
RP2 Project Thesis

StealthWare - Social Engineering Malware
Joey Dreijer 1

Abstract
This research focuses on testing different social engineering malware frameworks on their practical use and to find
detection methods. By analyzing network traffic and behaviour of existing tools we were able to create signatures
for Intrusion Detection System to detect the use of social engineering malware on a network. Furthermore,
different theoretical aspects of network monitoring were discussed to provide insight in signature-less detection
of advanced social engineering malware. Finally, an advanced proof-of-concept malware client was written
to bypass basic network policies and evade basic detection rules. This tool can be used for testing network
restrictions and advanced detection rules in real-life.

Keywords
Social Engineering — Malware — Detection — Security

1Student System and Network Engineering, University of Amsterdam, the Netherlands

Contents

1 Introduction 1
1.1 Research question . 1
1.2 Scope . 1

2 Break-down Social Engineering malware attack 2
2.1 Beaconing . 2

3 Research 3
3.1 Common network policies 3
3.2 Common network defences 4
3.3 Simulating network environments 4
3.4 Malware features and network effectiveness . . . 5
3.5 Analysis: Cobalt Strike 6

Beaconing traffic • Intrusion Detection

3.6 Analysis: ThrowBack . 7
Beaconing traffic • Intrusion Detection

3.7 Analysis: Improving malware 8
3.8 Advanced detection methods 9

Beacon detection • Domain anomalies • Traffic anomalies

4 Conclusion 12

References 13

5 Appendix 14

1. Introduction
Pentesters, security professionals and grey/black-hats of-
ten use software beacons (ie. command and control mal-
ware) for social engineering assignments. Security profes-
sionals use these beacons to identify possible security vul-
nerabilities from inside the network. These moles are of-
ten deployed via methods such as social engineering or
spearphising; sending e-mails with malicious attachments
or handing out specialized USB-sticks. The development of

specialized malware for social engineering assignments is
not done on a large scale and the current frameworks offer
limited functionality (for the researched use-case) and/or
ask for a substantial amount of licensing costs. During my
research I investigated the effectiveness of current social
engineering malware and developed my own proof of con-
cept client (based on an existing framework). This research
focuses on the usability within company environments and
the detectability when using commonly found security soft-
ware/hardware such as firewalls, network authentication,
intrusion detection systems and virus-scanners.

1.1 Research question
Is it possible to stealthy use social-engineering malware
for security assessments?

• What existing frameworks already exists and what
functionality do they offer?

• What common security policies are often found within
company networks?

• How can these common security policies be bypassed?
• How effective do the already existing frameworks work

in realistic company environments?
• Can these frameworks be further extended and/or im-

proved to minimalize detection chances for advanced
security audits?

1.2 Scope
This research focussed on investigating the usefulness of al-
ready existing social engineering malware frameworks and
possibilities to find possible detection methods. Further-
more, attempts were made to further improve the existing
frameworks to demonstrate the use of specialized social
engineering malware that can be deployed in company net-
works. This report also contains a proof-of-concept design

StealthWare - Social Engineering Malware — 2/14

involving new evasive techniques can best be used to make
these frameworks as stealthy as possible on a network/-
transport level. Three existing frameworks that were tested
during this research:

• Cobalt Strike by Strategic Cyber LLC - www.advanced-
pentest.com;

• MetaSploit (Interpreter) by Offensive Security - www.off-
ensive-security.com;

• ThrowBack by Brady Bloxham (SilentBreak)- github.com/-
silentbreaksec/Throwback.

Cobalt Strike and Throwback make use of their own unique
beaconing mechanisms. Besides that, both frameworks can
use Metasploit to set up an interactive (Metasploit) meter-
preter session to interact with the infected client. More
about specific functions of these frameworks will be dis-
cussed in section 3.4. There are different methods how
malware is injected on a client during social engineering
assignments. Some common scenarios involve sending a
phishing e-mail with malicious attachment or giving away
promotional USB sticks that automatically execute a ma-
licious file. This research will focus on the malware itself
and only at a minimal level about exploitation (ie. how the
malware is executed by a client). The hosts that are being
infected are all Windows-based.

2. Break-down Social Engineering
malware attack

There are two publicly available social engineering malware
Frameworks; Cobalt Strike and ThrowBack. Cobalt Strike
[1] is a commercial penetration testing tool to replicate ad-
vanced threats. Cobalt Strike offers advanced/additional
functionality on top of Metasploit. Cobalt Strike offers an
easy to use interface to interact with Metasploit, deploy cus-
tom payloads and act as a command and control server for
beacons. A trial version (valid for 21 days) was used during
this research which includes identical functions as that of
the licensed version. For this research, only the beaconing /
command and control functionality was tested. ThrowBack
is a new Open Source framework to provide beaconing func-
tionality with a command and control server. ThrowBack
was first presented during the DefCon Conference in 2014
[2] and contains many default functions that are also imple-
mented in the Cobalt Strike beacons; executing commands,
interactive shell via a Metasploit, changing the communi-
cation time-outs. Figure two displays a basic example of a
Cobalt Strike beacon deployment scenario.

1. The attacker crafts a social engineering email via the
Cobalt Strike client. The email contains malware that
should provide control over the infected client

2. Once the client is infected, a reverse connection is
opened with the Metasploit server.

3. The attacker can gain access to the client via the Metas-
ploit meterpreter. The Cobalt Strike application inter-

Figure 1. Example of Cobalt Strike infection and control.
Note: The number displayed in the image do not
necessarily imply the order of activity or execution.

acts with the Metasploit server to get an interactive
shell on the infected client.

4. When configured, the client can also communicate
(without a connection to Metasploit) with the Cobalt
Strike via beacons. These beacons are periodic re-
quests that do not have a continues active session
opened. Cobalt Strike can ’queue’ commands that
are executed by the client the next time a beacon is
sent/received.

The goal of social engineering malware is to gain control
over a specific target and to maintain control over an ex-
tended amount of time. Social Engineering frameworks
make use of these periodic beacons (instead of a continu-
ous open connection) to be as stealthy as possible. However,
even these beacons can be detected over time. Sections
3.5 and 3.6 will display how Cobalt Strike and ThrowBack
beacons can be detected via non-complex detection rules.

2.1 Beaconing
The term ”Beacons” has been mentioned multiple times in
this report already. But what exactly is beacon traffic? Bea-
cons are periodic signals an infected client sends to a com-
mand and control server. The command and control server
will receive this signal and report that a new infected client
is available. These beacons not only produce a method
of indicating client uptime and activity, but also provide
a mechanism to execute new commands on the infected
client.

When an attacker infects a client, the client unknowingly
runs a process that sends periodic signals to a command
and control server. Cobalt Strike offers the ability to send

StealthWare - Social Engineering Malware — 3/14

these beacons via regular HTTP(S) requests, DNS requests
and SMB traffic. At the date this report was written, Throw-
back only offers beaconing over Hypertext transport proto-
col secure (HTTPS). Since ThrowBack is an open framework,
additional transport methods can be implemented by the
community.

