
HTTP Header Analysis

Author:Roland Zegers
Master System and Network Engineering

University of Amsterdam
roland.zegers@os3.nl

August 31, 2015

Abstract

Many companies are busy finding new solutions for detecting the growing amount of malware that
is propagated over the Internet. A lot of anti-malware developers use the unique signature of the
payload as a detection mechanism. Others look at the communication channels. Research has been
done to see what information HTTP headers can provide. Different aspects of headers have been
investigated in order to track malware: header sizes, type errors or the presence or absence of certain
headers. This information is then used to create a fingerprint or signature.

The goal of this research was to look at order of HTTP request headers to see if it is possible to
determine if malware is present. Although the header order of malware is very irregular, it does not
stand out when compared to HTTP headers from regular traffic. Websites have their own header order
as well as programs that communicate over HTTP like Windows updates and anti-virus solutions.
Some websites request special services or offer specific content. This leads to the insertion of extra
headers, like security-, SOAP- or experimental headers, which create inconsistency in the order of
the headers. As a result of this, it is unfeasible to use header order to reliably identify systems or
malware.

1

Contents

1 Introduction 3
1.1 Rationale . 3
1.2 Related research . 3

2 Research Questions 4
2.1 Problem definition . 4
2.2 Research Questions . 4

3 Request headers 4
3.1 HTTP header structure . 4
3.2 Retrieved request headers . 5

4 Fingerprinting 7
4.1 Active fingerprinting . 7
4.2 Passive fingerprinting . 7
4.3 Fingerprinting method . 8
4.4 Request header order fingerprinting . 8

5 Approach 9
5.1 Method . 9
5.2 Header selection . 10
5.3 Process . 10

6 Results 11
6.1 Analysis of HTTP headers of uninfected systems . 11
6.2 Analysis of HTTP headers of the exploit kits . 12
6.3 Header probabilities of uninfected systems . 13
6.4 Header ordering of systems with an infection overlaid 15
6.5 Calculating header uncertainty . 17
6.6 Comparison with data provided by Fox-IT . 18

7 Conclusions 21
7.1 Influences on header ordering . 21
7.2 Determining the presence of malware . 21
7.3 Fingerprinting malware . 21
7.4 Fingerprinting PC’s . 21

8 Future work 22
8.1 Limitations . 22
8.2 Alternative parsing method . 22

References 23

A Script listings 25

B Consistency checking 34

C Header examples 36

D Request header listings 40

E Graphs 43

2

1 Introduction

1.1 Rationale

HTTP traffic is probably the most well-known traffic type used throughout the Internet. [27] Less
well-known to the broad audience is that the HTTP communication is done using HTTP headers.
These headers provide a lot of information regarding the system, the browser and applications that
run on this system. The intention of these headers is to provide web pages to the user in the best
possible manner, using for example the correct language, format or screen dimensions. The HTTP
headers however, can also be abused for malicious purposes. A botnet can pretend to be a regular
system and malware can manipulate headers to get information or to execute unwanted commands.
In order to detect these malicious activities, fingerprints are made which represent a blueprint of
the characteristics of the system. If the normal behavior of the system is to put the first letter in
uppercase characters in the HTTP header fields, then this is a characteristic of which a fingerprint
could be made to determine the validity of this system. In this report, the feasibility of using the
header order to detect malicious behavior is explored.

1.2 Related research

HTTP headers is a topic which has been researched before, but often the research concentrated
on HTTP response headers or the value of the header. An interesting article is ”Web application
fingerprinting”, which clearly describes different tools to analyze response headers. [8] A case where
request headers are the topic of research is when looking at Request Smuggling were the incomplete
parsing of request headers by intermediate systems is exploited. [5] The content of the responses is
often used to fingerprint servers and applications running on those servers. An example of this is the
research done by Dustin Lee, Jef Rowe, Calvin Ko and Karl Levitt. In their paper ”Detecting and
Defending against Web-Server Fingerprinting” they discuss techniques for remote identification of
web servers using the response headers and also propose some defenses against server probing [24].
Author Saumil Shah gives a good introduction of HTTP fingerprinting in his paper”An introduction
to HTTP fingerprinting”. [28] There are other researchers that also investigated request headers. A
good example is the research done by Ralph Broenink from the University of Twente. [21]. He used
the HTTP request headers to track the browsers used by the clients. A research performed by Juan
M. Estevez-Tapiador is closely related to part of this research [26]. In his paper ”Measuring normality
in HTTP traffic for anomaly-based intrusion detection” he describes his findings on attacks carried
out over HTTP traffic. He did this by trying to distinguish between normal traffic and malicious
traffic. Another research that is related is a work of researcher Peter Eckersley. He did research
on browser uniqueness using request headers. In his research, he set up a website to collect HTTP
headers and created a database with browser fingerprints. In this research it was proven that it was
possible to correctly guess more than 99 percent of the browsers using HTTP headers. [25]

3

2 Research Questions

This section describes the research questions that are the starting point for this research. A problem
definition is presented first. From this, the research questions are derived.

