
System & Network Engineering MSc
Research Project II

Machine Detectable Network Behavioural

Commonalities for Exploits and Malware

Alexandros Stavroulakis
alexandros.stavroulakis@os3.nl

February 7, 2016

Abstract

In this project we study the detectability of patterns in the network
behaviour of automatically generated malware.
The computer security tool, Metasploit Framework, offers the feature of
automatically developing malicious software for penetration testing purposes.
In this paper we theorize that a quick and automated procedure, without
much user input, should lead to a certain level of predictability in the
behaviour of malware. Our first aim is to determine the validity of this
theory. Secondly, we try to discover evidence that suggests the existence of
patterns in the manner of operation of such software. Finally, we present our
findings of predictable behaviour accompanied by graphical traffic representation.
The methodology followed throughout the course of this research, the software
tools used and the results acquired during the process of completing this
project, are described in detail. Any ethical implications are documented
and presented accordingly.

Acknowledgements

At this point I would like to thank my supervisor, Mr. Adrianus Warmenhoven,
for his assistance throughout the course of this research.

Contents

1 Introduction 2
1.1 Problem Description . 3
1.2 Motivation . 3
1.3 Ethical Concerns . 4

2 Research Question 5
2.1 Scope . 5

3 Related work 7
3.1 Metasploit Framework Payloads 7

4 Approach and methodology 9
4.1 Testing Environment . 9
4.2 Malware Generation . 10
4.3 Capturing Traffic . 12

5 Results 13
5.1 Clean State . 13
5.2 reverse tcp . 15

5.2.1 Contained Environment 15
5.2.2 During Web Browsing 18

5.3 reverse http(s) . 18
5.3.1 Contained Environment 18
5.3.2 During Web Browsing 20

5.4 Evasion Techniques . 21
5.4.1 AV Software . 22
5.4.2 IDS/IPS . 22

6 Conclusions 23

7 Future Work 25

1

Chapter 1

Introduction

Malicious software, more commonly known as malware, has been a menace
since the decade of 1980[1]. Ever since then – and as technology evolves –
new ways of developing and using malware for more and more targets have
made their appearance. According to CNN, nearly a million new malware
threats are released every day[2].

In order to mitigate attacks by malicious software, Anti-Virus (AV) software
was developed. With the first products being released in 1987[3], AV software
has come a long way and currently possesses multiple ways of detection. The
different detection methods can be broken into the following categories:

• Signature Based Detection - AV software uses a database of known
malware signatures with which it compares the contents of certain files.
A signature can be a unique hash, or binary string, which can be used
to identify certain malware.

• Heuristic Based Detection - AV software searches a file for evidence
of malicious code. Usually works in combination with the Signature
Based technique.

• Sandbox Detection - During this process, AV software executes a
file in a contained and virtualized environment. It records its actions
and in the end reaches a consensus on whether it is malicious or not.

• Behavioural Based Detection - AV software looks into the behaviour
of a file once it has been executed, in order to determine if it is
malicious.

• Data Mining Based Detection - The most recent addition to malware
detection solutions[4, 5]. AV software attempts to find patterns in large
amounts of data, which can then be used to identify similar behaviour
in other collected data. This technique takes the Behavioural Based
Detection on a larger scale.

2

This report will relate more to the subject of Behavioural Based Detection
and Data Mining Based Detection, as we will be looking into network
behaviour of malware once it has successfully infected a system. The main
problem is that newly created malware can pass undetected by a Signature
Based Detection technique, as its signature will most probably not be included
in the known signatures database.

The rest of this chapter is dedicated to describing in detail the problem
at hand, providing the motivation behind this research and mentioning any
ethical implications that may arise from our study. The second chapter
will discuss the research question and scope of the project, while the third
chapter will present any previous work on this domain. The fourth chapter
discusses the approach and methodology that were used and the fifth chapter
demonstrates the results that have been produced by our research. The sixth
chapter summarizes our conclusions and the final chapter proposes ways to
improve the performed work.