An infected client sends a new beacon periodically (the ex-
act time is configured by the malware operator) to verify
if a new task is available. The operator can add new tasks
to a command queue hosted on the command and control
server. If no task is available in the queue, the infected client
will repeat the beaconing process and send another beacon
after a static time-out. If the attacker added a new com-
mand to the queue, the command and control server replies
to a beacon with a new task hidden inside the response traf-
fic. Replying with a new task is done via the same transport
protocol as which the beacon used for transmission. This
beaconing process is displayed in figure 4. The tasks that

Figure 2. Receiving commands via beacons

can be queued by the operator varies. There are several de-
fault functions available by Cobalt Strike and Throwback, a
few of these are (not limited to):

• Download a file from the internet;
• Send a list of running processes;
• Send a summary of the user’s network activity;
• Send a dump of the hashed passwords;
• Open an interactive session with the Metasploit inter-

preter;
• Execute a system command.

As explained in the introduction, beaconing should offer the
capability to secretly send and receive periodic commands
to/from the command and control server. To fully interact
with an infected client, the frameworks offer the capability
to open an interactive session via the Metasploit interpreter.
Once the client initiates a beacon and asks the command

and control server for a queued task, the server will respond
to open an active connection to the Metasploit server. How-
ever, this is very intrusive and can easily be detected with
existing network monitoring tools. Hence the reason bea-
cons are the primary communication method instead of a
permant open connection with the command and control
channel.

3. Research
3.1 Common network policies
For beaconing malware to succesfully establish a connec-
tion with a command and control server, different network
policies and limitations have to be taken into account. Ac-
cessing the internet (ie. visiting your daily news-websites
and sending your e-mails) involves many different proto-
cols/transport methods. A company environment can de-
cide to limit specific websites, ports and/or applications for
their employees for whatever reason seems fit. There are a
handful of generic network configurations you may run into
during a social engineering assignment. These can include:

• No limitations: No proxys or captive portals are used;

• An unauthorized web-proxy: Websites are accessed
via a configured proxy server. Authentication is not
required

• An authorized web-proxy: Websites are accessed via a
proxy server. Authentication is required. Widely used
authentication mechanisms are Basic and NTLM. Di-
gest, Negotiate and OAuth can also be used;

• A transparant proxy: An inline proxy that requires no
client configuration. The client is usually unaware of
a proxy located on the network.

• A captive portal: A service that redirects all web-requests
to a landing (web) page where the user/employee has
to log in.

Apart from the limitations mentioned above (which are pri-
marily aimed for Hypertext transport protocol (HTTP) traf-
fic), other protocol traffic can be blocked by different firewall
policies. Think of a scenario as:

• Filtered internet: The policy includes a ”reject all,
except..” policy on their network. Employees are
only able to communicate via specific ports/proto-
cols that are deemed required by the organisation.
Example: Drop everything except for port 80/443 for
web-traffic.

Deploying Social Engineering malware often involves defin-
ing your outbound connection beforehand: What protocol/-
transport method should the malware use? If your assign-
ment involves a large enterprise, different physical or organ-
isational departments may have different internet policies.
The IT department may be restricted in their activities if a

StealthWare - Social Engineering Malware — 4/14

proxy is explicitly required and/or specific ports are blocked.
To maximize the success rate of social engineering malware,
most (if not any) type of company environments should be
taken into account when executing your assignment. The
framework being chosen to craft your malware should sup-
port different transport mechanisms.

3.2 Common network defences
Apart from the specified policies, a company could also de-
ploy defensive mechanisms to prevent protocol abuse, de-
tect anomalies and perform deep-packet-inspection. Some
products are able to decrypt SSL/encrypted sessions and
perform analysis on the plain-text content of your connec-
tion. Companies may also deploy a Intrusion Detection
System (IDS)/Intrusion Prevention System (IPS) to detect
and/or prevent traffic behaviour and content on the net-
work. Think of products as:

• Blue Coat: Stripping SSL Sessions for outbound web
traffic;

• Snort/SourceFire: IDS/IPS to detect malicious traffic
based on network signatures;

• Bro: Analysing protocols to detect possible mis-use;

• Lancope: Analysing NetFlow for traffic (non-content)
anomalies.

The malware of your choice should also try to mask bea-
con traffic to prevent being blocked from the network and
risk possible detection. The following sections will further
discuss the popular frameworks and in what way they take
company internet policies and detective/preventive mea-
sures into account. The proof of concept discussed in sec-
tion 3.7 will demonstrate how social engineering malware
can be further improved compared to the already existing
frameworks.

3.3 Simulating network environments
Field-testing was performed together with setting up a lab-
environment to simulate outbound malware connectivity in
real-life use. This lab environment was configured to install,
analyze and detect social engineering malware. A server
located inside the OS3 lab hosted two different clients (Win-
dows 7, fully updated) instances that act as control server for
different types of malware. A third virtual machine would
be configured as an intrusion detection system to detect
command and control traffic from the infected VMs to any
of the command and control servers inside the OS3 lab. The
method which malware uses to communicate to their con-
trol server depends on the framework being used. Details
about network traffic will be discussed in sections 3.4 and
3.5. The infected laptop was connected to a (large) company
network, lab environment, a home network (ie. telecom
ADSL + NAT), university network, public network (station-
s/coffeshops) and semi-public network (ie. paid behind

Figure 3. Basic overview lab environment

captive portals). The malware used during this research
did not form a threat to other clients within the tested net-
works since the user has absolute control over the malware’s
functionality and activity. These field-tests do not necessar-
ily indicate whether the malware will successfully operate
on a company network since different policies and equip-
ment is used within company networks compared to some
of the public places I visited. To still give an indication what
limitations are found within a variety of enterprises and
smaller/medium sized companies, a few interviews were
held with security professionals to ask about their experi-
ences performing penetrations tests on-site. More about
this will be discussed in section 3.4. Some of the different
environments I visited:

Figure 4. Testing locations

1. A company network providing ’guest’ wireless (cap-
tive portal) and regular employee network;

2. A cafe free wireless network

StealthWare - Social Engineering Malware — 5/14

3. Wireless inside the train. Requires a valid login inside
a captive portal

4. My own home network (no filtering)
5. University network (SURFnet)
6. A campus network WiFi network

To simulate possible detection/defensive capabilities, an
IDS was configured in the lab to monitor our beacon traffic.
An IDS is a network (or software) component that monitors
network and/or system activity for possible malicious be-
haviour. This research focussed on signature-based IDSs to
detect Cobalt Strike and ThrowBack beacons. Different non-
signature based detection methods can be used as well but
are currently not tested in a lab environment. A theoretical
approach to detect Cobalt Strike and ThrowBack beacons
can be found in section 3.8.