2.1 Problem definition

The order of HTTP headers is dependent on several factors; the operating system, the browsing
behavior, the websites and the installed software all influence which headers are sent in what order.
Systems with similar operating systems and browsers behave in the same way. These similarities
enable us to make a profile (=fingerprint) of these systems. As to our best knowledge, there’s no
existing research which addresses the influence of the HTTP header order when analyzing malware.

2.2 Research Questions

There are a lot of different categories of HTTP headers. An overview of all different types is given
in section 3.1. Response headers are in general the most interesting because servers generate these
responses. Servers are interesting for hackers because they often contain valuable data like financial
information, trade secrets, marketing plans etc. Hackers who gain this information can use it to sell
it to competitors or bribe the company by threatening to expose the data. In this research, however,
the focus is on the request headers. Several malware types make use of request headers to fetch a
malicious payload from a site and use that to infect the client. This research is conducted to see if it
can be determined that a client is infected with malware. This is done by specifically looking at the
header ordering.

The main research question is:

• Is it possible to determine from which source certain HTTP traffic comes, when analyzing and
correlating HTTP header ordering?

Sub-questions derived from main question are:

• Is it possible to create reliable fingerprints from the analyzed results?

• Is it possible to determine if malware is present by analyzing outliers in the HTTP header
ordering?

• Can fingerprints be created that match on the outliers?

3 Request headers

This chapter provides an overview of HTTP request headers. Section one discusses the structure of
HTTP traffic. Then, the second section describes the different header categories there are. The last
section gives a short overview of all the headers that were retrieved from the test data during the
research.

3.1 HTTP header structure

An HTTP request always starts with a start line, followed by a block of headers and then, optionally,
followed by an HTTP body. For a request header, the start line consists of a method (GET, HEAD,
POST etc.), a request URL and a version. The headers consist of a name, followed by a colon (:),
then optional whitespace, a value and are closed with a CRLF. The header section is terminated with
a blank line (an extra CRLF after the last header). This blank line must always be present, even if
there are no headers or body. [22]

There are several categories of headers: [13]

• General headers; this category of headers is not related to a particular message or message
component. The general headers only contain information about the message itself, not about
the content.

4

• Request headers; these headers have several functions. They provide the server with more
details about the request that the client makes. They also tell the server details about the
client itself and provide the server with information about how the response should be given.

• Response headers; these headers contain information about the response that is sent. The
response is sent by the server answering the request but a response can by edited by an inter-
mediate system, like a proxy server.

• Entity headers; these headers provide information about a resource that is sent in the body of
a message.

• Extension headers; headers created by individual application developers. They are not part
of the HTTP specification, but must be forwarded. These headers have names that are often
preceded by an ”x”. They are also referred to as experimental headers. This convention is no
longer used [1] but these headers are still seen a lot in network traffic.

3.2 Retrieved request headers

Prior to processing the pcap files, an inventory was made of all headers that were present in the pcap
files. The company Fox-IT in the Netherlands provided a lot of pcap files with HTTP traffic for the
research. Next to that, three newly configured systems were used to capture traffic that would be
used as a baseline for uninfected traffic. From both data-sets a different amount of unique headers
were retrieved. Besides those files, some malware pcap files were collected from Malware-traffic-
analysis.net [7]. From these pcaps, the headers were also gathered. The following list an overview of
the headers that were found in all data-sets.

1. Host; this header points to the server where the request is being sent to.

2. Referer; this field contains the URL of the current webpage. A referer (no type error) is only
present if the user clicked a link on a previous website. A manually typed URL will not provide
a referer header.

3. User-Agent; this header contains information about the originating user-agent that sent the
request.

4. Accept; the Accept header field is used to specify which media types are acceptable for the
client.

5. Accept-Encoding; this header field restricts the content encodings that are in the response.

6. Accept-Language; this field restricts the languages that are acceptable for the client.

7. Content-Length; the Content-Length header contains the length of content in bytes.

8. Content-Type; this header field indicates the media type that should be sent.

9. Cookie; a Cookie contains one or more name/value pairs. It is used to send a token to the
server. It is often used for stateful communication.

10. Connection; this header specifies options for the request header.

11. Cache-Control; Cache-Control passes caching directions along with the message.

12. If-Modified-Since; conditional request. Restricts the request unless the document has been
modified since a specified date.

13. If-Unmodified-Since; conditional request. Restricts the request unless the document has not
changed since a specified date.

14. If-Match; conditional request. Get the document if the entity tags supplied do match those of
the current document.

15. If-None-Match; conditional request. Get the document if the entity tags supplied do not
match those of the current document.

5

16. Pragma; this header specifies an alternative way to pass directions along with the message. It
is not specific to caching.

17. Range; requests a specific range from a resource.

18. If-Range; conditional request. This header allows a conditional request for a certain range.

19. DNT; do not track option. It is a request to the web application to disable tracking of the
user.

20. Origin; the Origin header defines the security contexts that were the cause to initiate a HTTP
request by the User-Agent.

21. SOAPAction; used for appropriately filtering SOAP messages in HTTP.

22. Upgrade-Insecure-Requests; used by the client to let the server know it prefers an encrypted
and authenticated response.

