
University of Amsterdam
Master’s Programme in System and Network Engineering

MSc Final Research Project

Measuring The Impact of Docker on
Network I/O Performance

Author:
Rohprimardho

Supervisor:
Prof. dr. ir. Cees T. A. M. de Laat

21 August 2015

Abstract

This paper investigates whether running applications in Docker would have a significant
network I/O performance degradation. The underlying technologies behind Docker are
explained and analyzed to look for any possible sources of performance degradation.
Multiple measurements were performed in a certain setup while also took into account
some options to optimize the performance i.e. CPU spinning and affinity. In the end,
results are explained and conclusions are drawn.

Contents

1. Introduction 5
1.1. Motivation . 5
1.2. Research Questions . 5
1.3. Related Work . 6
1.4. Scope . 8
1.5. Contribution . 8

2. Background Information 9
2.1. Linux Network Stack . 9

2.1.1. Kernel-bypass . 10
2.1.2. CPU Affinity . 10
2.1.3. Spinning . 12

2.2. Docker . 13
2.2.1. Comparison with Virtual Machine 13
2.2.2. Inside Docker . 13
2.2.3. Underlying technology . 14
2.2.4. Networking Mode . 16

2.3. Hardware timestamps . 17

3. Methodology 18
3.1. Approach . 18
3.2. Topology . 18
3.3. Sfnt-pingpong . 20
3.4. Dockerizing . 20
3.5. Test Cases . 21

4. Results 22
4.1. Measuring the baseline . 22
4.2. Measuring with optimization . 23

5. Conclusions 25
5.1. Future Work . 25

References 28

Appendix A. Automation Script 31

Appendix B. Docker 35

3

Appendix C. Baseline Measurements 36
C.1. Docker host . 36
C.2. Docker bridge . 38
C.3. No Docker . 40

Appendix D. Optimized Measurements 42
D.1. Docker host . 42
D.2. Docker bridge . 44
D.3. No Docker . 46

4

1. Introduction

Docker is an open source platform that simplifies the process of developing, shipping,
and running applications. These applications are packaged with all their dependencies
into a standardized unit called a container.

These containers run in an isolated way on top of the operating system’s kernel.
Having this additional layer of abstraction may lead to a performance degradation.

This paper investigates whether running an application in Docker has any impact on
the network I/O performance.

1.1. Motivation

High-frequency trading (HFT) is an umbrella term for different automated trading
strategies that utilize computers and ultra-low-latency networks.

An HFT firm deploys latency sensitive applications that communicate messages with
the system of stock and derivative exchanges. These applications read a stream of
UDP multicast datagrams sent by the exchanges and react on some of those datagrams
by sending TCP response messages back (so it is: UDP-in, TCP-out). This response
messages are TCP messages because the exchanges only accept TCP connection as they
prefer reliability for the incoming messages. The reaction time, i.e. the latency between
the incoming UDP datagram and the outgoing TCP response message is important to
be as low as possible.

To simplify the deployment of these applications, this HFT firm is considering to use
Docker. It is important for them to know whether this simplicity has a trade off in terms
of network I/O performance degradation.

The attempt to find out whether performance degradation actually exists is the main
motivation of this research.

1.2. Research Questions

As mentioned in Section 1.1, the initiative to find out possible network I/O performance
degradation is the foundation of this research. It leads to the main research question:
how big is the impact of using Docker on the network I/O performance?

A several sub questions are posed to support the main question:

• How to convert an application to a Docker container?

• What kind of test scenarios can be created to accurately measure the performance?

5

• What are the factors that contribute to the performance loss that can be avoided
or minimized?

The aspect of the network I/O performance that becomes the focus in this paper is
the network latency.

1.3. Related Work

There are papers that compare the network performance between applications running
with and without Docker. Eder [1] concludes that the network performance of applica-
tions running in Docker is equivalent to the one without Docker. Yet Kratzke [2] and
Felter et al. [3] suggest the opposite, that using Docker containers affect the general net-
work performance. These three papers focus on different aspect of network performance
by using various measurement methods and tools.

Eder uses industry standard netperf 1 benchmark tool to measure the round-trip la-
tency between two Docker containers, each running on different physical machine. Eder
also uses kernel-bypass technology that lets applications and network drivers run to-
gether in the user space and therefore bypass the kernel space [4]. The result shows that
there are no significant difference in performance between running applications with or
without Docker. The average round-trip latency is about 4.5 µs as shown in Figure 1.1

Figure 1.1.: Round-trip latency measured by Eder [1]. Bare Metal indicates the mea-
surement without Docker and Container indicates the measurement with
Docker

1http://netperf.org

6

http://netperf.org

The work of Felter et al has a broader focus. They measured several aspect of network
performance and one of them is the network latency (the rest are measuring network
bandwidth, memory bandwidth, block I/O, and some other tests), which was also mea-
sured by using netperf. The result shows that the latency is doubled when Docker is
used as shown in Figure 1.2.

Figure 1.2.: Round-trip latency measurement result by Felter et al [3] that shows that
native latency is half of the Docker NAT

Kratzke focuses on the data transfer rate instead of the network latency by using
apachebench2 as the measurement tool. The result shows that for messages smaller than
100 KB there is an 80% performance reduction which goes to 90% for messages bigger
than 100 KB. Even though it is not measuring network latency, it shows in general that
using Docker has impact on the performance.

Since Kratzke focuses on different aspect, a direct comparison can only be drawn from
the result of Felter et al. and Eder. Both measure the network latency with the same
measurement tool. Kernel-bypass is the major difference between these two papers,
which explains the difference on their results.

From these researches, we might conclude that kernel-bypass technology could be the
factor that made the difference between Eder’s result and the others. In general the
performance with container is reduced to a certain extent unless an additional (opti-
mization) technique is used, which is in this case the kernel-bypass.

In this paper, the research will be performed by using a tool called sfnt-pingpong3 and
with a measurement setup that will use hardware timestamp instead of software times-
tamp (which is used by netperf). Because of time constraint, there are no measurements

2http://httpd.apache.org/docs/2.2/programs/ab.html
3It will be further explained in Section 2

7

http://httpd.apache.org/docs/2.2/programs/ab.html

could be performed to test the effectiveness of kernel-bypass.
To sum up, these previous works, despite using different methods and having different

focuses, have one thing in common, i.e. comparing network performance of applications
running with and without Docker. They give insight into the approach of measuring the
network performance.

1.4. Scope

The focus of this paper is the implementation of Docker in an environment and setting up
the measurement topology and tools to get a proper result. The underlying technology
of Docker will also be explained.

1.5. Contribution

The result of this paper, which shows there is no scientifically significant performance
degradation while running in Docker contributes greatly to the field of high performance
computing and performance in containers or virtualization in general.

8

2. Background Information

This section will describe the Linux network stack to understand the network I/O per-
formance that is actually measured in this paper. An introduction about Docker and
its underlying technology will also be explained. Moreover, a brief information about
hardware timestamps will be explained as well.

2.1. Linux Network Stack

In a high-level view of the Linux network stack, there are seven layers in which each
layer has a different job description to allow Linux machines to communicate on the
network. These layers are divided into three major sets: user space, kernel space, and
physical space (as seen in Figure 2.1) [5].