Based on a market research done by the SANS Institute [4],
the most common network monitoring IDSs are maintained
by Cisco, SourceFire (which is now a Cisco company) and
McAfee. The SourceFire product is a further developed and
commercially maintained version of the open-source Snort
IDS. Many non-Cisco IDSs (such as HP TipingPoint and
McAfee IntruShield) either offer native Snort signature sup-
port or offer out-of-the box conversion tools. Since Snort
(and it’s signature format)is one of the most common net-
work security tools, this report wil discuss possible detection
methods based on the principle of Snort’s core engine; in-
trusion detection via signatures. For a complete overview
of the Snort Rule syntax, please refer to the ’Writing Snort
Rules’ [5] wiki

3.4 Malware features and network effectiveness
As discussed in the previous section, there are different net-
work policies and detection methods that can be found
in company environments. An important aspect of both
Cobalt Strike and ThrowBack is the chosen beacon commu-
nication channel.

Cobalt Strike offers three different transport methods for
beacon communication while ThrowBack has only imple-
mented one as of date.

Channel Cobalt Strike ThrowBack
HTTP Yes No
HTTPS Yes Yes
DNS Yes (TXT) No

A security professional crafting the beacon configures a pre-
defined communication channel. When the malware is
deployed in a social engineering campaign, the beacon will
always use the configured channel. This will involve pre-
research on the target’s network environment to determine
what limitations are in place. Depending on the method
of deployment, this may lead to issues regarding back-end
reachability.

Example Scenario: A USB-Drop campaign is organized.
Several USB sticks containing malware are given away or
dropped at a client location. The security professional con-
figured the malware to communicate over a direct HTTPS
channel. One of the client’s employees inserts the USB stick
in his/her computer and executes the file. What the security
professional did not know, is that all the employees make
use of a NTLM-based proxy nor captive portal to access the
internet. The malware will not be able to reach the com-
mand and control server and the security professional does
not know whether clients were infected or not.

Implementing a fall-back method is not yet implemented
in Cobalt Strike and/or Throwback. This will reduce the
changes of successful malware deployment, but not sig-
nificantly. Based on interviews held with several security
professionals on their experience at client locations, about
75% of the internal networks required no manual proxy
authentication or limited access HTTP and/or HTTPS ac-
cess on any way. The networks involved belong to around
40 different insurance companies, industries, governments
and small/medium sized businesses. Related to network
configurations, this can mean two things:

1. The company has no proxy configured on the net-
work;

2. The company has a transparent proxy configured on
the network (ie. not visible to the user);

3. The company uses automatic proxy configuration
without authentication.

The percentage of the different options found on company
networks is unknown. For the effectiveness of malware re-
search, it is only important to know if manual configuration
and authentication is required for beacons to reach the ex-
ternal network. This number is purely indicative and doesn’t
provide any guarantees. It is highly dependant on the fac-
tors such as the company sector and network segment of
deployment (ie. different departments and policies). The
table below provides an overview of different network lim-
itations and the operational status of the tested malware
frameworks:

Configuration Cobalt Strike ThrowBack
Authenticated (ex.
NTLM) proxy

Supported Not supported

Non-Authenticated
configured proxy (ex.
IE proxy settings)

Supported Partially supported

Transparent proxy Supported Supported
Captive Portal* Supported Not supported

Note: During the performed field tests it seemed that I did
not have any issues using an external DNS server (port 53
outbound allowed) while a captive portal was enforced. This
enabled Cobalt Strike’s DNS beacons to still successfully

StealthWare - Social Engineering Malware — 6/14

reach the back-end server.

There are several reasons why the different malware frame-
works show different results regarding outbound web con-
nectivity.

Issue 1: A common (and important) issue is NTLM authen-
tication. Common proxies that make use of NTLM for au-
thentication require a valid challenge/response session to
be initiated. There are libraries available to enable NTLM-
enabled proxy traffic, but your application/malware will
need the user’s (hashed) password to generate the correct
headers.

Issue 2: Cobalt Strike beacons work behind transparent
proxies and proxies configured inside the Internet Explorer
connection settings. ThrowBack does not work with the
default Windows proxy settings because of the library be-
ing used. There are two main Windows API’s available for
applications: WinHTTP and WinINet. The WinHTTP API
is being used by ThrowBack but does not automatically
read the Windows registry for the configured (unauthorized)
proxy settings. ThrowBack implemented it’s own method to
parse and apply proxy configuartions (based on individual
user settings). However, this function did not work consis-
tently and is dependant on the Windows version being used.
The reasoning behind choosing WinHTTP over WinInet is
discussed by Brady Bloxham during his DefCon talk [3];
the WinHTTP API is meant for windows services while the
WinINet API is not (it can prompt the user for credentials).
One of ThrowBack’s core features is to run stealthy as a ser-
vice, hence the decision for choosing the WinHTTP API and
implementing custom proxy verification.

3.5 Analysis: Cobalt Strike
3.5.1 Beaconing traffic
Cobalt Strike uses three default methods of Beacon commu-
nication. The default beacon channels are HTTP, HTTPS
and DNS. The primary beaconing mechanisms that will
be discussed is the HTTPS beacon; reasoning that this is
the only channel where no clear detection methods are
available due to encryption standards. The HTTPS bea-
cons makes use of TLS1.2 with EC Diffie-Hellman. The key
exchange is performed the first time when the beacon is
activated; the upcoming signals to/from the command and
control server don’t have to redo the entire handshake again.
Each following beacon (when no command is set in the CnC
queue) has the exact same behaviour and packet size:

• Each beacon session sends/receives 18 packets total
and includes a single request and single response;

• If no command is put in the CnC queue, the response
will always be of 197 bytes in size;

• Each beacon session closes with a Reset (packet) (RST)/
Acknowledgement (packet) (ACK). The server sends a
FIN/ACK TCP packet while the clients replies with a

RST/ACK.

The content itself can be decrypted if the private key is ob-
tained from the Cobalt Strike beaconing server. This re-
search focusses on detectability of social engineering mal-
ware; in a realistic scenario we would not have the private
key and we should only able to able to create detection
methods based on HTTPS meta-data and behaviour charac-
teristics.

The other default beaconing mechanism over HTTP involves
clear-text communication. The beacon displays the follow-
ing characteristics:

• A HTTP request is sent to http://[ip||domain]/ptj;
• The beacon puts its request in the HTTP cookie field;
• When no command is present in the queue, the server

replies with Content-Type: Application/octet-stream
but does not send any data (specifying Content-Length:
0);

A third beaconing mechanisms consists out of a Domain
Name System (DNS) tunnel. Cobalt Strike will query the
beaconing server with a DNS request. The beaconing server
will reply with command hidden in TXT fields. Tunnelling
your traffic over DNS can be very slow and it’s easy to detect
with the most common monitoring tools. The developers
of Cobalt Strike implemented this feature for a very valid
reason; if a client is successfully infected and moves to a
network where no outbound web-connectivity can be es-
tablished, DNS (port 53) is often a channel that is still open.