23. UA-CPU; allows a website to determine what cpu a client is using.

24. UA-Java-Version; used by a website to determine the java version used on the client.

25. RequestVerificationToken; cross-site Forgery request verification token.

26. Rest-Authorization-Code; header used with AJAX REST pass-through authentication.

27. Sec-WebSocket-Key,Sec-WebSocket-Protocol, Sec-WebSocket-Version; headers used
with the websocket protocol.

28. Content-Disposition; header sent to the origin server to suggest a default filename if the user
requests that the content is saved to a file.

29. Ajax-Request; general purpose class AJAX http request.

30. X-Requested-With, X-Moz, x-Akamai-Streaming-SessionID, X-APP-VERSION, X-
Booking-AID, X-Booking-Exp, X-Booking-Pageview-Id, X-Booking-Session-Id, X-
CorrelationId, X-CSRFToken, X-Disqus-Publisher-API-Key, X-DNT-Version, x-
flash-version, X-IDCRL ACCEPTED, X-Last-HR, X-Last-HTTP-Status-Code, X-
Moz, X-NEW-APP, X-NewRelic-ID, X-Office-Version, X-Old-UID, x-prototype-
version, X-Prototype-Version, x-requested-with, X-Requested-With, X-Retry-Count,
X-Signature, X-Verify; experimental headers, mainly used when requesting specific content
or services or when certain programs are used.

31. X-TeaLeaf, X-TeaLeafType, X-TeaLeafSubType, X-TeaLeaf-Page-Url, XTeaLeaf-
UIEventsCapture-Version, X-TeaLeaf-Screen-Res, X-TeaLeaf-Browser-Res, X-TeaLeaf-
Page-Render, X-TeaLeaf-Page-Img-Fail, X-TeaLeaf-Page-CUI-Events, X-TeaLeaf-
Page-CUI-Bytes, X-TeaLeaf-Page-Dwell,X-TeaLeaf-Visit-Order; experimental head-
ers. Legacy headers used by the IBM Tealeaf program. [2]

6

The picture shows all the different header categories. On the left is the complete HTTP message,
including the HTML body. The middle part shows the different header categories. The right part of
the picture only shows the specific request header categories.

Figure 1: HTTP headers

4 Fingerprinting

A lot of tools that can do system or application fingerprinting exist. As Wikipedia states, fingerprint-
ing means: ”fingerprinting maps arbitrarily large data to a much shorter bit string, ’the fingerprint’
to uniquely identify the original data for practical purposes” [12]. Example programs are are Nmap,
Ettercap or P0F [14]. Often a confidence rating is used, as it is not always possible to relate the
outcome with absolute certainty to a specific system. An example is TCP/IP fingerprinting were
eight different tests are performed on TCP/IP traffic to determine the type of operating system used
that sent this traffic. [14] The outcome of these tests do not always specifically point to one operating
system, but to confidence levels which are probability ratings. [15]. An example could be a confidence
level of 60 percent that the operating system is Windows 7 and a 40 percent confidence level that the
operating system is Windows 95.

The first section of this chapter discusses active fingerprinting, followed by an explanation of passive
fingerprinting in the second section. The third section elaborates more on the reliability and the last
section zooms in on the header order regarding fingerprinting.

4.1 Active fingerprinting

Active fingerprinting is done by executing a series of tests against a system and then analyzing the
results to determine the operating system. [16] This is an example of active fingerprinting, were
the results can be influenced based on the traffic sent to the system. This form of fingerprinting is
the most efficient because of the possibility of influencing the results. By sending specific packets,
responses can be generated that clearly distinct one system from another. The disadvantage of this
option is that it is often hard to do while remaining unnoticed. The reason for this is that the packets
that are sent are often ’special’ packets. They have special flags enabled or data is put in specific
fields that are not commonly used. This is done to get a response that is unique for an operating
system. These packets however, are quickly noticed by Intrusion Detection Systems as anomalies.

4.2 Passive fingerprinting

The opposite of active fingerprinting is passive fingerprinting, where one cannot influence the response
from the system and can only analyze the traffic that comes from the system. [16] The disadvantage

7

is that one has to wait until the system sends traffic for some reason. Another disadvantage is that
access to the traffic is necessary. An advantage is that this type of fingerprinting remains unnoticed
because no traffic is generated. This option is mostly slower than active fingerprinting.

4.3 Fingerprinting method

A reliable fingerprint can only be created if the object that is fingerprinted has distinct characteristics
that are unique for that object. Once there are more objects with similar characteristics, the finger-
print is less reliable (because then it can also match other objects) and thus, will generate more false
positives. More than one fingerprint can be created of an object. With TCP/IP fingerprinting for
example, eight different fingerprints are created [14]. The more fingerprints match, the more reliable
the outcome is.