1.1 Problem Description

The Metasploit Framework[6] (MSF) is an open source computer security
tool used in penetration testing and vulnerability assessment. It was created
in 2003 by H. D. Moore and is currently part of the Metasploit Project as
provided by Rapid7[7]. Part of MSF is an open source tool called Armitage[8],
designed by Raphael Mudge and released in 2010, which is used for cyber
attack management and Red Team collaboration, and serves as a Graphical
User Interface for the Framework. One of the most popular features of
Metasploit is the development and execution of malicious exploitation code
for penetration testing purposes. This gives users the ability to, essentially,
develop malware in a quick and automated way, without the requirement
of programming experience. This procedure will be further discussed in
Chapter 4.

This leads to the generation of new pieces of malicious code, which can
prove to be hard to detect by current AV software. However, as this
procedure is mostly automated, it is hypothesized that it could cause a
certain amount of predictability in the behaviour of such malware.

1.2 Motivation

The aim of this project is to research whether the aforementioned malware
generation procedure will produce malicious code, which will have predictable
network behaviour, when used by inexperienced users (”hackers”). The
reasoning behind targeting such users is the premise of them being more

3

reliant and dependent upon an automated procedure, rather than developing
something from scratch. Since a more experienced user would be able to
tweak and modify this procedure, pattern recognition would prove to be
more difficult.

If our research could lead to pattern discovery based on the network
behaviour of malware and result to their identification by characteristics
such as packet transfer ratio, packet size, sequence of ports, payload sizes
etc., an additional way of detection would be provided to the currently used
detection techniques of AV software.

Furthermore, we will focus on the use of Armitage, the GUI of Metasploit,
as its point-and-click manner of operation makes it easier to orientate between
commands during this procedure. Therefore making it a more ideal tool to
be used by lower level hacking enthusiasts.

1.3 Ethical Concerns

During the course of this research no physical machines or actual user data
will be targeted. The experiments will take place in a virtual environment
and the appropriate care will be taken during the stage of malware developing
and infection, so that the generated malware will not leave the safe space of
testing.

4

Chapter 2

Research Question

From the overall discussion of the significance of this research and to fully
explore our hypothesis, the following research question has been designed:

Is it possible to detect the presence of malicious software, generated by
Armitage, by identifying its network behaviour?

The results of this research will fit in one of two categories. Proof of
knowledge, that automatically generated malware can be detected solely
based on their behaviour on the network; which may help a future implementation
of a broad-spectrum detector for basic malware generated by hobbyists.
Alternatively, the result may be that Armitage, and as an extension Metasploit,
in their current form, are enough to create sophisticated malware that can
evade detection.

2.1 Scope

As previously explained, this research targets users without much experience
in the domains of malware developing or penetration testing. Users who
either want to try this procedure out of curiosity, or it is their hobby, or
they are taking their first steps in learning about this subject. Therefore,
the scope of this project regarding the malware generation procedure needs
to be strict.

We will be working under the premise that the targeted users will be
more inclined to follow methods of attack that are not too complicated and
have a high success rate. In other words, commonly used examples of such
attacks, which are easy to find on the Internet and thoroughly explained.
The most popularly used methods will be selected to be part of the research
methodology.

5

Moreover, methods such as Deep Packet Inspection will not be used. The
network behaviour of malware can be characterized as 'metadata', which has
no concerns whether the content is encrypted or not. Therefore, deeming
such methods not necessary.

6

Chapter 3

Related work

The majority of previous work on the subject of malware pattern matching
is based on signature detection and code analysis. However, no particular
research on malware generated by Armitage (and Metasploit) has been
discovered.

One example is the research by Ferdiansyah et al., a collaboration between
the Sam Houston State University and Firat University, which focuses on
string matching methods for identification of same family malware[9]. The
researchers attempted to find similarities between malware that are considered
to be byproducts of particular malware groups. Another example is the work
of Christodorescu et al., of the University of Wisconsin and the Carnegie
Mellon University[10]. Their paper presents a malware detection algorithm,
which incorporates instruction semantics to detect malicious program traits.

The most relevant research to this topic was by Liang et al., of the
Wuhan University and Remnin University[11]. The research was inspired
by advanced persistent threat (APT) attacks. The authors, using Decision
Tree and Naive Bayes machine learning techniques, created a novel model
aimed at detecting unknown Trojans equipped by APT attacks, based on
a software’s network behaviour. While the idea of Liang et al. certainly
resembles the one of this project, the actual targets are different. In addition,
our research does not intend to provide a tool against such threats, rather
than test a hypothesis, which will result to a Proof-of-Knowledge.