Figure 2.1.: Linux high-level network stack architecture [6]

The focus of this research is on the network I/O performance in terms of the time it
takes for a network packet to travel from the physical space (where it enters), to go to
the user space through the kernel space and go back to the physical layer. This is an
important aspect in a low-latency network environment.

There are various reasons why unnecessary latency (jitter) can occur when network
packets travel within a network stack. Some of them are context switching, waiting time

9

for arriving packets to be polled, interrupt, and cache miss. The following subsections
will explain these reasons along with the solution on how to minimize the negative impact
to achieve latency as low as possible.

2.1.1. Kernel-bypass

As mentioned briefly in Section 1.3, kernel-bypass is a way to let applications and network
drivers run together in user space and therefore bypass the kernel space [4]. This would
increase the network performance because it is avoiding altogether context switching
between user space and kernel space.

Context switching itself describes a condition where the operating system suspends
the execution of the process running on the CPU, store the CPU’s state in the memory,
and resume the execution of some other process previously suspended by retrieving its
state from memory and put it in the CPU’s register [7][8]. Related to Linux network
stack, context switching occurs between user space and kernel space when applications
running on user space transmit data to the kernel in the network stack (e.g. to check
for new network packets). Context switching also occurs when network adapter notifies
CPU for the arrival of incoming network packets. Therefore context switching occurs
often and it can affect the performance [9].

The disadvantage of using this technique is to lose the possibility of using network tools
that heavily rely on kernel features, such as [10]: netstat1, ethtool2, and tcpdump3.

There are several solutions available that apply kernel-bypass technologies, such as
solution offered by ntop4, netmap5, Intel6, Napatech7, and OpenOnload8.

Eder’s work [1] uses OpenOnload. It uses a combination of a specially designed hard-
ware (network card) and optimized drivers to achieve extreme low-latency while main-
taining application compatibility and support for TCP/IP protocol. One of the claim is
that it can achieve below 1.7 µs for application-to-application 9. OpenOnload implemen-
tation enables transfer data from the user space directly to the NIC because it is linked
into an application’s address space and granted direct access to network hardware [11].

2.1.2. CPU Affinity

Processes running on Linux are handled by a scheduler. A scheduling policy determines
when and how to select a new process to run. Other than the default scheduling policy,
it is possible to create a custom scheduling policy. The default scheduling policy is based
on the time sharing technique and priority of processes [7][12].

1http://linux.die.net/man/8/netstat
2http://www.linuxcommand.org/man_pages/ethtool8.html
3http://linux.die.net/man/8/tcpdump
4http://www.ntop.org/products/pf_ring/dna/
5http://info.iet.unipi.it/~luigi/netmap/
6http://www.intel.com/p/en_US/embedded/hwsw/technology/packet-processing
7http://www.napatech.com/products/network_adapters.html
8http://www.openonload.org
9http://www.openonload.org

10

http://linux.die.net/man/8/netstat
http://www.linuxcommand.org/man_pages/ethtool8.html
http://linux.die.net/man/8/tcpdump
http://www.ntop.org/products/pf_ring/dna/
http://info.iet.unipi.it/~luigi/netmap/
http://www.intel.com/p/en_US/embedded/hwsw/technology/packet-processing
http://www.napatech.com/products/network_adapters.html
http://www.openonload.org
http://www.openonload.org

Figure 2.2.: OpenOnload enables applications to transfer data directly to the NIC by
using user space library

Time sharing means that the CPU time is divided into time slices, one for each process.
At one moment, one processor can run only on one process. If a process is still running
beyond the assigned time slices, the scheduler will migrate this process to another CPU.

The scheduler also uses the priority of the processes to determine which processes get
to run on CPU. The scheduler keeps track of what processes are doing and adjust their
priority periodically. Processes that have not used CPU for long time will have their
priority increased and on the opposite, processes that have been running for a long time
will have their priority decreased. The biggest chance of having CPU time goes to the
process with highest priority.

CPU affinity is the ability in Linux to bind processes to a certain processors [13].
There are two types of CPU affinity: soft and hard affinity. Soft affinity, or also known
as natural affinity, is the default way of scheduler to try to keep processes on the same
CPU as long as possible. The process will be moved to another processor if it becomes
impossible to keep it on the same CPU based on the scheduling policy. Hard affinity is
a way to force a process to run on a certain CPU without any possibility of being moved
to another processor. The implementation of hard affinity is provided by Linux system
call sched affinity (since Linux kernel v2.6) [7].

One of the benefit of configuring CPU (hard) affinity is cache optimization. When a
process runs on a processor, a local cache contains data from a processor is created. If
a process keeps bouncing between processors, this local cache will likely to be invalid
because each process also likely to have different data thus invalidating the old cache
and creating new one. It means cache miss will grow large.

Another benefit that related to a time sensitive application, which is very common in

11

an HFT environment, is performance. By configuring a single process to bound to one
processor and let other processes run on other processors, it directs all attention and
resource of a processor to a single process [13]. Therefore the process can run without
any significant interruption that can be caused by CPU.

2.1.3. Spinning

An interrupt is a signal to the kernel that an event has occurred and therefore changes the
sequence of instructions that is executed by processors [14]. Interrupt can be caused by
software (software interrupt) or by hardware (hardware interrupt). Software interrupt is
caused by an application running on user mode to show an exceptional events. Hardware
interrupt is used to let processors know that an event created by the hardware needs
their attention.

This also applies to network cards. When a network packet arrives on a network
card, it will send an interrupt notification to CPU [15]. It means CPU will need to
handle interrupt for each incoming packet. Every time CPU handles an interrupt it
will create an overhead because CPU will need to do context switching. On top of
that, there are thousands of packet coming in short period of time, therefore most NIC
drivers (and supported by Linux kernel) [16] are using polling (called device polling) to
regularly handle arriving packets [17] [18]. In a network stack that experiences high load
of incoming network packets, device polling shows better performance than per-packet
interrupt [16] [19].

In a low-latency sensitive environment, both options are not optimal. Per-packet
interrupt will create too many context switches and device polling will create unnecessary
latency by letting incoming packets to wait before being handled by processor.

An option to achieve better performance in terms of latency is to constantly ask net-
work device for new packets, which is known as spinning. To realize this in Linux,
application can be configured to either repeatedly invoke on of the polling system calls
(poll(), epoll(), select()) on the application level or to use Busy Polling socket
option (SO BUSY POLL), which is included in the kernel since v3.11 [7]. The implemen-
tation of busy polling as the socket option will only work in combination with network
driver that implements ndo busy poll() callback and Linux kernel that compiled with
CONFIG NET RX BUSY POLL option [20]

By using Busy Polling, the networking stack actively ask the device driver for new
packets for a given amount of time. If there are newly arriving packets, the network
driver sends them directly through the network layer to the socket. When the poll call
is back to the networking stack, it checks directly for any pending data in the socket
queue. By doing this, there will be no time wasted by letting packets waiting in the
queue.

The major advantage of spinning is that it minimizes the number of context switch
that occurs when packets arrive [21]. It then will reduce latency and jitter [22]. However,
it causes greater CPU utilization on the core that is doing the poll, which will eventually
have an impact on the general performance. An additional side effect is that because of
busy polling, CPU will have no time to sleep and hence using more power. Therefore, a

12

careful tuning must be considered to achieve the desired performance [23].