4.4 Request header order fingerprinting

Evaluating the order of the request headers can only be done using passive fingerprinting. It is hard
or even impossible to force a system to send a request. The option is therefore to listen to the requests
that are sent, and then analyze the header order. A distinct header order can be used as a fingerprint.
If headers show up on different positions, then still a fingerprint can be made; Based on probabilities
of a header on a certain position, a lower or higher confidence level can be used. Besides probability
ratings, also uncertainty or entropy can be used as a form of fingerprinting [17, 23]. A lower entropy
value for a system means less headers showing up on different positions. If used as a baseline or
fingerprint a system can be monitored for this value. If the entropy of a system suddenly increases
with a reasonable amount, then that could be an indication that there is something wrong. This is
discussed in more detail in the chapter 6.

8

5 Approach

This chapter gives an overview of the approach that was taken to solve the research questions. The
first section describes the method that was used to obtain the results. The second section discusses
the way in which the headers were selected. In the third section the process used is explained.

5.1 Method

The data used for this research were pcap files with captured HTTP traffic. Using pcap files gives
complete control over the type of traffic that will be analysed (as opposed to for example, live traffic).
Three data-sets of pcap files with HTTP network traffic were analysed.

• A data-set with traffic coming from uninfected systems, used as a baseline.

• A data-set with traffic provided by Fox-IT. It was unknown if this data-set contained malware
or not.

• A data-set, containing traffic produced by three exploit kits.

The traffic in pcaps provided by Fox-IT was gathered during a red team - blue team hacking contest [4].
The goal was to find out if the header order of these systems could give an indication of the presence
of malware. To determine this, a baseline of uninfected HTTP traffic needed to be collected, because
the difference in header ordering between good traffic and bad traffic had to become clear. The table
1 shows the operating systems and browser types used by Fox-IT. All systems used were Vmware
images.

Name Platform Browser
System 1 Windows 8.1 Internet Explorer 11
System 2 Ubuntu Firefox v.31
System 3 Windows 7 Internet Explorer 9

Table 1: Fox-IT systems

To provide a baseline of uninfected traffic, three newly installed systems were used. Several
thousands of headers were captured per system. All these systems were Vmware images also. Table
2 shows the specifications of these systems.

Name Platform Browser
System 1 Ubuntu 14.04 Firefox v40
System 2 Windows 7 Chrome v44
System 3 Windows 8.1 Opera v31

Table 2: Baseline test systems

All systems were updated with the latest patches. The Windows systems also had an Office suite
installed, Acrobat Reader and an anti-virus solution to resemble a normal system. Then three pcap
files, each containing a different exploit kit were analyzed also. [7]

An exploit kit is a prepackaged web application that can have any kind of payload: ransomware,
banking Trojans or whatever payload the hacker desires. All exploit kits have in common that they
operate using HTTP and use this protocol to fetch the payload to infect the computer. [6] The
following three virus infections were used:

1. Fiesta Exploit Kit: This is a hacker toolkit that can be used to download and install different
exploits. [9]

2. Nuclear EK: This is an Exploit kit that uses a flash vulnerability. [10, 20]

9

3. Sweet Orange EK: Again an Exploit Kit capable of delivering different payloads, using a
database backend for statistics on successful infections. [11]

All uninfected systems were overlaid with the headers of the exploit kits to see what effect the
exploit kits have on the header order of the systems. From the results, several statistics were retrieved,
as will be explained in chapter 6.

5.2 Header selection

The headers that are mentioned in the section 3.2 are all the headers that were collected during the
research. In order to be able to make a comparison between the traffic from baseline systems and
the traffic from the Fox-IT systems the headers were compared that were commonly present in the
data-sets from Fox-IT and the uninfected systems and all the headers that were used by the malware.
This ensured that all the relevant headers were analyzed. The researched collection of headers is
defined as follows:

• A = all unique headers retrieved from the Fox-IT traffic

• B = all unique headers retrieved from the baseline (uninfected) systems

• C = all unique headers found in the pcaps containing malware

• χ = The headers used for comparison

Then : χ = (A ∩B) ∪ C (1)

For retrieving the headers, a script was run that collects unique headers and stores them in a file.
The script named searchhdr.sh is added to the appendix D on page 40. The headers found matching
the equation 1 were used and added to the procflow.sh script which was used for processing. The
script can be found in Appendix A on page 27.

5.3 Process

For obtaining the results of the research, the pcap files will be parsed to get the HTTP request
headers out. Then, the request headers are made countable by removing all start lines and header
values. Using line numbers, the position of the header is determined. All the position indications
are summed for every header. An alternative way of doing this is described in 8.2 on page 22. Next,
all the data is collected and probability and uncertainty calculations are made. The calculations are
described in chapter 6. More details about the process can be found in the Appendix A.

10

6 Results

This chapter discusses the results regarding the analysis of the request headers. The way headers are
ordered with uninfected systems is explained in the first section. In section two the analysis turns
to the headers of the exploit kits. The third section shows the probability tables of the uninfected
systems. In section four, comparisons are made between uninfected and infected systems using bar
charts. Next, section five adds uncertainty values to the results. The last section of this chapter shows
what impact the Sweet Orange exploit kit has on the header order of the traffic from the systems
from Fox-IT.