3.1 Metasploit Framework Payloads

Section 1.1 briefly described the Metasploit Framework and its GUI wrapper
Armitage. The Framework includes a large database of available exploits
and payloads for penetration testing purposes. The term exploit refers to a
piece of software, which takes advantage of a system’s vulnerability. While

7

the term payload, in Metasploit, refers to an exploit module representing
the malicious code, which we want to be executed on the victim’s system.

In the context of this research, the automatically generated malicious
software refers to the MSF payloads. The payloads in MSF can be split into
two categories[12, 13]:

• Staged - Staged payloads make use of Stages and Stagers. Upon
infection, the Stagers create a connection to the attacker and begin to
pull the payload components that make up the Stages. That way, the
first part of the attack is the setup of a communications mechanism
and the second can include a higher level malware, which can infect
the victim and perform its actions.

• Stageless - These payloads can be characterized as standalone executables,
combining the above procedure in a single file. They require no additional
files to run. They can create a connection back to the attacker, spawn
a new process, or create a new user etc.

During the experimentation phase of this research, both types of payloads
were tested.

8

Chapter 4

Approach and methodology

In order to examine our hypothesis the following approach was taken. A
secure testing environment was designed where the experiments could take
place on a virtual machine, which was then reverted back to a clean state
after each trial. Several ways of generating malware were attempted with the
use of Armitage, and a number of different tests was ran. During these tests,
the network traffic was captured and then analyzed in order to determine
the existence of subtle or not-so-subtle fingerprints.

4.1 Testing Environment

More specifically the testing environment was designed as explained below:

• Host Machine - An Ubuntu 15.10 host machine was used as provided
by the MSc programme’s facilities.

• Virtual Environment - Oracle VirtualBox 5.0.12 r104815 was chosen
as the, at the time, latest available virtualization environment[14].

• Victim - A Windows 7 Service Pack 1 virtual machine was set up
as the victim and testbed of the generated malware. This particular
operating system was chosen as a victim, as it is an older version of
Windows, insecure when not updated, and still supported by Microsoft
and used by many around the world[15].

• Attacker - A Kali Linux 2.0 virtual machine was set up as the attacker.
It was chosen due to its native support of the Metasploit Framework.
All malware was generated on this machine. The instance was updated
to its latest version after the installation and remained the same for
the entire course of this research[16].

• Armitage - As previously mentioned, Armitage was used to launch
the attacks. The latest available version was used, 1.4.11 released in
August 2015[8].

9

Once the virtual machines were set up, the networking between them
and the host machine was set up as a Host-Only network. No updates or
upgrades were made to the machines during the course of the tests.

4.2 Malware Generation

Section 2.1 described the scope of this research. Since the target of this
project is inexperienced users, a small part of this research was dedicated to
identify the most probable ways of attack, which can be launched by them.
The premise was that a lower level attacker would try to use a method
of attack, which is easy to follow and sure to work. The developers of
Metasploit claim that the most popular choices have been the reverse tcp

and reverse http(s) payloads[17], which use the respective protocols in
their titles as transport types to communicate between the victim and the
attacker. The word 'reverse' in their title implies the fact that the attacker
is waiting for the victim to connect back to them in order for a connection
to be established.

The above payload types make use of the Meterpreter payload[13, 18].
Meterpreter is a payload, which uses in-line DLL injection in order to create
a connection between the victim and the attacker; and provide the attacker
with an interface, which can be used to dynamically interact with the victim.

The process of generating a malicious executable file is fairly simple. The
first step would be for the attacker to have network access to the victim.
With the second step being to scan the machine for vulnerabilities and
discover possible ways of exploiting it. In our case, as the victim was chosen
to be an older implementation of Windows and we already knew the main
types of attack to be used, the second step was initially not necessary.