3.5.2 Intrusion Detection
HTTPS Beacons: As explained earlier, the response from
the Cobalt Strike server is always the same in size (without a
queued command) and the client always closes the connec-
tion with a TCP Reset. Another thing noticed is that Cobalt
Strike does not (by default) offer the availability to change
the public key used during the beacon communication. This
makes it easier to write specific detection mechanisms that
trigger on the specified behaviour and public key. Since the

Figure 5. RST Flags and packet details

HTTPS Beacon’s traffic is encrypted we are unable to look
at the content of the session. However, based on Cobalt
Strike’s network behaviour, the following Snort Signature
could be made for HTTPS Beacon detection:

Snort Signature: Cobalt HTTPS Beacons

StealthWare - Social Engineering Malware — 7/14

1 a l e r t tcp any 443 −> any any (msg : "C&C − CobaltStrike
Response DataSize match (pre−rule) " ; dsize : 1 9 7 ;
f l a g s : PA ; sid :1233340; f lowbits : set , cobaltbeacon ;
p r i o r i t y : 3 ; rev : 3 ;)

2 a l e r t tcp any any −> any 443 (msg : "C&C − CobaltStrike
Beacon V e r i f i e d A c t i v i t y " ; t t l :=128; f l a g s :AR; sid
:1333340; f lowbits : i s s e t , cobaltbeacon ; p r i o r i t y : 1 0 ;

rev : 3 ;)

The first rule will trigger if an IDS finds a response from
source port 443 with a datasize of 197 bytes. The datasize
matches the amount of bytes in the (application data) con-
tent including the amount of bytes in the TCP header (20
bytes). This by itself is not necessarily an alert, but this rule
will set the flag (slight mis-use o the fowbits function, feed-
back is welcome) ’cobaltbeacon’ that allows another rule
to be triggered. The second rule will trigger if the first rule
enabled the ’cobaltbeacon’ flag and the clients sends back
a response with a Time to live (TTL) value of 128 while the
Acknowledge and Reset TCP flags are set.

HTTP Beacons: Opposed to the Cobalt Strike HTTPS bea-
con, the HTTP beacon’s content can be read in clear-text.
The /pj Uniform resource identifier (URI) is requested for
every request. Monitoring for the specified URL can be a
trigger to raise an alarm. However, the url/page name can be
used by any website on the internet. The beaconing server
shows default behaviour by responding with no content but
still specifying an application stream in the HTTP headers.
The following rule was able to detect the HTTP beacon:

Snort Signature: Cobalt HTTPS Beacons

1 a l e r t tcp any any −> any any (msg : "C&C − CobaltStrike
HTTP Beacon URL" ; content : " | 2 F | p t j " ; o f f s e t : 4 ; depth
: 1 0 ; f lowbits : set , cobalthttp ; sid :143340; rev : 1 ;)

2 a l e r t tcp any any −> any any (msg : "C&C − CobaltStrike
HTTP Beacon V e r i f i e d A c t i v i t y " ; content : " Application
/ octet−stream" ; dsize : >200;)

The first rule will trigger if an IDS finds the /ptj keyword be-
tween bytes 4 and 10 of the (application) data content. This
is specifically refered to as the first header (ie. GET HTTP1.)
of a HTTP packet. The first rule will hen set a ’cobalthttp’ flag
that allows the second rule to be triggered. The second rule
checks that the HTTP headers specify Application/octet-
stream as the content-type without actually sending any
data back (ie. Content-Length: 0)

3.6 Analysis: ThrowBack
3.6.1 Beaconing traffic
ThrowBack only has a single HTTPS beacon channel for
communication. The HTTPS beacons makes use of an en-
crypted TLS 1.2 connection. As compared to the Cobalt
Strike HTTPS Beacon; the key exchange is performed every
time the beacon attempts to contact the command and con-
trol server. Each beacon (when no command is set in the
queue) has the exact same behaviour and packet size:

• Each beacon session sends/receives 18 packets total
and includes a single request and single response;

• If no command is put in the CnC queue, the response
will always be of 688 bytes in size. The request size
differs per client;

• The client closes it’s connection with a default FIN/ACK.

Compared to Cobalt Strike, the client closes it’s connection
according to the official TCP handshake; where Cobalt Strike
always sends a RST packet.

The ThrowBack beaconing mechanism itself can be dis-
cussed in more detail since the entire project is made open-
source (client and backend). The ThrowBack client only has
a single beaconing mechanism that operates over HTTPS
and communicates with a ThrowBack back-end webserver.
This means that, as opposed to Cobalt Strike, no DNS tunnel
is available when an infected client is located on a strict net-
work with proxies and/or captive portals. The ThrowBack
backend accepts a pre-defined POST format as input. The
original ThrowBack beacon to the back-end server has the
following format:

1 enc=123spec ! alk3y456&hn= j oey dre i j er−VirtualBox& num
=10.0.2.15& id= jo ey dre i j er−VirtualBox8796759603609&pp
=0&vn=2.50

The above beacon data consists out of several different ele-
ments.

1. enc: The ’command’ key to verify a legitimate respon-
se/request from the command and control server;

2. hn: The client’s (configured) hostname;

3. num (changed): The IP address of the network inter-
face that is configured with to communicate via the
default gateway;

4. id: A unique ID of the client. Consists out of the host-
name + MAC Address of the interface;

5. vn: Malware version number (static);

6. pp: Flag (1 or 0) that checks if a client is behind a
proxy or not.

Before this data is sent to the backend, the data is encrypted
(RC4 legacy by default, AES improvement optional) and
encoded with BASE64. All of the encrypted/encoded data
is sent over a TLS1.2 session to a central ThrowBack server.
The beacons show similar behaviour as that of CobaltStrike:
al beacon is sent with static intervals and the content size
of the beacon is always the same (when no command from
the queue is executed). The beacon displays the following
characteristics:

• A HTTP POST is sent to http://[ip||domain]/cp/index.php;
• The beacon data consists out of different encrypted

and encoded variables as discussed earlier;
• The server replies with <hidden stup1fy 0///// > if no

command is available.

StealthWare - Social Engineering Malware — 8/14

3.6.2 Intrusion Detection
As explained in the network traffic subsection, the response
from the Cobalt Strike server is always the same in size (with-
out a queued command). Since the client does not perform
any non-default behaviour (such immediately sending a
RST packet), other detection flags should be taken into ac-
count. A rule that only triggers on a specific amount of
bytes as response may generate false-positives. However,
the response-size can be combined with a rule that checks
for the relative TCP sequence number. The absolute TCP
sequence will always differ, but Wireshark (and Snort) are
able to calculate the relative sequence which is always the
same for each command and control session. HTTPS Bea-
con detection:

Snort Signature: Cobalt HTTPS Beacons

1 a l e r t tcp any 443 −> any any (msg : "C&C − ThrowBack
Response DataSize match" ; dsize : 6 5 4 ; seq ; 1470;
f l a g s : PA ; sid :1233390; f lowbits : set , throwbackbeacon
; p r i o r i t y : 3 ; rev : 3 ;)

The rule will trigger if an IDS finds a response from source
port 443 with a datasize of 654 bytes. The datasize matches
the amount of bytes in the (application data) content in-
cluding the amount of bytes in the TCP header (20 bytes)
with the relative sequence number of 1470.