2.2. Docker

Docker is an open source platform that automates the process of developing, shipping,
and running applications. Docker packages an application (with all of its libraries and
dependencies) into a standardized unit called a (Docker) container [24]. Docker com-
bines the principle of operating system-level virtualization [25] with tools to simplify the
managing and the deploying process of these containers.

2.2.1. Comparison with Virtual Machine

As seen in Figure 2.4, Docker containers include the application and all of its dependen-
cies but share the same operating system’s kernel with other containers. On the other
hand, traditional virtual machines include the entire guest operating system (as seen in
Figure 2.3).

Figure 2.3.: Virtual machine architecture [24]

2.2.2. Inside Docker

There are three components in Docker internally:

• Docker image - it is a read-only template used to create a container. Every
image starts from a base image. Base images are mainly operating system images,
e.g. Fedora 20 image10 or Ubuntu 14.04 image11. Operating system images are

10https://registry.hub.docker.com/_/fedora/
11https://registry.hub.docker.com/_/ubuntu/

13

https://registry.hub.docker.com/_/fedora/
https://registry.hub.docker.com/_/ubuntu/

Figure 2.4.: Docker container architecture [24]

examples of images that would create a container with a fully working operating
system. It is also possible to create a base image from scratch [26]. The base image
can be modified by adding necessary applications, which then can be converted to
be a new image. This process is called ”committing a change”. This is one of the
two ways to build an image. The other way is by using a Dockerfile. A Dockerfile
is a script that consists of instructions to build an image in an automated way
[27][28].

• Docker container - as explained previously in Section 2.2, it is a standardized
unit that has everything necessary for an application to run in an isolated way. A
container is created from a Docker image. For instance, an image of Ubuntu with
Apache will create a container that has Apache running on Ubuntu [29][30].

• Docker registry - it holds the Docker images. It operates similar to source
code repositories in which images can be downloaded and uploaded (”push” and
”pull” are the proper terms) from a single source. A registry can be private or
public. A public Docker registry is called Docker Hub12 where everybody can push
their images and also pull publicly available images without any need to create an
image from scratch. This feature allows images to be distributed (either publicly
or privately) to a specific location [31][32].

2.2.3. Underlying technology

To allow containers to run in an isolated way, Docker makes use of several Linux kernel
features [33].

• namespaces - the main idea of Linux namespaces is to separate different resources
of a group of processes to have different view of the system than another group
of processes [34]. The implementation of namespaces allow processes to be put
into different namespaces, with all processes in each namespace has no clue about
the existence of other processes in other namespaces. It then provides a form of
lightweight virtualization and resource isolation. This capability is the reason why

12https://hub.docker.com

14

https://hub.docker.com

Docker uses this kernel feature to create containers. It is to provide them with an
isolated workspace and their own environment without having access outside it.
There are several types of namespaces used by Dockers to accomplish their goals
of building isolated containers [34].

– pid - used for process isolation. The pid namespaces allow multiple processes
in different pid namespaces to have the same pid. This is possible because
processes in different namespaces cannot see other processes in the other
namespaces. This is the foundation of Docker container because it means that
all processes in a container will not be able to see other processes outside of the
container and therefore will not be able to influence or affect other processes
in other container.

– net - used for managing network interface. It provides isolation of the sys-
tem resources related to networking. Each network namespace therefore can
be configured to have different network configuration (network device, IP
address, routing tables, etc) than other network namespace.

– ipc - used to isolate certain interprocess communication (IPC) resources,
namely System V IPC objects and POSIX message queues. It means that
each IPC namespace has its own set of System V IPC identifiers and its own
POSIX message queue filesystem.

– mnt - used for managing mount points. A filesystem that is mounted in a
mount namespace will not be seen by other mount namespaces. Therefore
it allows processes to have its own view of a filesystem and of their mount
points.

– uts - used for isolating kernel and version identifiers. It can isolate two system
identifiers (nodename and domainname) in which allows each container to
have its own hostname and domain name.

• control groups (cgroups) - it is Linux kernel layer that provides resource man-
agement and resource accounting for groups of processes. Docker implement
cgroups so that available hardware resources can be shared fairly between con-
tainers and also to limit it if necessary.

• union file system (UnionFS) - it is a file system that operates by creating layers
which is used to provide the building blocks for containers.

• container format - it is a wrapper that combines all the previously mentioned
technologies. Despite the fact that libcontainer is the default container format,
Docker also supports LXC (Linux Container)13.

The implementation of namespaces and cgroups by Docker to create containers are
fairly lightweight since it is only separating some Linux kernel administration and there-
fore have insignificant impact on the performance [35].

13http://linuxcontainers.org

15

http://linuxcontainers.org

2.2.4. Networking Mode

Since the focus of this research is the network I/O performance, it is crucial to take a
look at the network setup of containers in Docker.

There are four possible network setups in Docker [36]:

• bridge - this is the default networking setup when a Docker container is created.
Each container has its own network namespace so that it has its own isolated net-
work stack. Moreover, an Ethernet bridge is created in the host machine which
is connected to the Ethernet interface of the container. Then depending on the
preference, it can be configured to use bridging or NAT (Network Address Trans-
lation).

• host - this mode does not create a separated network stack for a container. The
container shares the same network stack with the host which means the container
also has full access to the network interfaces of the host.

• container - it lets a container to share the same isolated network stack with
another container such that running processes on these two containers can com-
municate to each other via the loopback interface.

• none - a container will have its own isolated network stack but it is left unconfig-
ured and it is all for the user to setup the network stack.

Only host and bridge networking mode will be the focus in this research because
these two modes can be used to connect a container to other networks outside the host.
Whereas container mode are used only to communicate between containers.

These various networking modes are created by the network namespace mentioned in
Section 2.2.3. How each of these networking modes affect the performance is investigated
in Section 4.

16

2.3. Hardware timestamps

Hardware timestamps are timestamps added to packets in the ingress port. This is done
by a dedicated hardware component in certain hardware (mostly switches). By having a
packet timestamped by dedicated hardware in the ingress port, it gives better accuracy
then software timestamps [37]. In short: hardware timestamping is more accurate and
precise than software timestamping.

Figure 2.5.: The difference in architecture between bridge networking mode [38] and host
networking mode in Docker.

17

3. Methodology

3.1. Approach

This research uses a bottom-up method. First of all, a topology will be set up. This
topology is designed to do the measurement accurately. Then the baseline will be de-
termined by measuring the network I/O performance of applications running with and
without Docker. Other measurements will be performed with some network tuning to
optimize and improve the baseline result. All measurements will be done multiple times
to get repeatable and deterministic results. In the end, these results will be compared to
each other. By comparing them, a conclusion can be taken whether the implementation
of Docker actually impacts the network I/O performance.

3.2. Topology

Figure 3.1.: The topology for the measurement

The topology is set up as shown in Figure 3.1 which consists of four components:
packet generator, data collection, switch, and system under test. It is assumed that there
is zero latency caused by the cables that connects each hardware.

The process is as the following:

1. The packet generator sends a UDP packet to the system under test through the
switch.

18

2. In the switch, the packet is copied to the data collection.

3. The original packet is received by the system under test and it is sent back to the
packet generator.

4. This returning packet is then also copied in the switch to be sent to the data
collection.

5. Meanwhile the original returning packet continues its way to the packet generator.

6. In the data collection the copy of the original and the returning packet are times-
tamped and the difference is calculated by subtracting the timestamps of the orig-
inal packet from the timestamps of the returning packet.