6.1 Analysis of HTTP headers of uninfected systems

Vmware images with three different operating systems and browsers were used to observe the header
ordering. Using different images was done to see if different browsers and/or operating systems would
have any impact on the header order. The images were newly installed so it is assumed they do not
contain any malware. Several thousands of headers were collected per system and analyzed. Analysis
shows that the header order of every uninfected system is very dispersed over a lot of positions.
Header positions in general are fairly consistent but get mixed up in a number of cases:

• In some cases were different websites are visited (some websites show a similar header order,
others are completely different).

• When special programs are run that use HTTP communication (Windows update, anti-virus).

• When specific content is requested (flash, XML).

• When a website requests specific services (authentication, authorization, encryption, proxy
services).

What is meant with ’mixed up’ is that in most of the cases a header occurs on the same position,
or roughly the same position. When headers are sent regarding the special cases mentioned above,
headers can suddenly appear on a totally different position. As an example, the following output
from the countnum.sh script is a representation of the User-Agent header distribution of uninfected
system 2:

The t o t a l number o f 1 s are : 2
The t o t a l number o f 2 s are : 0
The t o t a l number o f 3 s are : 145
The t o t a l number o f 4 s are : 3445
The t o t a l number o f 5 s are : 136
The t o t a l number o f 6 s are : 32
The t o t a l number o f 7 s are : 0
The t o t a l number o f 8 s are : 1
The t o t a l number o f 9 s are : 0
The t o t a l number o f 10 s are : 0

Most of the headers appear on the position 4, with some scattering to position 3 and 5. Position
6 is already a doubtful position. There are outliers on position 1 and 8 (and maybe also position 6).
These outliers are probably the result of the special cases discussed earlier.

Several examples of headers that are ordered in a consistent way and headers that have inconsistent
ordering can be seen in the Appendix C on page 36. An explicit example can be seen on the pictures
in Appendix C concerning the ’Referer’ header. In the consistent header examples (15, 16, 17), the
’Referer’ header is on position 5 or 6. When looking at example 20 of one of the Fox-IT systems on
page 39, this header suddenly appears on position 19. The use of the IBM tealeaf program creating
a lot of specific headers was responsible for this. [3]

11

6.2 Analysis of HTTP headers of the exploit kits

The exploit kit traffic did not show a consistent header order. Also, all kits observed communicate
with only a small amount of HTTP headers. These factors create a profile that is not distinct enough
to stand out over normal traffic. The pictures 2, 3, 4, 5 show four examples of headers used by the
Fiesta Exploit Kit. All samples comes from the same infection. The samples show that the header
order is different every time.

Figure 2: Fiesta Exploit header 1

Figure 3: Fiesta Exploit header 2

Figure 4: Fiesta Exploit header 3

Figure 5: Fiesta Exploit header 4

12

6.3 Header probabilities of uninfected systems

The probability of all different positions a header can appear on are calculated. From that the
consistency of a header is determined. Using this information, a possible fingerprint can be created.
With a certain system, how often do headers appear on the same position? These most often recurring
header positions could be a unique fingerprint for that system.

The probability is calculated as:

P (x) =
n(x)

n
(2)

What was observed however, is that a clean system already shows a lot of different header po-
sitions. This was irrelevant of the operating system or browser used. All three uninfected systems
showed the same behavior.

The probability tables 3, 4, 5 of the three uninfected systems are shown. The probability tables show
in percentages the probability of the presence of a header on one or more positions. This means
for example that the header ’Content-Type’ in table 3 appeared on two different positions. 20.45
percent of these headers were found on one position and 79.55 percent of these headers were found on
another position. Independent of the operating system or browser used, most headers are distributed
over multiple positions, albeit that in most cases the biggest number of headers reside on one position.

Header item 1st
pos.

2nd
pos.

3rd
pos.

4th
pos.

5th
pos.

Accept 100

Accept-Encode 100

Accept-Language 100

Cache-Control 100

Connection 37.72 61.04 1.06 0.04 0.15

Content-Length 68.63 5.88 15.69 9.80

Content-Type 20.45 79.55

Cookie 0.61 97.87 1.46 0.06

Host 100

If-Modified-Since 27.71 68.67 3.01 0.60

If-None-Match 13.42 22.15 63.76 0.67

If-Range 0

If-Unmodified-Since 0

Origin 80.95 11.90 7.15

Pragma 100

Range 100

Referer 99 0.97 0.03

User-Agent 100

X-Requested-With 94.74 5.26

SOAPAction 0

Upgrade-Insecure-Req 0

X-Moz 100

Table 3: HTTP Header probabilities system 1

The observation that the Ubuntu system (System1) has the least dispersion of headers probably
has a relation with the fact that the Ubuntu system has no anti-virus installed and no or less au-
tomated program update checking mechanisms enabled or other services running that communicate
over HTTP to the outside world. As explained in 6.1 these services contribute to more dispersion of
headers.

13

Header item 1st
pos.

2nd
pos.

3rd
pos.

4th
pos.

5th
pos.

6th
pos.

7th
pos.