As shown in image 4.1, it is simply a matter of selecting a payload from a
list and launching it. Once the target has been discovered and selected, the
following action to be taken would be to set up the payload that is going to
be used. The most important fields to take notice of would be the LHOST

and LPORT, which specify the attacker’s IP address and the port, which will
be used in order to establish a connection with the victim. At this point it
should be stressed that during all of the tests the attacker will always use
address 192.168.56.102 and port 4444.

The next thing to notice would be the output field, which specifies what
the result of this dialogue will be. Initially, the attacker would choose 'exe'
in order to produce the file, which will infect the victim and click 'Launch'.
Then repeat the procedure as described above and in the final step, instead

10

of selecting 'exe', select 'multi/handler'. This results in the creation of
a handler, which is listening at the aforementioned IP address and port,
waiting for the victim to connect. This procedure basically describes the
creation of a 'backdoor' type of malware and is one of the most commonly
used examples of Metasploit attacks.

In regard to the infection part of this process, the attacker would need to
think of a way to infect the victim. During the tests, an Apache2 instance
was used. The victim downloaded and ran the executable via the browser.
Once the file has been executed, the connection between the attacker and
victim is established.

Figure 4.1: How to generate a malicious executable file with the
reverse tcp payload in Armitage

This procedure was used in order to generate malware for each test. The
creation method remains the same, even for the different payloads that
were used during this project, such as, among others, reverse http and
reverse https.

11

4.3 Capturing Traffic

In each test, while the attacks were taking place the traffic was captured.
This process was split into two parts; first, during the infection and while
commands were issued to the victim from the attacker’s side. And second,
while the connection between the two virtual machines was idle, in order to
determine how the malware behaves in the network while it is still running
on the victim. To capture and analyze the traffic, WireShark 2.0 was used.

Once the traffic was captured, we moved on to the analysis part of the
experiments. The traffic was filtered according to the transport type of each
payload and visualized. The goal of this part was to detect any possible
repetition in the transmission of packets, packet lengths, sequence of ports
etc. In general, an attempt to find any evidence of predictability in the
network behaviour.

To make sure that a well rounded experiment was performed, three types
of tests were ran for each type of malware that was generated. The inaugural
test was a simple capture of traffic from the virtual machines, while the
victim was in a clean state and no attack was taking place. This was done
for comparison reasons, in order to see the difference between clean and
'infected' traffic. Next, was the above described procedure, of capturing the
traffic during the attack and capturing the traffic during an idle connection
between the attacker and the victim. Lastly, Internet connection was allowed
on the victim side, in order to simulate normal browsing and an attack was
launched at it through the local network. The traffic was captured on both
interfaces so that a better comprehension could be achieved of how such an
attack would look like under normal circumstances of operation.

12

Chapter 5

Results

The results of the antecedently described experiments will be presented
in this chapter. The chapter is divided in the sections representing the most
popular payloads, as explained previously, reverse tcp and reverse http(s).
The reverse http and reverse https payloads are grouped together due
to their similar behaviour, as it was detected by the experiments and will
be discussed further below. Section 5.1 will provide a small analysis of the
clean traffic captures. At the end of the chapter, the possible implications
of evasion techniques will be pointed out.

However first, it should be noted that both Staged and Stageless types
of payloads were tested. As their post-infection network behaviour was
identical, no separate sections have been dedicated to each one, rather they
are described as one.

5.1 Clean State

In order to know what the normal traffic representation on a network
between two machines looks like, and use this as base of comparison with
the later tests, the normal network behaviour of the virtual machines was
observed. Two examples follow with the traffic representation between the
idle virtual machines, and simple Internet browsing.

Image 5.1 shows the first test of traffic capture between the two idle
virtual machines. The capture lasted one hour. The traffic consists of
network announcements, DHCP and ARP requests and acknowledgments,
etc. Traffic that has mostly to do with the operation of the Windows 7
machine.

13

Figure 5.1: Idle network traffic capture. Representation of solicitations on
the LAN. No TCP traffic.

The capture represented in image 5.2 lasted 15 minutes, during which a
few webpages were visited and a YouTube video was played. In a simulation
of regular network usage of a machine, we can observe that vast majority of
the traffic consists of TCP traffic (WireShark includes HTTP traffic in its
TCP filtering).

14

Figure 5.2: Internet browsing. TCP traffic most prominent.