Packets coming from the packet generator are copied as late as possible on the egress
port. It is to avoid any delays that can occur inside the switch. For the same reason,
packets returning from the system under test to the packet generator are copied as early
as possible on the ingress port. Therefore, both original and returning packets are always
copied exactly on the same points.

Furthermore, the copied packets are sent to the data collection with dedicated lines
to avoid collision between copied packets that would add unnecessary delays.

The system under test is a server with Intel R©CoreTMi7-4790K CPU @ 4.00GHz. It
has 8 MB of L3 cache. The size of cache is important because the larger the cache the
less cache miss can happen which will eventually lead to less time needed to process
network packets.

The application that is used to send the UDP packets is sfnt-pingpong. It is an open-
source application that is used to measure network I/O performance. More detail about
sfnt-pingpong is explained in Section 3.3. This application is installed in the packet
generator and the system under test. In the system under test, it will be installed
natively and also inside a Docker container.

UDP-in and UDP-out is used in this research. It is different than the application
used in the production environment which is using UDP-in and TCP-out (as mentioned
in Section 1.1). Since the focus is to measure the network performance, using UDP-in
and UDP-out is sufficient and even preferred because UDP protocol is faster than TCP,
the measured results shows the time it takes for a packet to travel through a network
stack, without any delay. Other than that, there was not enough time to perform the
experiments on the production application.

Fedora 20 is used as the operating system for the packet generator and the system
under test. This is chosen because Fedora is already common in the infrastructure of
the company where this research was carried out.

19

3.3. Sfnt-pingpong

Sfnt-pingpong is one of a set of tools developed by Solarflare1 to measure network per-
formance on Linux, Solaris, FreeBSD, and MacOSX. This application can be obtained
from its website2.
Sfnt-pingpong has a client and server architecture. The client sends the packet and

the server acts as a mirror that bounces the incoming packet back to the client. In this
research, the client is the packet generator and the server is the system under test.
Sfnt-pingpong provides built-in function to optimize the measured network perfor-

mance, i.e CPU affinity and spinning. As explained in more details in Section 2.1.2
and Section 2.1.3, CPU affinity is dedicating a single CPU core to run the application
while spinning is a way for an application to keep checking for new incoming network
packets instead of waiting for an interrupt from the network card. For the spinning, sfnt-
pingpong is using user space poll() and epoll() system calls instead of using kernel
socket option SO BUSY POLL [39].

It is also possible to set the size of a packet and the number of packets sent. Moreover,
it is also possible to test the performance by sending either TCP or UDP packet.

3.4. Dockerizing

Dockerizing is a common term to describe the process of converting an application to
run in a Docker container. As sfnt-pingpong will run without and also with Docker, it
must be dockerized as well.

As mentioned in Section 2.2.2, there are two ways of dockerizing an application, by
creating a Docker container and updating it internally or by using a Dockerfile. In this
research, a Dockerfile will be used to create an image.

The Dockerfile written for this research is shown in Appendix B.1. The instructions
in this Dockerfile do the following: use Fedora 20 as the base image, install necessary
applications, unpackage and compile sfnt-pingpong, and put it into /usr/local/src/.
A symlink to this directory is then created in /usr/local/bin.

This created image has been uploaded and therefore is accessible in Docker Hub3.
To create an image based on this Dockerfile, the command as shown in Appendix B.2

can be invoked. The option -t is to give a name to the created image.
The created image then can be run as a container by using the command shown in

Listing B.3. It tells Docker to create a container based on the fedora-pingpong image with
a terminal (-t) and to make an interactive connection (-i) so users can get a command
prompt inside the created container. It also launches a Bash shell inside the container.

1http://www.solarflare.com/
2http://www.openonload.org/download/sfnettest/sfnettest-1.5.0.tgz
3https://registry.hub.docker.com/u/ardho/fedora-pingpong/

20

http://www.solarflare.com/
http://www.openonload.org/download/sfnettest/sfnettest-1.5.0.tgz
https://registry.hub.docker.com/u/ardho/fedora-pingpong/

3.5. Test Cases

As mentioned in Section 3.3, the measurement is performed by using sfnt-pingpong. The
test cases are separated into two scenarios: running the application with and without the
optimization options. The optimization options are CPU affinity and spinning. Each
scenario will be performed natively (without Docker) and in Docker (with both host
networking mode and bridge networking mode).

The following options are used by sfnt-pingpong for all measurements:

• 64 bytes data payload size - it is resulted in an Ethernet packet of 110 bytes
(18 bytes Ethernet header, 20 bytes IP header, 8 bytes UDP header, and 64 bytes
UDP payload). This is a typical trading-traffic size.

• 1 million packets sent - it is to get statistically correct measurements.

• UDP packet - it is unreliable and best effort protocol which is faster than TCP.

The options are set as parameters on the client side but based on the purpose of
the parameters, the related action can be carried out by the server side. Setting the
optimization options are the example where the parameters are set on the client side
but the action itself is executed on the server side. So in this case, when the client sends
the network packets, the server receives it and send them back while performs CPU
affinity and spinning as configured on the client side [39].

Furthermore, no kernel-bypass used on this research because of the time constraint.

1 sfnt -pingpong --sizes =64 --miniter =1000000 --maxiter =1000000 udp

system_under_test

Listing 3.1: sfnt-pingpong command to run measurements without optimization options

1 sfnt -pingpong --affinity ="2;2" --spinning --sizes =64 --miniter =1000000

--maxiter =1000000 udp system_under_test

Listing 3.2: sfnt-pingpong command to run measurements with optimization options

21

4. Results

As explained in Section 3.5, there are in general two scenarios: the baseline (without
any optimization) and the optimized configuration measurement. Multiple measure-
ments have been performed for each scenarios and setups mentioned in Section 3.5. The
following terms are created for each setup to show the results in a simple way:

• Docker bridge - Docker with bridge networking mode

• Docker host - Docker with host networking mode

• No Docker - no Docker is used

For each setup, the results of ten measurements will be shown. The results will be
shown in tables and also in CDF (Cumulative Distribution Function) graphs. A single
table will show min, median, 95 percentile, 99 percentile, and standard deviation value.
They are used to show the percentage of the packets below a certain value.

And to show that these results are always within certain boundaries, all ten measure-
ments results are combined into one. Then the statistical results were created again
together with CDF graphs.

In this section, the summary of baseline results and optimized results will be explained.
For each complete measurement, please refer to Appendix C and Appendix D.

4.1. Measuring the baseline

Figure 4.1 and Table 4.1 show the comparison of each setup. Without Docker, there is
a 50% probability that it would take 6.17µs or less for network packets to go back and
forth the network stack. Meanwhile, with Docker, this number is slightly higher (for
both network host and network bridge mode). Having said that, these results are not
scientifically significant to prove or to confirm whether there is indeed a performance
degradation. The results are too close to each other.

The wide spread of resulted values (as shown in Appendix C) shows inefficiencies and
delays during transmission. These inefficiencies could be caused by multiple reasons as
mentioned in Section 2, i.e. context switching, polling time, interrupt, and cache misses.