Accept 0.85 90.30 0.42 7.92 0.50 0.03

Accept-Encode 0.98 0.08 87.19 11.14 0.08 0.50 0.03

Accept-Language 88.16 11.23 0.08 0.51 0.03

Cache-Control 89.19 10.81

Connection 0.85 99.10 0.05

Content-Length 100

Content-Type 95 5

Cookie 89.40 9.73

Host 99.10 0.05 0.11 0.05 0.69

If-Modified-Since 4.35 73.91 21.74

If-None-Match 66.67 11.11 22.22

If-Range 71.43 28.57

If-Unmodified-Since 100

Origin 51.22 46.34 2.44

Pragma 0

Range 59.09 20.45 15.91 4.55

Referer 87.90 11.48 0.08 0.51 0.03

User-Agent 0.05 3.84 91.21 3.60 1.27 0.03

X-Requested-With 100

SOAPAction 0

Upgrade-Insecure-Req 96.92 2.31 0.77

X-Moz 0

Table 4: HTTP Header probabilities system 2

The second system, which is the Windows7 system, shows the headers more distributed over
different places. Still, most headers occupy mainly one or two positions. Where the Connection
header was the most scattered on system 1 and occupied five different positions, here the Accept-
Encode header occupies seven different positions.

Header item 1st
pos.

2nd
pos.

3rd
pos.

4th
pos.

5th
pos.

6th
pos.

7th
pos.

8th
pos.

Accept 0.20 0.98 93.12 0.40 3.98 1.32

Accept-Encode 0.75 0.07 0.14 87.56 9.32 0.81 1.36

Accept-Language 0.03 88.39 9.39 0.82 1.37

Cache-Control 2.88 92.31 4.81

Connection 0.98 99.02

Content-Length 86.96 6.52 6.52

Content-Type 11.76 5.88 3.92 76.47 1.96

Cookie 0.06 97.61 0.06 2.27

Host 98.26 0.47 0.10 0.40 0.17 0.03 0.47 0.10

If-Modified-Since 14.89 46.81 34.04 2.13 2.13

If-None-Match 67.44 23.26 6.98 2.33

If-Range

If-Unmodified-Since 100

Origin 100

Pragma 100

Range 5 70 25

Referer 88.23 9.58 0.82 1.37

User-Agent 0.47 1.88 89.31 5.68 2.62 0.03

X-Requested-With 40.68 57.63 1.69

SOAPAction 100

Upgrade-Insecure-Req 100

X-Moz

Table 5: HTTP Header probabilities system 3

14

The third system, which is the Windows 8.1 system, shows the most amount of dispersion. The
Host header shows up on eight different positions, although 98 percent of this traffic occupied the
same position. Most of the other headers also show that more than two-thirds of all headers appear on
only one position. Only the ’If-Modified-Since’ and the ’X-Requested-With’ header show a somewhat
evenly distribution over two places.

6.4 Header ordering of systems with an infection overlaid

Using the same systems, infection headers were overlaid. It was not possible to actually infect the
systems in the test environment. Three exploit kit pcap files were used because these exploit kits
generate their own request headers to communicate with web servers containing the malicious payload.
The header order used by these exploit kits was observed and then this order was added to the existing
set of headers from the uninfected systems. From that probability, occurrence and uncertainty ratings
were calculated.

The graphs 6a, 6b, 7a, 7b and 8a and 8b show the number of different positions a header can have.
Both graphs with and without infection headers overlaid are presented. The infection used was the
Sweet Orange Exploit Kit. [11]. From the three exploit kits, the Sweet Orange kit creates the most
disturbance regarding header ordering. No probability tables are shown here for two reasons: the
first reason is that there was no actual infection done, it is therefore not clear what the real amount
of traffic would be. The second reason is that assumed is that the probabilities will not change much:
it is expected that an exploit kit will generate only a small amount of traffic; The pcap files from
the exploit kits used contained a complete infection run and showed only very little HTTP header
communication. [6, 19,20].

(a) System 1 - uninfected
(b) System 1 - with Sweet Orange infection overlaid

Overlaying the Sweet Orange exploit kit leads to an increased number of positions being used by
some headers. Notably both Host and User-Agent headers appear on six more different places. Also
a previously unseen DNT header shows up. The test system is however, a clean system on which

15

only a few thousand headers were used as a baseline. In a real world situation, the differences will
probably be much less.

(a) System 2 - uninfected
(b) System 2 - with Sweet Orange infection overlaid

With the Windows 7 host the differences between the uninfected and infected system are less
visible. Most notable are the Connection header that appears on five more different positions after
infection. A Cache-Control header that shows up on four more different places. With the infection
two new headers are introduced which are the DNT and the x-flash-version header.

16

(a) System 3 - uninfected
(b) System 3 - with Sweet Orange infection overlaid

With the Windows 8.1 host, the differences are also limited to a few headers. Most notable
again here is the increase in positions of the Connection header and the appearance of the DNT and
x-flash-version header.

Only the comparison between the uninfected systems and the Sweet Orange infection is shown
here. Comparisons with the other infections can be found in appendix E.