5.2 reverse tcp

As it was briefly mentioned before, this payload is used to generate a
'backdoor', which will then initiate a TCP connection between the victim
and the attacker. A listener is set up at the side of the attacker and awaits
for the victim to connect to it, using the IP address and port number that
were provided to it upon creation time.

After several trials, it was made clear that there exists a form of repetition
in the behaviour of malware generated with the automated use of this
payload. Further explanation will be given in the following subsections.

5.2.1 Contained Environment

As shown in image 5.3, there occurs a transmission of packets in a fixed
period of time. More specifically, five TCP packets are exchanged between
attacker (port 4444) and victim (port 49163) every sixty seconds. In all
tests that were ran, it was observed that each transmission round starts
and ends with a packet from the attacker. In addition the same packet
types ('PSH, ACK' and 'ACK') and packet lengths are repeated in the same
order, in every round. This results to a transmission of 652 Bytes every
sixty seconds.

15

Figure 5.3: Transmission of 5 packets every 60 seconds.

Figure 5.4: Graphical representation of the traffic. Malware behaviour
shown with green colour.

In images 5.4 and 5.5 we can see the graphical representation of the traffic.
The capture lasted circa 70 minutes. The Y axis shows the amount of packets
and the X axis shows the time in seconds. In image 5.4 the malicious traffic
is shown with a green colour, while the following image focuses solely on
the malicious traffic. It is important to notice that in every test, when the
session between the attacker and the victim ends, an increase in the amount
of packets was witnessed; ranging in all tests between ten to twenty packets.
This was due to multiple 'reset' (RST) packets being sent, sometimes leading
to a spurious retransmission, ending, of course, with a packet containing
'finish'(FIN) flag. Once the session ended, the malware moved to its exit

16

function and stopped its operation, leading to, as expected, no network
presence whatsoever.

Figure 5.5: Focus on the part of the traffic generated by the malware.

Image 5.6 depicts the network traffic representation of a stageless payload.
As can be seen, it is identical to the one above. The same applied between
the staged and stageless types of payloads in Section 5.3.

Figure 5.6: Focus on the part of the traffic generated by the malware.
Stageless payload

17

5.2.2 During Web Browsing

While the behaviour of the generated malware remained the same during
this test, the distinction has been made in order to emphasize on its detectability.
Image 5.7 depicts the malicious traffic, shown in red colour, laid over the
entire TCP traffic that was captured, shown in green colour. It is evident
that, without knowing the source of the traffic, detection would be rendered
very difficult, under regular network usage circumstances.

Figure 5.7: Graphical representation of the traffic. Malware behaviour
shown with red colour.

5.3 reverse http(s)

Similar to the section above, these two payloads are used for the same
purpose, with the only difference being that they tunnel their communication
over HTTP and HTTPS respectively. And just like with the previous payload,
after several tests, it was observed that here too exists a form of repetition
in the network behaviour of malware generated with the automated use of
this payload. Further explanation will be given in the following subsections.

5.3.1 Contained Environment

Image 5.8 illustrates the exchange of packets between the attacker (port
4444) and the victim (port 49164). Once again five packets are exchanged,

18

however for these payloads, the transmission starts and ends with victim. In
all tests it was show that the victim sends a TCP Segment of a reassembled

PDU packet and an HTTP POST message. In response, the attacker would send
an ACK packet and an HTTP OK message. The round would end with the an
acknowledgement sent by the victim.

Moreover, image 5.8 shows a transmission of 710 Bytes per round. Throughout
the experiments, this value varied due to the fluctuation of the TCP Segment

of a reassembled PDU packet’s length. Three separate lengths were observed
during the course of the experiments: 293, 323 and 364. This lead to a total
transmission o 639, 669 and 710 Bytes per round respectively.

Figure 5.8: Transmission of 5 packets per 4 seconds.

Figure 5.9: Graphical representation of the traffic. Malware behaviour
shown with green colour.

19

The captured traffic is illustrated in images 5.9 and 5.10. The capture
lasted circa 50 minutes. Again, in the Y axis the number of packets is
shown, and in the X axis the time in seconds. The above graph depicts
the malicious traffic in green colour over the entirety of captured packets
shown in black. Image 5.10 concentrates on the malicious traffic. What is
obvious from the graph below is that the transmission of packets gradually
becomes sparser. Each round of packet exchange takes place roughly every
four seconds in the beginning and slowly increases to ten seconds. The limit
of ten seconds is never exceeded.