3.7 Analysis: Improving malware
The previous sections discussed possible detection meth-
ods for already existing social engineering malware. In order
to bypass detection and strict network policies a proof of
concept was developed based on the original ThrowBack
client. The ThrowBack client was rewritten in Python with
additional (evasive) functions. The Python-based client is
functional on OS X, Linux and Windows (with Py2Exe). The
client functions as a proof-of-concept since the executable
is quite large: Around 5MB with Ultimate Packer for Executa-
bles (UPX) compression. The client adds some additional
features, such as:

1. Add additional and random length padding to en-
crypted requests to bypass static IDS signatures;

2. Add additional and random timing to beacon frequency
(ie. 10 minutes + somewhere between 1-80 percent)
to evasive possible beacon detection;

3. Implement different DNS channels: Response data
is now included in Resource record digital signature
(RRSIG) records (less obvious than TXT and compli-
ant to the format) to bypass the already existing TXT
tunnel detection;

4. Command and Control traffic via trusted and often-
visited domains. Thus bypassing communication to
newly registered domains and blacklisted domains;

5. Provide multiple different channels for outbound com-
munication (in case of blocked ports/domains).

A new communication channel was added to ThrowBack
to bypass different DNS detection methods (more about
DNS malware detection in section 3.8). In short, malware
detection via domains was based on three points: The age
of a domain, the structure of a domain and possible lookup
failures. To bypass these detection methods, the new Throw-
Back client makes use of Social Media (Twitter) for commu-
nication. This works in the following steps:

• A client is infected with our malware;

• The malware uses creates its original requests (ie. the
POST values);

• Instead of sending it over the default HTTPS chan-
nel, the data is encoded inside a Portable network
graphics (PNG) image;

• The PNG image is uploaded to a twitter timeline with
a specific identifier. The identifier consists out of 1)
The type (ie. request) and 2) the unique identifier (a
string of random characters);

• The back-end server listens to a twitter feed realtime.
When an image is uploaded with the correct type
and identifier, the image content is decoded and for-
warded to the webserver (according to the original
HTTPS channel specification);

• The back-end response is received and, in a similar
fashion, encoded inside an image;

• The new PNG is uploaded to the twitter timeline with
1) a new type (ie. response) and 2) the same identifier
as the request;

• The client extracts the content from the response and
the process repeats itself.

In comparison, the proof-of-concept includes the same
common channels plus the previously discussed twitter bea-
con channel:

Channel Cobalt Strike ThrowBack ThrowBackPy
HTTP Yes No No
HTTPS Yes Yes Yes
DNS Yes (TXT) No Yes (RRSIG)
Social Media No No Yes

Apart from the evasive measures, a few minor functional ad-
justments have been made to the original ThrowBack POST
parameters to give the malware operator more insight in
the client’s network limitations. The original ThrowBack
client included 7 default POST parameters. The new format
includes two new parameters and 3 adjusted parameter val-
ues. The adjusted beacon to the ThrowBack back-end looks
as follows:

StealthWare - Social Engineering Malware — 9/14

Figure 6. Twitter command and control

1 enc=123spec ! alk3y456&hn= j oey dr ei j er−VirtualBox&us=
j o e y d r e i j e r&num=10.0.2.15& id= j oe ydr ei je r−
VirtualBox8796759603609&pp=0&vn=1.00&lolrandom=
aa

1. enc (unchanged): The ’command’ key to verify a le-
gitimate response/request from the command and
control server;

2. hn (unchanged): The client’s (configured) hostname
3. us (new): The client’s username (original username

that executed the malware);
4. num (changed): The IP address of the network inter-

face that is configured with to communicate via the
default gateway;

5. id (unchanged): A unique ID of the client. Consists
out of the hostname + MAC Address of the interface;

6. vn (unchanged): Malware version number (static);
7. pp (changed): Originally states of the client is behind

a proxy. This now states what type of channel is be-
ing used for command/control communication (ie.
1=Twitter, 2=HTTPS, 3=DNS, 4=HTTPS+Proxy);

8. lolrandom (new): Additional padding for the request.
This adds between 1-300 bytes of extra data that is not
being parsed by the back-end server.

Next to the minor adjustments mentioned earlier, the new
client is able to find it’s own way out of the network. As ex-
plained in section 3.4, the default Cobalt Strike and Throw-
Back beacon clients have a pre-defined channel that will
be used if deployed (ie. communicate over HTTPS). If this
channel is blocked due to network policies, the malware will
not be able to reach it’s command and control server. To fix
this, the new client uses a modular set-up based on prior-
itized channels to communicate with the back-end server.
An example of the new architecture can be seen in Figure
6. Another issue found specifically for ThrowBack beacons

involve Windows proxy settings. ThrowBack could not (na-
tively) read the Windows proxy settings due to the WinHTTP
API being used. The urllib2 libraries being used in Python
will read the Windows registry for proxy settings (Internet
Explorer proxy settings) and apply the same configuration
to the beacon client. Based on the improvements and rewrit-

Figure 7. New ThrowBack client architecture

ten code a new operational comparison can be made be-
tween Cobalt Strike, ThrowBack (original) and ThrowBack
(Python-edition):

Configuration Cobalt
Strike

ThrowBack ThrowBackPy)

Authenticated
(ex. NTLM)
proxy

No No No

Non-
Authenticated
configured
proxy (ex.
IE proxy
settings)

Yes No Yes

Transparent
proxy

Yes Yes Yes

Captive Por-
tal

Yes No Yes

The (unfortunately) only remaining issue remaining involves
NTLM authenticated proxies. During my research I was not
able to find any methods that could include a valid NTLM
token inside our request headers. This could be part of fu-
ture research (or part of a future code-update during the
summer).

The goal of the developed proof-of-concept malware is for
security professionals to test their defensive capabilities.
The malware can be run on systems to test different types of
monitoring capabilities and verify their effectiveness. Fur-
thermore, the new malware client can be used by security
professionals as a method of entry security assessments.

3.8 Advanced detection methods
There are other alternative detection methods next to the
signature-based approach discussed on the previous sub-
section. Detection malware via signatures is only effective

StealthWare - Social Engineering Malware — 10/14

for known-threats; unknown threats will not be detected.
The static signatures to detect Cobalt Strike and ThrowBack
would not work with dynamic malware behaviour as shown
in the proof-of-concept developed for this research. The de-
tection methods discussed below provide an indication how
beacons can possibly be detected in a theoretical way with-
out analyzing content with signatures. These could provide
detectability for unknown threats. The methods described
have not been practically tested but may provide a subject
for future research.