6.5 Calculating header uncertainty

The previous calculated probabilities using the formula 2 are used as input for calculating the header
uncertainty. Doing this gives a profile or fingerprint of the system, expressed in entropy bits. For
this, Shannon’s formula on entropy calculation is used: [17,23]

H(X) = −
n∑

i=1

pilog2(pi) (3)

The table shows the entropy change before and after three different infections:

Systems
Entropy before

infection
Fiesta Exploit

infection
Sweet Orange

infection
Nuclear EK

infection

System1 5.15 5.85 7.50 6.36
System2 6.98 7.09 7.56 7.45
System3 7.38 7.54 8.20 7.62

Table 6: Entropy calculations before and after infections

17

Although the systems already have a high entropy value, after overlaying an infection on them, the
entropy rises even more. The Sweet Orange exploit kit, which has the biggest dispersion of headers,
shows as expected, the biggest increase in entropy.

6.6 Comparison with data provided by Fox-IT

The data provided by Fox-IT was meant to be compared to the results of the uninfected systems
in order to determine if malware was present by looking at the header order. [18]. After analyzing
the data of Fox-IT much more headers were found when compared to the traffic of the uninfected
systems. In total there were seventy-five different headers discovered in the test data-set provided
by Fox-IT and twenty three headers in the uninfected systems. Lists of all headers of the uninfected
systems and Fox-IT systems are added in Appendix D. In order to be able to compare these systems
the formula 1 on page 10 was used.

The figures 9a, 10a and 11a are charts from the three Fox-IT systems with their header order
occurrences. Next to these charts, the charts 9b, 10b and 11b with the Sweet Orange exploit kit
headers overlaid, are shown.

(a) Fox-IT System 1 - Uninfected
(b) Fox-IT System 1 - with Sweet Orange infection
overlaid

The header order of system 1 is exactly the same after the infection is overlaid as it was before.
The infection has no impact on the header order. The headers are already so much dispersed that
the headers of the Sweet Orange exploit kit do not change anything.

18

(a) Fox-IT System 2 - Uninfected (b) Fox-IT System 2 - with Sweet Orange infection
overlaid

Although hardly visible, minimal change is done to the ordering of system 2 after the infection.
Besides the increase in the Accept and Accept-Encode headers also the appearance of a DNT and
x-flash-version header is shown after the infection. The reason that some headers appear on fourteen
or fifteen different positions is because of the use of the IBM Tealeaf program on this system, which
creates a lot of custom (experimental) headers.

19

(a) Fox-IT System 3 - Uninfected (b) Fox-IT System 3 - with Sweet Orange infection
overlaid

With system 3, again no changes are made to the order of the headers after the infection.
Overlaying the headers of the exploit kit that has the most dispersed header order has minimal

effect on number of header order positions. When looking at the entropy of the systems, for system 1
and 3 the entropy will remain the same before and after the infection. Only for system 2 the entropy
values change. This is shown in table 7.

Systems
Entropy before

infection
After Sweet

Orange infection

System1 10.25 10.25
System2 7.50 8.15
System3 7.81 7.81

Table 7: Entropy calculations before and after Sweet Orange infection

20

7 Conclusions

After analyzing all the traffic, several conclusions could be drawn from the results. Section one
discusses all components that have an influence on the header order. The second section concludes on
the usability of the header order for determining the presence of malware. This is followed by section
three which discusses fingerprinting malware and finally section four that concludes on fingerprinting
PC’s.

7.1 Influences on header ordering

Observations during this research showed that the header order is fairly consistent when a single
website is visited. Slight changes occur when specific content is requested. For example, an ’x-flash-
version’ header is put in between when flash content is requested. Also when a program is run like
Windows Update, the headers this program uses are all on the same position. This is the big difference
with the exploit kits that were observed. They send for example the first request with the ’Accept’
header on position 1. In the next request the header is on position 5 and the next request it is on
position 3. Things change when a system is used to browse to different websites, request different
kinds of content and use different programs that communicate over HTTP (which is normally done on
every system). Then, clearly the number of positions a header can appear on, increases. Therefore,
the more websites are visited, the more programs are installed that use HTTP communication, the
more scattered the header order will become on that system.

7.2 Determining the presence of malware

The results show that malware is not very consistent with header ordering as was explained in the
previous section. The baseline systems that were used in this research were newly installed virtual
images with only a few programs running on these them. The amount of headers collected on these
systems equals a few hours or days of browsing, depending on the user. Analyzing the traffic, an
increase of entropy could be observed when exploit kit traffic was overlaid. When the same was
done on the intensively used systems provided by Fox-IT, no changes were visible in most cases. For
the traffic of the Fox-IT systems it can therefore not be concluded that they do, or do not contain
malware.

Although our baseline systems showed an increase in entropy, this will not be distinct enough to
create a reliable fingerprint for it. Furthermore it will likely be the case that real world systems have
a much more distributed header order. Using the header order as an indication for the presence of
malware will therefore not be a viable solution.

7.3 Fingerprinting malware

From the exploit kits that were analyzed, the unstructured header order is a characteristic that could
be used as a trigger to use for fingerprinting malware in general. But, as mentioned in the section
7.2, the distributed header order profile does not stand out enough against the already dispersed
header order of normal systems that are used on a regular base. Creating reliable fingerprints using
the header order will most likely be impossible.