As with the previous payload, when the connection between the attacker
and the victim was terminated, an increase of packets was observed; ranging
between nine and ten packets, with one outlier of ninety. The cause of the
increase in packets was the same as with the reverse tcp payload. It is
theorized that this behaviour has to do with the way Armitage handles and
ends its connections between the payload control and the malicious code
at the victim’s side. However, due to time constraints we were not able to
examine this theory.

Figure 5.10: Focus on the part of the traffic generated by the malware.

5.3.2 During Web Browsing

As subsection 5.2.2 stated, without knowing the source of the malicious
traffic, detection seems to be difficult. While the same applies here, the fact
that the transmission of packets takes place in shorter periods of time could
prove to be helpful enough to make a difference in detection. Image 5.11
presents the malicious traffic, shown in red colour, laid over the TCP traffic
that was captured, shown in green colour.

20

Figure 5.11: Graphical representation of the traffic. Malware behaviour
shown with red colour.

At this point, we should underline the connection between the victim and
the attacker. We witnessed the selection of the same port (49163 for the
reverse tcp payload, port 49164 for the reverse http payloads, and port
49165 for the reverse https payload) from the malicious code running on
the victim, in all tests in the contained environment. However, once the
victim was allowed Internet access, even though the attack still took place
over the LAN, the port selection was randomized. At the point in time of
writing this paper, the reason for selecting the same ports in every test for
each payload has not been identified. The source code of the Metasploit
Framework (MSF) that is used for the payload generation procedure was
examined; and the process is randomized. This was observed in the Web
Browsing tests where, as mentioned above, different ports were randomly
selected in each test.

5.4 Evasion Techniques

It could be argued that the malware generation procedure can include
more steps, in order to make the malicious output less detectable. That,
of course, would be in regard to what the attacker is trying to avoid, AV
software or Intrusion Detection/Prevention Systems.

21

5.4.1 AV Software

In order to avoid AV software, an attacker could attempt to encode the
payload with one of the provided encoders of Metasploit. This means that
the code of the executable is altered in such a way, so it looks different to
AV software, while still operating in the same manner. Taking this a step
further and using a polymorphic encoder multiple times, would result to not
only the executable, but the payload changing at each run of the encoder.

However, while this technique alters the code of the malicious output, it
does not change its modus operandi. Consequently, the generated malware is
functionally the same as it was before the encoding took place. Which means
that, while it can trick AV software into believing it is benign, its network
behaviour would not change and therefore still be as predictable as before.
This premise was proven by the results acquired from the experimentation
phase of this project. Each used payload was tested with multiple encoding
rounds and the observed behaviour remained unchanged.

5.4.2 IDS/IPS

Intrusion Detection/Prevention Systems can be configured to pick up on
Metasploit traffic[19]. Of course, MSF can also be configured to avoid such
tools. One example would be to use a transport type of traffic over a protocol
(e.g. HTTPS), which would not seem suspicious, or out of place in a user’s
network data. As it was shown in the above sections, common protocol types
were used as part of the experiments. Another example would be to fragment
the packets in smaller sizes, while also increasing the time delay between
them. That way, the manner of behaviour of the malware will change and
not fit the patterns discussed above. However, due to time constraints and
to the fact that the last technique was deemed too specialized and above
the level of inexperienced users, it was left out of scope. Though, we believe
that it would be a good starting point for a potential continuation of this
research.

22

Chapter 6

Conclusions

Throughout the course of this research, we learned how malicious code is
generated via Armitage, with the use of specific payloads. We focused on
their manner of behaviour on the network and attempted to identify patterns
in their operation. A research question was formed in order to examine the
hypothesis of this project and a number of experiments was designed to test
it.

A certain amount of repetition in their respected behaviour was observed.
In short, we came to the conclusion that there is evidence to suggest the
existence of patterns in the network behaviour of certain automatically
generated malware. We delved into the specifics in the previous chapter
and described the exact findings of identical behaviour in each of the tests.
Furthermore, we presented graphical representation of the network traffic
that was captured, which illustrated the network behavioural patterns observed
in the generated malware.