3.8.1 Beacon detection
The current malware frameworks being used during this
research use beacons as their primary form of communica-
tion. This means that a signal will be sent periodically to a
(de/central) server to provide heartbeats and ask for com-
mands. Research done by Leendert van Duijn [6] provides
a proof-of-concept method to detect these beacons inside
PCAP files. Van Duijn demonstrates that malware beacons
can be detected by analysing network traffic statistics. Van
Duijn mentions that it is indeed possible to identify bea-
cons that are distinguishable from typical user traffic. Van
Duijn mentions that ”Due to limited data, no conclusions
can be drawn on generic HTTPS traffic” regarding differen-
tiating legitimate user beacons and malware beacons over
HTTPS. The primary channels for the researched malware
makes uses of HTTPS, which means beacon detection may
deem more difficult. Next to that, the current detection
method is based on visual representations. This requires
human interaction and analysis is done on forensic-data;
thus not real-time (as of yet). The malware used during this
research could potentially be detected by applying van Dui-
jns beacon detection methods, but will only work if another
detection method that operates real-time triggered an alert.
The technique demonstrates by van Duijn can then be used
to analyse the trigger/incident and verify a possible breach.

3.8.2 Domain anomalies
The malware used during this research makes use of a cen-
tral (or multiple) command and control server(s). Before
any communication can be established to these servers, a
DNS query has to be performed to retrieve the server’s IP ad-
dress. Robert Lemos [7] wrote an article that demonstrates
three malware detection methods based on monitored DNS
queries. These methods include:

1. Domain age: Domains that have been registered re-
cently (ie. a week ago) may indicate a malware do-
main;

2. Esoteric domains: Analysing the uniqueness of a do-
main (in amounts of visits). An alert may show up if
a specific domain name is not being visited very of-
ten and/or only by a handful of people within a large
organisation;

3. Lookup failures: A client that attempts to look up non-
existing domains may indicate a malware infection.

Apart from the three items listed by Lemos, a common mal-
ware detection method is by importing domain blacklists.
These blacklists are updated frequently but will not contain
new malware domains that are not known to the public yet.
Another detection method is based on the structure of the
domain name. Research done by Barry Weymes from Fox-IT
[8] demonstrates two methods to detect malware based on
DNS queries. One is related to the lookup failures discussed
earlier, the other is based on the characters and structure of
the domain name. Weymes mentions that there are three
domain characteristics that he looks for:

1. Domain length: Length of the domain name (in 6
categories);

2. Character make-up: Whether the domains contains
only chatacters, but also digits and/or consonants;

3. Top Level Domains (TLD): Variations and often-occuring
TLDs for malware.

A few examples of malicious domains that are triggered
by Weymes detection method:

1 agng78sagdfDKJdtwa887 .com
2 kt2syggf436dtag312 .com
3 tcdjnkntkkreatlbtbuguyxdqx . biz
4 cykjxnzmrhaygajncyfmoyljdpb . biz
5 gfeoacjlvufodylcsnbordyxs .cm
6 nhnjnmlgofabeynimrtdyt .cm

However, most of the detection methods making use
of DNS anomalies assume well-known ”evil” botnets and
not professional social engineering malware or custom mal-
ware crafted for targeted attacks. It’s safe to assume that
with social engineering malware (or targeted malware), the
professional will register a valid domain for a specific assign-
ment/service that has a legitimate looking structure. These
domains will most likely not be present in blacklists, not
contain a Russian TLD and have a series of random charac-
ters in them. The researched malware may be detected if
monitoring is in place to detect recently registered domains
and unique domains (ie. esoteric). However, chapter 4 will
demonstrate how these detection methods can be evaded
by use of commonly visited social networks.

3.8.3 Traffic anomalies
Network anomaly detection is a mechanism often found to
detect DDoS attacks, network downtime and malicious be-
haviour in general. A survey performed by Ripe NCC [9] tries
to answer what an anomaly means and how/when security
professional report these. The definition of an anomaly is
described as an outlier (ie. peaks) on a specific dataset. The
security expects that participated in the survey use different
data sources to find these outliers. These datasets include,
from mostly used to less used (top to bottom):

• Netflow/Sfloc;

• Logs;

StealthWare - Social Engineering Malware — 11/14

• Custom scripts;

• Intrusion Detection Systems (IDS);

• MTRG/Torrus;

• Nagios;

• Honeypots.

The topic of IDSs was already discussed in chapter 4.2, but
gathering network data from NetFlow can be of use when
detecting beacons. Network traffic is generated by our bea-
cons with a specific interval. The malware used during this
research will always attempt to reach the command and
control server, even when the user is not actively using his
workstation. In theory, security specialists could define poli-
cies and monitor user behaviour outside office hours and/or
weekends. A theoretical is to define a time-policy in order
detect malware when the client is not performing any net-
work traffic him/self during the weekends or after working
hours. Of course, this means that the client should have
his workstation/laptop running when not performing any
work-related activities. This also means that other back-
ground processes or idiomatically refreshing websites that
are left open will also generate traffic that may lead to false-
positives.

Since beaconing traffic generates a low amount of traffic,
it can be very difficult to detect with classical anomaly de-
tection methods. However, a topic not yet discussed is the
command and control server’s queue. When the malware
operator wants a client to execute a specific command, the
results are uploaded/transferred via the same channel. The
operator can also decide to start an interactive session with
the infected client or attempt to download a file located on
the infected system. The main issue regarding detectabil-
ity is that the common channels all transfer their data over
HTTPS. It is not uncommon to see large amounts of data be-
ing transferred over port 443, since many popular websites
(think of Facebook, Twitter) make use of a secure connection
to upload/download files. Purely looking at the behaviour
of connections on the used ports may not be enough, but
correlation with other monitoring tools may improve alert-
ing. Combining anomalies over common ports with DNS
anomalies discussed in the previous subsection may trigger
an alert that is much more relevant. Example: If a client vis-
its an uncommon and newly registered domain and starts
to send excessive amount of data over port 443. This may
not directly indicate a true-positive, but can lead to further
analysis via other forensic methods. The malware opera-
tor (of CobaltStrike/Throwback) is not able to change the
default behaviour of command and control traffic. Which
means evasive behaviour like rate-limiting your file uploads
/ command shell will not be possible. This improves the
changes of detection via any of the previously mentioned
detection theories.

StealthWare - Social Engineering Malware — 12/14

4. Conclusion

What existing frameworks already exists and what func-
tionality do they offer?
There are only two public social engineering frameworks
that offer command and control functionality. These are
Cobalt Strike and Throwback. They provide security profes-
sionals with the extensive ability to deploy and craft mal-
ware to gain full control over a client’s system. The frame-
works are out there and are actively being used around the
globe. Where Cobalt Strike offers a lot of functionality and
beacon transport mechanisms, ThrowBack still lacks differ-
ent outbound channels.