This result was created by sfnt-pingpong without any optimization options. The
network driver either sends interrupt to kernel for each incoming packets or uses de-
vice polling which would hurt the performance since context switching is expensive and
polling time wasted unnecessary waiting time for the packets to be picked up by the

22

min (in µs) median (in µs) 95% (in µs) 99% (in µs) std (in µs)
Docker host 4.98 6.33 9.60 14.69 1.93

Docker bridge 5.43 6.63 8.63 10.7 6.72
No Docker 4.92 6.17 10.08 15.98 2.30

Table 4.1.: Comparison of combined results of ten measurements of each setup without
optimization

kernel. It is also using natural CPU affinity during measurement that will make pro-
cessors to bound to different processes during a single measurement. This will creates
cache misses and therefore adds more latency.

Figure 4.1.: Comparison of combined results of ten measurements of each setup without
optimization

4.2. Measuring with optimization

Figure 4.2 and Table 4.2 show the comparison between results of each setup.
It shows that the network I/O performance without Docker and with Docker host

networking mode are identical. There is a 50% probability that it would take 4.13µs or
less for network packets to go back and forth the network stack in a Docker container
with networking host mode. Without Docker, for the same observation, the result is

23

min (in µs) median (in µs) 95% (in µs) 99% (in µs) std (in µs)
Docker host 3.47 4.13 4.60 4.85 0.22

Docker bridge 4.38 4.94 5.43 5.67 0.26
No Docker 3.65 4.15 4.64 4.88 0.22

Table 4.2.: Comparison of combined results of ten measurements of each setup with
optimization

4.15µs. Moreover, the standard deviation value indicates that the results are more
stable and therefore deterministic, as shown in Appendix D.

The result also indicates that tuning the application with network tunings like CPU
affinity and spinning greatly reduce the delays since it minimizes context switch, inter-
rupt, polling time, and cache misses.

Figure 4.2.: Comparison of combined results of ten measurements of each setup with
optimization

24

5. Conclusions

Docker simplifies the deploying process of applications by packaging applications with
all of their dependencies and libraries into a standardized unit.

To find out whether a performance degradation exists while running applications in
Docker, a series of measurements was carried out. After setting up a topology and con-
verting a test application to run in Docker, multiple measurements have been performed
successfully.

The results indicate that there is a slight performance degradation of the network I/O
performance when Docker is used. However, the results were having too high value of
standard deviation with really small difference between them. Therefore, the results are
not scientifically significant to prove that there is indeed a performance degradation.

Furthermore, if the application running in Docker is properly configured with some
network tuning (CPU affinity and spinning) and the network host mode is used, it gives
identical performance as without Docker. The reason is that by using CPU affinity
and spinning, a few source of latency are minimized, i.e. context switching and cache
miss. This proves that having a (close to) native performance is possible when using
Docker, even though the network setting of Docker and the running applications must
be configured properly.

This result then also shows that the baremetal-like performance can also be achieved
without using additional technique like kernel-bypass as has been found by Eder [1].
This result is an encouragement to use Docker in an environment that expect high per-
formance, without implementing kernel-bypass technology. Therefore, it is also feasible
for low latency sensitive applications to be deployed by using Docker since there is no
significant impact on the network performance which is the requirement for low-latency
sensitive applications.

5.1. Future Work

As the topology and supported tools are ready, it is good to expand the measurement
to have scenarios with a larger number of packets and also with different sizes of data
payload. The result would give an indication whether the native performance with
Docker only occurs on a certain size of payload or not.

It is also interesting to run the measurements with having an extra load on the machine
either by running multiple Docker containers at the same time or by using a special
tool to create loads on the host itself. Another measurement setup would be to test
the optimization options separately. The implementation of CPU affinity and spinning

25

could have different effect to the performance when only either one of them implemented
on the measurements.

Knowing the results of these measurements are going to be important because then
they can be taken into account when building applications that depend on network I/O
performance.

26

Acknowledgments

I would like to thank my supervisor Prof. dr. ir. Cees T. A. M. de Laat who gave me
the golden opportunity to do this wonderful project on the topic.

Special thanks to Arno Bakker, as I appreciate his guide and time for helping me to
write the report in good way.

I would also like to thank my wife, Indri, and friends who helped me a lot in finalizing
this project within the limited time frame.

References

[1] Jeremy Eder. Accelerating Red Hat Enterprise Linux 7-based Linux Contain-
ers with Solarflare OpenOnload. Technical report, Red Hat Enterprise, April
2015. http://public.brighttalk.com/resource/core/67389/201504-onload_

containers_brief_v10_99139.pdf.

[2] Nane Kratzke. About microservices, contars and their underestimated impact on
network performance. In Proceedings of CLOUD COMPUTING 2015 (6th. Inter-
national Conference on Cloud Computing, GRIDS and Virtualization), p165-169,
2015. https://www.researchgate.net/publication/273456042te.

[3] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An Updated
Performance Comparison of Virtual Machines and Linux Containers. Technical
report, IBM Research Division, IBM, July 2014. http://public.brighttalk.

com/resource/core/67389/201504-onload_containers_brief_v10_99139.pdf.

[4] Larry Neumann. Kernel bypass revving up linux networking. http://www.

solacesystems.com/blog/kernel-bypass-revving-up-linux-networking,
March 2010. Retrieved: 16 August 2015.

[5] Jarret W. Buse. Linux Network Stack. http://www.linux.org/threads/linux-

network-stack.4620/, September 2013. Retrieved: 4 July 2015.

[6] M. Tim Jones. Anatomy of the Linux networking stack. http://140.120.7.21/

LinuxRef/Network/LinuxNetworkStack.html, June 2007. Retrieved: 4 July 2015.

[7] Daniel P. Bovet and Marco Cesati. Understanding The Linux Kernel. Springer
Science+Business Media New York, New York, USA, 2005.

[8] Context Switch Definition. http://www.linfo.org/context_switch.html, Octo-
ber 2004. Retrieved: 18 August 2015.

[9] Li, Chuanpeng and Ding, Chen and Shen, Kai. Quantifying the cost of context
switch. In Proceedings of the 2007 workshop on Experimental computer science,
page 2. ACM, 2007. http://dl.acm.org/citation.cfm?id=1281702.

[10] Jeremy Eder. Thoughts on Open vSwitch, kernel bypass, and 400gbps Eth-
ernet. http://www.breakage.org/2012/10/01/thoughts-on-open-vswitch-

kernel-bypass-and-400gbps-ethernet/, October 2012.

28

http://public.brighttalk.com/resource/core/67389/201504-onload_containers_brief_v10_99139.pdf
http://public.brighttalk.com/resource/core/67389/201504-onload_containers_brief_v10_99139.pdf
https://www.researchgate.net/publication/273456042te
http://public.brighttalk.com/resource/core/67389/201504-onload_containers_brief_v10_99139.pdf
http://public.brighttalk.com/resource/core/67389/201504-onload_containers_brief_v10_99139.pdf
http://www.solacesystems.com/blog/kernel-bypass-revving-up-linux-networking
http://www.solacesystems.com/blog/kernel-bypass-revving-up-linux-networking
http://www.linux.org/threads/linux-network-stack.4620/
http://www.linux.org/threads/linux-network-stack.4620/
http://140.120.7.21/LinuxRef/Network/LinuxNetworkStack.html
http://140.120.7.21/LinuxRef/Network/LinuxNetworkStack.html
http://www.linfo.org/context_switch.html
http://dl.acm.org/citation.cfm?id=1281702
http://www.breakage.org/2012/10/01/thoughts-on-open-vswitch-kernel-bypass-and-400gbps-ethernet/
http://www.breakage.org/2012/10/01/thoughts-on-open-vswitch-kernel-bypass-and-400gbps-ethernet/

[11] Steve Pope and David Riddoch. Introduction to OpenOnload Building Application
Transparency and Protocol Conformance into Application Acceleration Middleware.
Technical report, Solarflare Communication, April 2011. http://www.solarflare.
com/content/userfiles/documents/solarflare_openonload_intropaper.pdf.