As the images above showed, similarities between each type of malware
do exist. However, not all malware behaves the same way, which means
that there is no single detection solution. It appears that the only way to
determine the existence of such malware based solely on network behaviour
would be for the session to be idle for a certain period of time. While the
attacker is interacting with the victim, there is more traffic in the network,
which makes it more difficult to identify patterns.

Moreover, identifying such an attack under normal circumstances of browsing
was determined to be difficult. If we cannot know where the attack is coming
from, it would prove particularly challenging to identify its pattern in the
network. At least with the naked eye. If this procedure can be automated
and monitored, then we could compare suspicious traffic with pre-sampled
traffic and check for patterns that we know have a high chance of being

23

malicious. One example would be to keep track of the data flows and perform
pattern matching.

24

Chapter 7

Future Work

In conclusion, we believe our research could very well be continued, as our
limited amount of time did not allow us to research all the aspects that we
initially hoped to examine at the conception of this project. The Metasploit
Framework has a large list of exploits and payloads at the users’ disposal,
targeted towards different platforms and architectures, which have yet to
be analyzed. Thus, a future step would be to actually analyze more of the
available ways of attack and create a database of the obtained results.

In addition we believe that an important step would be to automate the
pattern detection procedure, rather than manually searching for suspicious
behaviour. One could apply statistical methods on the traffic data, in order
to aid in the discovery of possible behaviour patterns.

Metasploit is a tool that is constantly evolving and updating. For that
reason we believe that this is a rather open research topic since more methods
of attack can be designed and added. Moreover, the automated generation
procedure can change and improve. Consequently, these changes should
be monitored, in order to maintain an up to date idea of the generation
procedure and the behavioural commonalities it leads to.

It would also be important to understand whether penetration testing
software can be detected by artifacts of its own infrastructure. If this could
prove to be the case, then AV software and/or IDS vendors could possibly
skew the success rate of their products in their favour by targeting the
testing frameworks. This is analogous to the 'optimizations for testing'
done by various companies in the automotive sector[20]. Therefore, this
would warrant the continuation of such research, by following a procedure
such as: testing vendors with this particular type of malware, modifying the
malware, and lastly testing the vendors once again. Then determine which
vendors show a sudden drop in their malware detection results.

25

References

[1] ”History of Viruses”, NIST, http://csrc.nist.gov/publications/

nistir/threats/subsubsection3 3 1 1.html

[2] ”Nearly 1 million new malware threats released every day”, CNN,
Article http://money.cnn.com/2015/04/14/technology/security/

cyber-attack-hacks-security/

[3] ”Inventors and Inventions, Volume 4”, Marshall Cavendish

[4] ”Data Mining Methods for Malware Detection”, Muazzam Ahmed
Siddiqui , University of Florida http://etd.fcla.edu/CF/CFE0002303/

Siddiqui Muazzam A 200808 PhD.pdf

[5] ”Data Mining Methods for Detection of New Malicious
Executables”, Shultz et al., Columbia University, State University
of New York http://ids.cs.columbia.edu/sites/default/files/

binaryeval-ieeesp01.pdf

[6] ”Metasploit, Rapid 7”, Website, http://www.metasploit.com/

[7] ”Rapid7”, Website, http://www.rapid7.com/

[8] ”Armitage, Cyber Attack Management for Metasploit”, Website,
http://www.fastandeasyhacking.com/

[9] ”Comparison of Pattern Matching Techniques on Identification of
Same Family Malware”, Ferdiansyah Mastjik et al., Sam Houston State
University, Firat University www.ijiss.org/ijiss/index.php/ijiss/

article/download/141/pdf 31

[10] ”Semantics-Aware Malware Detection”, Mihai Christodorescu et al.,
University of Wisconsin, Carnegie Mellon University http://www.eecs

.berkeley.edu/~sseshia/pubdir/oakland05.pdf

[11] ”An Unknown Trojan Detection Method Based on Software Network
Behavior”, Liang et al., Wuhan University, Renmin University, 2013
https://www.researchgate.net/publication/271917158 An unknown