What common security policies are often found within
company networks?
The malware being used for social engineering assignments
have to take different types of network policies into account.
Based on field testing and practical experience at client envi-
ronments, there are several network configurations you may
encounter during a social engineering assignment: Work-
stations behind a NTLM-authorized proxy, workstations be-
hind an in-line proxy, workstations that make use of captive
portals and different firewall policies that allow all outgoing
traffic, only allow port 80/443 traffic or allow limited access
but include services as external DNS, IMAP/SMTP. Next to
the policies, different monitoring services may be in place
to detect malicious activities. These can vary from IDSes
that make use of signatures, NetFlow anomaly detection
engines and/or packet inspection after stripping the SSL
layer via appliances as Blue Coat.

How effective do the already existing frameworks work in
realistic company environments?
The frameworks vary in operations. Cobalt Strike is a proven
product with many different beaconing options, whereas
the original ThrowBack client only supports communica-
tion to a central HTTPS server. There is one major flaw that
influence operations: Both frameworks do not make use
of fall-back methods. If your malware has been configured
to communicate over HTTPS, it will only be able to oper-
ate over that specific channel. If a domain or IP address is
blocked or if the client is behind a proxy or captive portal, no
outbound connection can be made. The malware will not
function since no fall-back method to, for instance, DNS is
implemented. However, HTTPS/HTTP traffic is commonly
accepted within company environments without any au-
thorization. Regarding detection: the current beacons can
easily be detected via multiple different methods. A client
can monitor for newly registered and unique domains and
perform anomaly detection on the data transfer. A more
straight-forward method is to implement an IDS and detect
the beacons with signatures. Both encrypted channels of
Cobalt Strike and ThrowBack can be easily detected by us-
ing Snort signatures that inspect specific behaviour aspects
and data response sizes. Even though these signatures were

not already made available by the community, this report
demonstrate PoC signatures that can be freely used to detect
social engineering malware on your network. It is important
to note that these signatures rely on the default behaviour
of Cobalt Strike and ThrowBack. As is the case with any
signature-based detection engine, when the content of the
response/request changes, the signature is no longer valid.
This research only focussed on the default beaconing be-
haviour and did not use the custom templating engine that
ThrowBack provides.

Can these frameworks be further extended and/or improved
to minimalize detection chances for advanced security au-
dits?
A proof of concept malware client was developed during this
research which makes use of different evasive techniques.
Random request/responses were generated, popular do-
mains (social media) were used to generate command/con-
trol traffic, random beacon timeouts were implemented to
prevent beacon detection and fall-back mechanisms were
implemented to bypass network policies. An additional
DNS channel was created that makes use of RRSIG records
to transmit data instead of the traditional TXT tunneling
technique. However, the new proof-of-concept does not
take SSL stripping mechanisms into account. It is still pos-
sible to detect the malware based on content analysis if
plainly readable. The improved malware can be used by
security professionals to test their security monitoring ca-
pabilities.

StealthWare - Social Engineering Malware — 13/14

Acronyms
ACK Acknowledgement (packet). 6

DNS Domain Name System. 6

HTTP Hypertext transport protocol. 3

HTTPS Hypertext transport protocol secure. 5

IDS Intrusion Detection System. 4, 7

IPS Intrusion Prevention System. 4

NTLM NT Lan Manager. 3

PNG Portable network graphics. 10

RRSIG Resource record digital signature. 10

RST Reset (packet). 6

TTL Time to live. 7

UPX Ultimate Packer for Executables. 9

URI Uniform resource identifier. 7

References
[1] Strategic Cyber. LCC. "http://www.advancedpe

ntest.com", 2015.
[2] Brady Bloxham. Getting windows to play with it-

self. https://defcon.org/images/defcon
-22/dc-22-presentations/Bloxham/DEFCO
N-22-Brady-Bloxham-Windows-API-Abuse
-UPDATED.pdf, 2014.

[3] Brady Bloxham. Def con 22 - brady bloxham - getting
windows to play with itself. https://www.youtub
e.com/watch?v=dq2Hv7J9fvk, 2015.

[4] SANS Institute. Intrusion detection faq: What
are the top selling ids/ips and what differ-
entiates them from each other? https:
//www.sans.org/security-resources/i
dfaq/top-selling-ids-ips.php, 2009.

[5] Cisco. Writing snort rules. http://manual.snort
.org/node27.html, 2015.

[6] Leendert van Duijn. Beacon detection in pcap files.
https://www.os3.nl/_media/2013-2014/
courses/rp2/p73_report.pdf, 2014.

[7] Robert Lemos. Got malware? three signs revealed in
dns traffic. http://www.darkreading.com/an
alytics/security-monitoring/got-malwa
re-three-signs-revealed-in-dns-traff
ic/d/d-id/1139680?, 2013.

[8] Barry Weymes. Dns anomaly detection: Defend against
sophisticated malware. http://www.net-secur
ity.org/article.php?id=1844&p=2, 2013.

[9] Jan Rejchrt. Network anomaly detection evalua-
tion. https://labs.ripe.net/Members/
jan_rejchrt/network-anomaly-detecti
on-2013-survey-evaluation, 2013.

[10] S. et al Abraham. An overview of social engineering
malware: Trends, tactics, and implications. Proceedings
of the 11th European Conference on Information warfare
and security, 2012.

[11] Trend Micro Corperation. Trends in targeted attacks.
"http://www.trendmicro.com/cloud-con
tent/us/pdfs/security-intelligence/wh
ite-papers/wp_trends-in-targeted-att
acks.pdf", 2011.

[12] Guofei Gu et al. Botsniffer: Detecting botnet command
and control traffic. "http://www.trendmicro.c
om/cloud-content/us/pdfs/security-int
elligence/white-papers/wp_trends-in-t
argeted-attacks.pdf", 2008.

[13] Guofei Gu et al. Bothunter: Detecting malware
infection through ids-driven dialog correlation.
http://static.usenix.org/legacy/event
s/sec07/tech/fullpapers/gu/gu.html/,
2008.

[14] Michael Bailey et al. A survey of botnet technology
and defenses. http://www.merit.edu/resear
ch/pdf/2009/catch09_botnets_final.pdf,
2009.

[15] Timothy Strayer et al. Detecting botnets with t ight
command and control. http://isis.poly.edu/
~kurt/fm/feb_15/StrayerWLL06.pdf, 2009.

[16] Original Wiki author; Casascius. Elliptic curve digital
signature algorithm. https://en.bitcoin.it/
wiki/Elliptic_Curve_Digital_Signatur
e_Algorithm, 2015.

[17] Chris Jordan. Mcafee now highlighting snort signature
integration. http://playingwithothers.com/
2014/08/13/mcafee-now-highlighting-s
nort-signature-integration/, 2013.