[12] Chapter 14. Tuning the Task Scheduler. https://doc.opensuse.

org/documentation/html/openSUSE_121/opensuse-tuning/cha.tuning.

taskscheduler.html. Retrieved: 21 August 2015.

[13] Robert Love. Kernel korner: Cpu affinity. Linux Journal, July 2003. http://dl.

acm.org/citation.cfm?id=860375.860383.

[14] Software Interrupt Definition. http://www.linfo.org/interrupt.html, May
2006. Retrieved: 21 August 2015.

[15] Christian Benvenuti. Understanding Linux Network Internals. O’Reilly Media Inc.,
Sebastopol, CA, USA, December 2005.

[16] Luca Deri. Improving Passive Packet Capture: Beyond Device Polling. Technical
report, NETikos S.p.A., Pisa, Italy. http://luca.ntop.org/Ring.pdf.

[17] Jonathan Corbet. Low-latency Ethernet device polling. https://lwn.net/

Articles/551284/, May 2013. Retrieved: 16 August 2015.

[18] Luigi Rizzo. Device Polling support for FreeBSD. http://info.iet.unipi.it/

~luigi/polling/. Retrieved: 20 August 2015.

[19] Vivek Gite. FreeBSD Set Network Polling To Boost Performance.
http://www.cyberciti.biz/faq/freebsd-device-polling-network-polling-

tutorial/, June 2009. Retrieved: 20 August 2015.

[20] The Linux Kernel Archives, Documentation for /proc/sys/net/*. https://www.

kernel.org/doc/Documentation/sysctl/net.txt.

[21] Marek Majkowski. How to achieve low latency with 10Gbps Ethernet. https:

//blog.cloudflare.com/how-to-achieve-low-latency/, June 2015. Retrieved:
20 August 2015.

[22] Jesse Brandeburg. A way towards Lower Latency and Jitter. Technical report,
Intel, 2012. Linux Plumbers Conference, San Diego, California, 29-31 August 2012.

[23] Open Source Kernel Enhancements. Technical report, Intel, 2013.

[24] What is Docker? https://www.docker.com/whatisdocker/. Retrieved: 3 June
2015.

[25] Yang Yu. OS-level Virtualization and Its Applications. PhD thesis, Stony Brook
University, December 2007. http://www.ecsl.cs.sunysb.edu/tr/TR223.pdf.

29

http://www.solarflare.com/content/userfiles/documents/solarflare_openonload_intropaper.pdf
http://www.solarflare.com/content/userfiles/documents/solarflare_openonload_intropaper.pdf
https://doc.opensuse.org/documentation/html/openSUSE_121/opensuse-tuning/cha.tuning.taskscheduler.html.
https://doc.opensuse.org/documentation/html/openSUSE_121/opensuse-tuning/cha.tuning.taskscheduler.html.
https://doc.opensuse.org/documentation/html/openSUSE_121/opensuse-tuning/cha.tuning.taskscheduler.html.
http://dl.acm.org/citation.cfm?id=860375.860383
http://dl.acm.org/citation.cfm?id=860375.860383
http://www.linfo.org/interrupt.html
http://luca.ntop.org/Ring.pdf
https://lwn.net/Articles/551284/
https://lwn.net/Articles/551284/
http://info.iet.unipi.it/~luigi/polling/
http://info.iet.unipi.it/~luigi/polling/
http://www.cyberciti.biz/faq/freebsd-device-polling-network-polling-tutorial/
http://www.cyberciti.biz/faq/freebsd-device-polling-network-polling-tutorial/
https://www.kernel.org/doc/Documentation/sysctl/net.txt
https://www.kernel.org/doc/Documentation/sysctl/net.txt
https://blog.cloudflare.com/how-to-achieve-low-latency/
https://blog.cloudflare.com/how-to-achieve-low-latency/
https://www.docker.com/whatisdocker/
http://www.ecsl.cs.sunysb.edu/tr/TR223.pdf

[26] Create a base image. https://docs.docker.com/articles/baseimages/. Re-
trieved: 9 July 2015.

[27] Docker images. https://docs.docker.com/introduction/understanding-

docker/#docker-images. Retrieved: 7 July 2015.

[28] How does a Docker image work? https://docs.docker.com/introduction/

understanding-docker/#how-does-a-docker-image-work. Retrieved: 8 July
2015.

[29] Docker containers. https://docs.docker.com/introduction/understanding-

docker/#docker-container. Retrieved: 7 July 2015.

[30] How does a container work? https://docs.docker.com/introduction/

understanding-docker/#how-does-a-container-work. Retrieved: 8 July 2015.

[31] Docker registries. https://docs.docker.com/introduction/understanding-

docker/#docker-registries. Retrieved: 7 July 2015.

[32] How does a Docker registry work? https://docs.docker.com/introduction/

understanding-docker/#how-does-a-docker-registry-work. Retrieved: 8
July 2015.

[33] The Underlying Technology. https://docs.docker.com/introduction/

understanding-docker/#the-underlying-technology. Retrieved: 8 July
2015.

[34] Rami Rosen. Linux Kernel Networking. Implementation and Theory. Springer
Science+Business Media New York, New York, USA, 2013.

[35] Fabio Diniz Rossi Tiago C. Ferreto Timoteo Lange Cesar A. F. De Rose Miguel
Gomes Xavier, Marcelo Veiga Neves. Performance Evaluation of Container-based
Virtualization for High Performance Computing Environments, 2013.

[36] Network Configuration. https://docs.docker.com/articles/networking/. Re-
trieved: 8 July 2015.

[37] Douglas Arnold. Why is IEEE 1588 so accurate? http://blog.meinbergglobal.

com/2013/09/14/ieee-1588-accurate/, September 2013. Retrieved: 8 July 2015.

[38] Adrien Blind. Docker Networking Basics and Coupling with Software Defined
Networks. http://www.slideshare.net/adrienblind/docker-networking-

basics-using-software-defined-networks, 2013. Octo Technology.

[39] Solarflare Communication. Onload User Guide, 2015. Appendix F: Solarflare
sfnettest.