Trojan detection method based on software network behavior

26

http://csrc.nist.gov/publications/nistir/threats/subsubsection3_3_1_1.html
http://csrc.nist.gov/publications/nistir/threats/subsubsection3_3_1_1.html
http://money.cnn.com/2015/04/14/technology/security/cyber-attack-hacks-security/
http://money.cnn.com/2015/04/14/technology/security/cyber-attack-hacks-security/
http://etd.fcla.edu/CF/CFE0002303/Siddiqui_Muazzam_A_200808_PhD.pdf
http://etd.fcla.edu/CF/CFE0002303/Siddiqui_Muazzam_A_200808_PhD.pdf
http://ids.cs.columbia.edu/sites/default/files/binaryeval-ieeesp01.pdf
http://ids.cs.columbia.edu/sites/default/files/binaryeval-ieeesp01.pdf
http://www.metasploit.com/
http://www.rapid7.com/
http://www.fastandeasyhacking.com/
www.ijiss.org/ijiss/index.php/ijiss/article/download/141/pdf_31
www.ijiss.org/ijiss/index.php/ijiss/article/download/141/pdf_31
http://www.eecs.berkeley.edu/~sseshia/pubdir/oakland05.pdf
http://www.eecs.berkeley.edu/~sseshia/pubdir/oakland05.pdf
https://www.researchgate.net/publication/271917158_An_unknown_Trojan_detection_method_based_on_software_network_behavior
https://www.researchgate.net/publication/271917158_An_unknown_Trojan_detection_method_based_on_software_network_behavior

[12] ”Metasploit Unleashed”, Offensive Security, Website https://www

.offensive-security.com/metasploit-unleashed/

[13] ”How Payloads Work”, Rapid7 Github Page https://github.com/

rapid7/metasploit-framework/wiki/How-payloads-work

[14] ”Oracle VirtualBox”, Website https://www.virtualbox.org/

[15] ”Windows 7 and Windows XP show no signs of dying”, Article,
PCWorld, http://www.pcworld.com/article/2878774/windows-7-and

-windows-xp-show-no-signs-of-dying.html

[16] ”Kali Linux”, Website https://www.kali.org/

[17] ”Payload Types”, Rapid7 Github page https://github.com/rapid7/
metasploit-framework/wiki/Meterpreter-Transport-Control

[12] ”About the Metasploit Meterpreter”, Offensive Security, Website
https://www.offensive-security.com/metasploit-unleashed/

about-meterpreter/

[18] ”Snort IDS Ability to Detect Nmap and Metasploit Framework Evasion
Techniques”, M. Papadaki et al., Plymouth University, UK, 2012 https://

www.cscan.org/download/?id=918

[19] ”Volkswagen: The scandal explained”, BBC, Article http://www.bbc

.com/news/business-34324772

27

https://www.offensive-security.com/metasploit-unleashed/
https://www.offensive-security.com/metasploit-unleashed/
https://github.com/rapid7/metasploit-framework/wiki/How-payloads-work
https://github.com/rapid7/metasploit-framework/wiki/How-payloads-work
https://www.virtualbox.org/
http://www.pcworld.com/article/2878774/windows-7-and-windows-xp-show-no-signs-of-dying.html
http://www.pcworld.com/article/2878774/windows-7-and-windows-xp-show-no-signs-of-dying.html
https://www.kali.org/
https://github.com/rapid7/metasploit-framework/wiki/Meterpreter-Transport-Control
https://github.com/rapid7/metasploit-framework/wiki/Meterpreter-Transport-Control
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
https://www.cscan.org/download/?id=918
https://www.cscan.org/download/?id=918
http://www.bbc.com/news/business-34324772
http://www.bbc.com/news/business-34324772

	Introduction
	Problem Description
	Motivation
	Ethical Concerns

	Research Question
	Scope

	Related work
	Metasploit Framework Payloads

	Approach and methodology
	Testing Environment
	Malware Generation
	Capturing Traffic

	Results
	Clean State
	reverse_tcp
	Contained Environment
	During Web Browsing

	reverse_http(s)
	Contained Environment
	During Web Browsing

	Evasion Techniques
	AV Software
	IDS/IPS

	Conclusions
	Future Work