[18] Cisco. Snort ids. https://www.snort.org/, 2015.
[19] SANS Institute. Detecting and preventing unauthorized

outbound traffic. http://www.sans.org/rea
ding-room/whitepapers/detection/dete
cting-preventing-unauthorized-outboun
d-traffic-1951, 2007.

http://www.advancedpentest.com
http://www.advancedpentest.com
https://defcon.org/images/defcon-22/dc-22-presentations/Bloxham/DEFCON-22-Brady-Bloxham-Windows-API- Abuse-UPDATED.pdf
https://defcon.org/images/defcon-22/dc-22-presentations/Bloxham/DEFCON-22-Brady-Bloxham-Windows-API- Abuse-UPDATED.pdf
https://defcon.org/images/defcon-22/dc-22-presentations/Bloxham/DEFCON-22-Brady-Bloxham-Windows-API- Abuse-UPDATED.pdf
https://defcon.org/images/defcon-22/dc-22-presentations/Bloxham/DEFCON-22-Brady-Bloxham-Windows-API- Abuse-UPDATED.pdf
https://www.youtube.com/watch?v=dq2Hv7J9fvk
https://www.youtube.com/watch?v=dq2Hv7J9fvk
https://www.sans.org/security-resources/idfaq/top-selling-ids-ips.php
https://www.sans.org/security-resources/idfaq/top-selling-ids-ips.php
https://www.sans.org/security-resources/idfaq/top-selling-ids-ips.php
http://manual.snort.org/node27.html
http://manual.snort.org/node27.html
https://www.os3.nl/_media/2013-2014/courses/rp2/p73_report.pdf
https://www.os3.nl/_media/2013-2014/courses/rp2/p73_report.pdf
http://www.darkreading.com/analytics/security-monitoring/got-malware-three-signs-revealed-in-dns- traffic/d/d-id/1139680?
http://www.darkreading.com/analytics/security-monitoring/got-malware-three-signs-revealed-in-dns- traffic/d/d-id/1139680?
http://www.darkreading.com/analytics/security-monitoring/got-malware-three-signs-revealed-in-dns- traffic/d/d-id/1139680?
http://www.darkreading.com/analytics/security-monitoring/got-malware-three-signs-revealed-in-dns- traffic/d/d-id/1139680?
http://www.net-security.org/article.php?id=1844&p=2
http://www.net-security.org/article.php?id=1844&p=2
https://labs.ripe.net/Members/jan_rejchrt/network-anomaly-detection
https://labs.ripe.net/Members/jan_rejchrt/network-anomaly-detection
https://labs.ripe.net/Members/jan_rejchrt/network-anomaly-detection
-2013-survey-evaluation
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_trends-in-targeted-attacks.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_trends-in-targeted-attacks.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_trends-in-targeted-attacks.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_trends-in-targeted-attacks.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_trends-in-targeted-attacks.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_trends-in-targeted-attacks.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_trends-in-targeted-attacks.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_trends-in-targeted-attacks.pdf
http://static.usenix.org/legacy/events/sec07/tech/fullpapers/gu/gu.html/
http://static.usenix.org/legacy/events/sec07/tech/fullpapers/gu/gu.html/
http://www.merit.edu/research/pdf/2009/catch09_botnets_final.pdf
http://www.merit.edu/research/pdf/2009/catch09_botnets_final.pdf
http://isis.poly.edu/~kurt/fm/feb_15/StrayerWLL06.pdf
http://isis.poly.edu/~kurt/fm/feb_15/StrayerWLL06.pdf
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
http://playingwithothers.com/2014/08/13/mcafee-now-highlighting-snort-signature- integration/
http://playingwithothers.com/2014/08/13/mcafee-now-highlighting-snort-signature- integration/
http://playingwithothers.com/2014/08/13/mcafee-now-highlighting-snort-signature- integration/
https://www.snort.org/
http://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-unauthorized-outbound- traffic-1951
http://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-unauthorized-outbound- traffic-1951
http://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-unauthorized-outbound- traffic-1951
http://www.sans.org/reading-room/whitepapers/detection/detecting-preventing-unauthorized-outbound- traffic-1951

StealthWare - Social Engineering Malware — 14/14

5. Appendix

Image Material

Figure 8. Fully updated Windows 7 instance that was
running the malware. Displaying that updates will not
prevent any execution limits

Figure 9. VirusTotal report of a Python executable (Py2Exe)
with UPX

Snort signatures

1
2 ## Cobalt S t r i k e HTTPS Beacons
3
4 a l e r t tcp any 443 −> any any (msg : "C&C − CobaltStrike

Response DataSize match (pre−rule) " ; dsize : 1 9 7 ;
f l a g s : PA ; sid :1233340; f lowbits : set , cobaltbeacon ;
p r i o r i t y : 3 ; rev : 3 ;)

5 a l e r t tcp any any −> any 443 (msg : "C&C − CobaltStrike
Beacon V e r i f i e d A c t i v i t y " ; t t l :=128; f l a g s :AR; sid
:1333340; f lowbits : i s s e t , cobaltbeacon ; p r i o r i t y : 1 0 ;

rev : 3 ;)
6
7 ## Cobalt S t r i k e HTTP Beacons
8 a l e r t tcp any any −> any any (msg : "C&C − CobaltStrike

HTTP Beacon URL" ; content : " | 2 F | p t j " ; o f f s e t : 4 ; depth
: 1 0 ; f lowbits : set , cobalthttp ; sid :143340; rev : 1 ;)

9 a l e r t tcp any any −> any any (msg : "C&C − CobaltStrike
HTTP Beacon V e r i f i e d A c t i v i t y " ; content : " Application
/ octet−stream" ; dsize : >200;)

10
11
12 ## ThrowBack HTTPS Beacons
13 a l e r t tcp any 443 −> any any (msg : "C&C − ThrowBack

Response DataSize match" ; dsize : 6 5 4 ; seq ; 1470;
f l a g s : PA ; sid :1233390; f lowbits : set , throwbackbeacon
; p r i o r i t y : 3 ; rev : 3 ;)

Sourcecode

Figure 10. (Original) ThrowBack GitHub page @
https://github.com/silentbreaksec/Throwback

Figure 11. RP2 Report and adjusted code GitHub page.
Includes: PCAP Files of the Beacon traffic - Reports
(Thesis+Proposal) - Proof of Concept SourceCode of
adjusted ThrowBack @ https://github.com/Vardalion/

	Introduction
	Research question
	Scope

	Break-down Social Engineering malware attack
	Beaconing

	Research
	Common network policies
	Common network defences
	Simulating network environments
	Malware features and network effectiveness
	Analysis: Cobalt Strike
	Beaconing traffic
	Intrusion Detection

	Analysis: ThrowBack
	Beaconing traffic
	Intrusion Detection

	Analysis: Improving malware
	Advanced detection methods
	Beacon detection
	Domain anomalies
	Traffic anomalies

	Conclusion
	References
	Appendix