30

https://docs.docker.com/articles/baseimages/
https://docs.docker.com/introduction/understanding-docker/#docker-images
https://docs.docker.com/introduction/understanding-docker/#docker-images
https://docs.docker.com/introduction/understanding-docker/#how-does-a-docker-image-work
https://docs.docker.com/introduction/understanding-docker/#how-does-a-docker-image-work
https://docs.docker.com/introduction/understanding-docker/#docker-container
https://docs.docker.com/introduction/understanding-docker/#docker-container
https://docs.docker.com/introduction/understanding-docker/#how-does-a-container-work
https://docs.docker.com/introduction/understanding-docker/#how-does-a-container-work
https://docs.docker.com/introduction/understanding-docker/#docker-registries
https://docs.docker.com/introduction/understanding-docker/#docker-registries
https://docs.docker.com/introduction/understanding-docker/#how-does-a-docker-registry-work
https://docs.docker.com/introduction/understanding-docker/#how-does-a-docker-registry-work
https://docs.docker.com/introduction/understanding-docker/#the-underlying-technology
https://docs.docker.com/introduction/understanding-docker/#the-underlying-technology
https://docs.docker.com/articles/networking/
http://blog.meinbergglobal.com/2013/09/14/ieee-1588-accurate/
http://blog.meinbergglobal.com/2013/09/14/ieee-1588-accurate/
http://www.slideshare.net/adrienblind/docker-networking-basics-using-software-defined-networks
http://www.slideshare.net/adrienblind/docker-networking-basics-using-software-defined-networks

A. Automation Script

1 #!/bin/bash

2

3

4 trap ctrl_c INT

5

6 # Of course , set the functions first ..

7

8 killall () {

9 ssh labnet4 "pgrep -f ’sfnt -pingpong ’ | xargs kill -9 &> /dev/null"

10 ssh labnet4 "docker ps -a | awk ’{print $1}’ | xargs docker rm -f

&> /dev/null"

11 ssh labnet4 ’brctl delif docker0 eth1 &> /dev/null ’

12 pgrep -f ’solar_capture ’ | xargs kill -9 &> /dev/null

13 }

14

15 help_message () {

16 echo "-d to use with docker"

17 echo "-o to use in an optimized way"

18 echo "-w to write the filename (default: pingpong.txt)"

19 echo "-b to use bridge mode. Need to be used a bit different. The

node in the labnet4 must be entered first and run the server

with do while loop. Here put the IP address of the docker

container ."

20 echo "-s the byte size"

21 echo "-i the number of iteration in one measurement (and the result

will be created and inserted into a directory with the filename

as the directory name)"

22 echo "-p packet numbers"

23 echo "-t time it takes to wait between exiting solarcapture and

processing the result in seconds. needed when the packet numbers

are big"

24 }

25

26 ctrl_c () {

27 echo "You wanted to stop. I quit. But cleanup first .."

28 killall

29 ssh labnet4 ’brctl delif docker0 eth1 &> /dev/null ’

30 echo "Done. Bye!"

31 exit 0

32 }

33

34

35 # Set the default value first ...

36 ITERATIONS =1

31

37 PACKET_NUMBERS =1000

38 SIZES =64

39 OPTIMIZED =""

40 RESULTFILENAME =" pingpong"

41 PINGPONG_SERVER ="ssh labnet4 ’sfnt -pingpong ’"

42 SERVER_IP ="9.21.1.61"

43 CLIENT_IP ="9.21.1.60"

44 BRIDGE_SERVER_IP =""

45 TIME_TO_WAIT =""

46

47 # Checking the parameters

48 if [$# -eq 0];

49 then

50 help_message

51 exit 0

52 else

53 while getopts ":dow:s:i:p:bt:h" opt; do

54 case $opt in

55 o)

56 OPTIMIZED="--affinity =\"2;2\" --spin"

57 ;;

58 d)

59 PINGPONG_SERVER ="ssh labnet4 ’docker run --name=${

docker_pingpong} --net=host ardho/fedora -pingpong -cmd ’"

60 ;;

61 w)

62 RESULTFILENAME=$OPTARG

63 ;;

64 s)

65 SIZES=$OPTARG

66 ;;

67 i)

68 ITERATIONS=$OPTARG

69 ;;

70 p)

71 PACKET_NUMBERS=$OPTARG

72 ;;

73 b)

74 BRIDGE_SERVER_IP ="9.21.1.1"

75 PINGPONG_SERVER ="ssh labnet4 ’docker run --name=${docker_pingpong

} ardho/fedora -pingpong -cmd ’"

76 ;;

77 t)

78 TIME_TO_WAIT=$OPTARG

79 ;;

80 h)

81 help_message

82 ;;

83 \?)

84 echo "Invalid option: -$OPTARG" >&2

85 exit 1

86 ;;

32

87 :)

88 echo "Option -$OPTARG requires an argument ." >&2

89 exit 1

90 ;;

91 esac

92 done

93 fi

94

95 if [-z $TIME_TO_WAIT]; then

96 TIME_TO_WAIT =5

97 fi

98

99 if [! -z $BRIDGE_SERVER_IP]; then

100 SERVER_IP ="${BRIDGE_SERVER_IP }"

101 fi

102

103 # This is the sfnt -pingpong command that will be used later.

104 THECOMMAND ="sfnt -pingpong ${OPTIMIZED} --sizes=${SIZES} --miniter=${

PACKET_NUMBERS} --maxiter=${PACKET_NUMBERS} udp ${SERVER_IP }"

105

106 # Kill everything now..

107 killall

108

109 # Set up directory name

110 DIRECTORY_NAME=${RESULTFILENAME}_dir

111 if ["${ITERATIONS }" -gt 1]; then

112 echo "Creating directory because has more than 1 result"

113

114 mkdir ${DIRECTORY_NAME} &> /dev/null

115 fi

116

117 for i in $(eval echo "{1.. $ITERATIONS }")

118 do

119 if [! -z $BRIDGE_SERVER_IP]; then

120 ssh labnet4 ’systemctl restart docker ’

121 ssh labnet4 ’brctl addif docker0 eth1 &> /dev/null ’

122 fi

123

124 while :; do

125 CHECK_SOLARCAPTURE_ACTIVE_ETH2=$(pgrep -f "

solar_capture_interactive.sh -n -i eth2" | wc -l)

126 if ["${CHECK_SOLARCAPTURE_ACTIVE_ETH2 }" -gt 0]; then

127 break

128 else

129 echo "Run solarcapture on eth2 of labnet3"

130 solarcapture_eth2_cmd =" solar_capture_interactive.sh -n -i eth2 -w

eth2_sc.pcap \"udp and ip src ${CLIENT_IP} and ip dst ${

SERVER_IP }\""

131 tmux new -session -d -s solarcapture_eth2 -n sc2 "

$solarcapture_eth2_cmd"

132

133 sleep 5 # to make sure it the tmux is created successfully

33

134 fi

135 done

136

137 while :; do

138 CHECK_SOLARCAPTURE_ACTIVE_ETH3=$(pgrep -f "

solar_capture_interactive.sh -n -i eth3" | wc -l)

139 if ["${CHECK_SOLARCAPTURE_ACTIVE_ETH3 }" -gt 0]; then

140 break

141 else

142 echo "Run solarcapture on eth3 of labnet3"

143 solarcapture_eth3_cmd =" solar_capture_interactive.sh -n -i eth3 -w

eth3_sc.pcap \"udp and ip src ${SERVER_IP} and ip dst ${

CLIENT_IP }\""

144 tmux new -session -d -s solarcapture_eth3 -n sc3 "

$solarcapture_eth3_cmd"

145

146 sleep 5 # to make sure it the tmux is created successfully

147

148 fi

149 done

150

151 tmux new -session -d -s session_pingpong_server -n pp "${

PINGPONG_SERVER }"

152

153 # Run client pingpong

154 echo "Run pingpong client on labnet3"

155

156 ${THECOMMAND}

157

158 echo "Pingpong is done. Kill solarcapture and sfnt -pingpong server"

159 killall

160

161 sleep ${TIME_TO_WAIT}

162

163 echo "Convert the pcap using tshark and join them"

164

165 tshark -r eth2_sc.pcap -tad | columnx.sh 1 3 > eth2_sc.txt

166 tshark -r eth3_sc.pcap -tad | columnx.sh 1 3 > eth3_sc.txt

167

168 join eth2_sc.txt eth3_sc.txt | col_sub.sh -s 3 2 | columnx.sh 1 3 >

${RESULTFILENAME}

169

170 mv ${RESULTFILENAME} ${DIRECTORY_NAME }/${RESULTFILENAME}-${i}

171 done

172

173

174

175 echo "Done!"

