannot be

determined. ASNA represents the access requests for

which p does not apply.

The overall goal of evaluating a xacml policy is
to come to an access decision (see section 3.1). The
decision space groups access requests which have the
same access decision together.

Definition 4.2. Decision space: Given a xacml
policy element p (either a <Policyset>, <Policy>

or <Rule> element) we define the decision space

of p as the tuple < DSP , DSD, DSIN , DSNA >

where each element of the tuple refers to the set

of access requests that evaluate to the same access

decision. The access decisions are: Permit, Deny,

Indeterminate and NotApplicable respectively. Note

that the Indeterminate decision space DSIN is a tripe

< DSIN(P ), DSIN(D), DSIN(NA) > which represent the

decisions Indeterminate Permit, Indeterminate Deny,

Indeterminate NotApplicable respectively.

The algorithm as shown in Algorithm 2 is based
on the work done by [13], they also provide the
mathematical proof that the decision space is mutually
exclusive which is very important as it makes sure the
pdp will only return a single access decision. Our
implementation di↵ers from the one created by [13]

Algorithm 2 FlattenPolicy

Input: A policy p

Output: Decision space
< DSP , DSD, DSIN(P ), DSIN(D), DSIN(NA), DSNA >

1: procedure flattenPolicy(p)
2: if p is a rule then
3: AS

P
A = AS

T
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A

4: AS
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C
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IN

5: if e↵ect of p is Permit then
6: DSP = AS
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A

7: DSD = ;
8: DSIN(P ) = AS

P
IN
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10: else if e↵ect of p is Deny then
11: DSP = ;
12: DSD = AS

P
A

13: DSIN(P ) = ;
14: DSIN(D) = AS

P
IN

15: end if
16: DSIN(PD) = ;
17: DSIN(NA) =

(DSP [DSD [DSIN(P ) [DSIN(D) [DSIN(PD))
18: return

(DSP , DSD, DSIN(P ), DSIN(D), DSIN(PD), DSIN(NA))
19: else if p is a policy (set) then
20: policies = ;
21: for all elements e of p do
22: result = flattenPolicy(e)
23: add result to policies
24: end for
25: combiningAlg = combining algorithm of p
26: return applyCA(policies, combiningAlg)
27: end if
28: end procedure

in that we use only sat formulas i.e. only boolean
predicates, whilst they use smt formulas and are hence
not bound by using only boolean predicates. We only
implemented the encoding of a single policy containing
a set of rules, their implementation is able to parse a
complete policy including nested policy sets. Algorithm
2 works as follows: we feed the algorithm a policy p,
the first step is to find the first available applicability
constraints. As these applicability constraints work in a
top-down manner i.e. the applicability constraints get
more specific as you come closer to a specific rule. In
our case the first constraints we find are the ones for
the rule’s target, the applicability space of the target is
combined with the applicability space as induced by the
condition’s constraints. The applicability Indeterminate

space is created in the same way, using both the rule
target and condition.

The decision spaces are obtained from the applica-

bility spaces. The decision spaces are created starting
from the atomic unit of a xacml policy i.e. a rule and
grow in a bottom-up manner. The combined decision

4



ALGORITHM 
• Constructing attribute domains 

• Policy flattening  

• SAT encoding  



SAT ENCODING 

DSP∪DSD∪DSIN (P )∪DSIN (D)∪DSIN (PD)∪DSNA



FRAMEWORK 

FIGURE 1. A graphical representation of the framework as created during this research. Step (1) shows the XACML policy
being parsed by the preprocessor creating the cnf formula. Step (2) is feeding the formula combined with the parsed request
(in step (3) and (4)) to the SMT solver which returns either sat or unsat. Depending on if the formula was satisfiable or not
the output is fed to the post processor which returns the final access decision (step (6)).
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Conclusion 
• Creating SAT formula 

• SAT solvers 

• No trees 

• Experimental validation 