Listing A.1: A script to create the raw result

34

B. Docker

1 FROM fedora :20

2 MAINTAINER rohprimardho

3

4 #Preparing the software

5 RUN yum install -y wget

6 RUN yum install -y make

7 RUN yum install -y gcc

8 RUN wget http ://www.openonload.org/download/sfnettest/sfnettest -1.5.0.

tgz

9 RUN tar xzf sfnettest -1.5.0. tgz

10 RUN cd sfnettest -1.5.0/ src

11 RUN make -C /sfnettest -1.5.0/ src all

12 RUN cp /sfnettest -1.5.0/ src/sfnt -pingpong /usr/local/src

13 RUN ln -s /usr/local/src/sfnt -pingpong /usr/local/bin/

Listing B.1: The content of the Dockerfile to create an image of Fedora 20 with sfnt-
pingpong installed

1 docker build -t fedora -pingpong /path/to/Dockerfile

Listing B.2: The command to create an image from the Dockerfile

1 docker run -i -t fedora -pingpong /bin/bash

Listing B.3: The command to run a container from the created image

35

C. Baseline Measurements

C.1. Docker host

Figure C.1.: Ten measurements using Docker host

36

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
1 6.36 11.30 16.83 2.35
2 6.34 8.08 12.34 1.44
3 6.32 8.08 10.53 1.36
4 6.31 9.58 17.62 2.23
5 6.36 9.83 14.45 1.97
6 6.48 10.42 14.58 2.03
7 6.43 11.36 15.69 2.16
8 6.31 8.12 10.91 1.14
9 6.34 9.86 16.43 2.57
10 6.29 8.05 11.66 1.2

Table C.1.: Results of ten measurements using Docker host

Figure C.2.: Combined results of all ten measurements using Docker host

37

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
6.33 9.60 14.69 1.93

Table C.2.: Results of combined ten measurements using Docker host

C.2. Docker bridge

Figure C.3.: Ten measurements using Docker bridge

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
1 6.66 8.58 10.09 10.35
2 7.02 8.46 10.11 1.19
3 6.711 8.42 9.66 10.84
4 6.52 8.47 10.44 1.29
5 6.54 8.85 11.50 9.74
6 6.62 8.58 10.22 1.18
7 6.63 8.44 9.97 2.90
8 6.51 8.56 10.65 1.26
9 6.72 8.80 10.62 10.71
10 6.52 9.22 13.20 1.56

Table C.3.: Results of ten measurements using Docker bridge

38

Figure C.4.: Combined results of all ten measurements using Docker bridge

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
6.63 8.63 10.7 6.72

Table C.4.: Results of combined ten measurements using Docker bridge

39

C.3. No Docker

Figure C.5.: Ten measurements without Docker

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
1 6.18 11.64 17.10 2.51
2 6.33 11.21 17.33 2.22
3 6.15 9.21 14.06 1.76
4 6.09 8.10 12.38 1.60
5 6.14 8.76 12.66 2.26
6 6.28 10.70 15.43 2.20
7 6.19 10.04 16.14 2.20
8 6.12 9.65 14.89 2.06
9 6.17 10.86 19.64 2.61
10 6.19 9.46 16.54 3.12

Table C.5.: Results of ten measurements without Docker

40

Figure C.6.: Combined results of all ten measurements without Docker

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
6.17 10.08 15.98 2.30

Table C.6.: Results of combined ten measurements without Docker

41

D. Optimized Measurements

D.1. Docker host

Figure D.1.: Ten measurements using Docker host with optimization

42

H
median (in µs) 95% (in µs) 99% (in µs) std (in µs)

4.13 4.60 4.85 0.22

Table D.2.: Results of combined ten measurements using Docker host with optimization

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
1 4.07 4.52 4.76 0.21
2 4.11 4.60 4.84 0.20
3 4.13 4.58 4.81 0.20
4 4.12 4.61 4.87 0.20
5 4.08 4.55 4.86 0.23
6 4.17 4.63 4.88 0.21
7 4.16 4.62 4.88 0.21
8 4.06 4.50 4.74 0.20
9 4.19 4.67 4.93 0.25
10 4.16 4.62 4.86 0.21

Table D.1.: Results of ten measurements using Docker host with optimization

Figure D.2.: Combined results of all ten measurements using Docker host with
optimization

43

D.2. Docker bridge

Figure D.3.: Ten measurements using Docker bridge with optimization

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
1 4.93 5.41 5.62 0.24
2 4.94 5.42 5.62 0.21
3 4.96 5.44 5.66 0.28
4 4.92 5.41 5.64 0.29
5 4.94 5.49 5.96 0.40
6 5.00 5.48 5.68 0.21
7 4.94 5.43 5.64 0.23
8 4.91 5.40 5.61 0.23
9 4.87 5.38 5.79 0.26
10 4.95 5.42 5.62 0.21

Table D.3.: Results of ten measurements using Docker bridge with optimization

44

Figure D.4.: Combined results of all ten measurements using Docker bridge with
optimization

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
4.94 5.43 5.67 0.26

Table D.4.: Results of combined ten measurements using Docker bridge with
optimization

45

D.3. No Docker

Figure D.5.: Ten measurements without Docker with optimization

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
1 4.08 4.58 4.81 0.21
2 4.21 4.70 4.94 0.24
3 4.16 4.66 4.89 0.20
4 4.18 4.68 4.92 0.23
5 4.04 4.51 4.74 0.21
6 4.16 4.65 4.88 0.21
7 4.13 4.62 4.85 0.20
8 4.18 4.66 4.90 0.20
9 4.12 4.61 4.85 0.22
10 4.16 4.63 4.86 0.20

Table D.5.: Results of ten measurements without Docker with optimization

46

Figure D.6.: Combined results of all ten measurements without Docker with optimization

median (in µs) 95% (in µs) 99% (in µs) std (in µs)
4.15 4.64 4.88 0.22

Table D.6.: Results of combined ten measurements without Docker with optimization

47

	Introduction
	Motivation
	Research Questions
	Related Work
	Scope
	Contribution

	Background Information
	Linux Network Stack
	Kernel-bypass
	CPU Affinity
	Spinning

	Docker
	Comparison with Virtual Machine
	Inside Docker
	Underlying technology
	Networking Mode

	Hardware timestamps

	Methodology
	Approach
	Topology
	Sfnt-pingpong
	Dockerizing
	Test Cases

	Results
	Measuring the baseline
	Measuring with optimization

	Conclusions
	Future Work

	References
	Appendix Automation Script
	Appendix Docker
	Appendix Baseline Measurements
	Docker host
	Docker bridge
	No Docker

	Appendix Optimized Measurements
	Docker host
	Docker bridge
	No Docker