7.4 Fingerprinting PC’s

The header order of computer systems in some cases creates a distinct profile that can be used as a
fingerprint. On one of the systems, a lot of experimental headers were retrieved, due to the use of a
specific program. This gave this system a distinct header order profile compared to the other systems.
But the characteristics will not stand out between two systems that use the same program. Using a
header order fingerprint to identify a unique system will therefore also be unpractical to apply.

21

8 Future work

In section one, the limitations that applied to this research are discussed. The next section shows a
possible improved method of parsing HTTP header traffic.

8.1 Limitations

During this research, there were some limitations. First, it was not possible to work with actual
infected systems in the experimentation environment. Also due to time restrictions it was not possible
to apply a probably better parsing method, which is discussed in the next section.

8.2 Alternative parsing method

The parsing of headers in this research was done in a very straightforward way. A better way of doing
it would probably be by parsing headers based on the HTTP header convention. The advantage of
this is that it works irrelevant of the type and size of the header values. With this method, it is not
necessary to analyze the data beforehand to find all the headers and take into account strange header
values, as was done in this research. The alternative parsing method should look something like the
following: Jump to the first CRLF (=omit the start line), store everything following this CRLF up
to the first colon (the first header). Create a counter, set it to one and store this value with the first
header. Jump to the next CRLF, store again everything up until the next colon and increase the
counter by one and store the value with the header. Repeat this until a CRLF is followed by another
CRLF (the blank line that separates the headers from the body). Then stop and repeat the process
again. This should parse all traffic using the formal HTTP convention in a correct way.

22

References

[1] Deprecating the ”x-” prefix and similar constructs in application protocols. http://tools.

ietf.org/html/rfc6648. [Online; accessed 23 -August-2015].

[2] Ibm tealeaf. http://www-01.ibm.com/support/knowledgecenter/SS2MBL_9.0.2/

UICj2Guide/UIC/UICj2InstandImpl/SupportForLegacyHeaders_86.dita. [Online; accessed
23 -August-2015].

[3] Ibm tealeaf. http://www-01.ibm.com/software/info/tealeaf/. [Online; accessed 28 -August-
2015].

[4] Red team. https://en.wikipedia.org/wiki/Red_team. [Online; accessed 25 -August-2015].

[5] Http request smuggling. https://www.owasp.org/index.php/HTTP_Request_Smuggling, 2009.
[Online; accessed 5-June-2015].

[6] Forbidden fruit: The sweet orange exploit kit. https://www.bluecoat.com/security-blog/

2012-12-17/forbidden-fruit-sweet-orange-exploit-kit, 2012. [Online; accessed 21-June-
2015].

[7] Malware-traffic-analysis.net. http://www.malware-traffic-analysis.net/, 2012. [Online;
accessed 21-June-2015].

[8] Web application fingerprinting. https://pentestlab.wordpress.com/tag/

http-response-header/, 2012. [Online; accessed 04 -July-2015].

[9] Fiesta exploit kit. http://www.malware-traffic-analysis.net/2013/11/29/index.html),
2013. [Online; accessed 21-June-2015].

[10] Nuclear ek from 95.211.128.101 - babyserr.ru. http://malware-traffic-analysis.net/2014/
04/27/index.html), 2013. [Online; accessed 21-June-2015].

[11] Sweet orange ek from 95.163.121.188 - google.chagwichita.com:16122. http:

//malware-traffic-analysis.net/2014/08/18/index.html, 2013. [Online; accessed
21-June-2015].

[12] Fingerprint(computing). https://en.wikipedia.org/wiki/Fingerprint_(computing), 2014.
[Online; accessed 24-June-2015].

[13] Http message headers. http://www.tcpipguide.com/free/t_HTTPMessageHeaders.htm, 2014.
[Online; accessed 21-June-2015].

[14] Tcp/ip stack fingerprinting. https://en.wikipedia.org/wiki/TCP/IP_stack_

fingerprinting, 2014. [Online; accessed 21-June-2015].

[15] Enhanced operating system identification with nessus. http://www.tenable.com/blog/

enhanced-operating-system-identification-with-nessus, 2015. [Online; accessed 30-
June-2015].

[16] Enhanced operating system identification with nessus. http://resources.infosecinstitute.
com/passive-fingerprinting-os/, 2015. [Online; accessed 30 -June-2015].

[17] Entropy (information theory). https://en.wikipedia.org/wiki/Entropy_%28information_

theory%29, 2015. [Online; accessed 6-June-2015].

[18] Fox-it. https://www.fox-it.com/nl/, 2015. [Online; accessed 30 -June-2015].

[19] An in-depth analysis of the fiesta exploit kit. http://blog.0x3a.com/post/110052845124/

an-in-depth-analysis-of-the-fiesta-exploit-kit-an, 2015. [Online; accessed 29-June-
2015].

[20] Nuclear ek leverages recently patched flash vulnerability. https://blog.malwarebytes.org/

exploits-2/2015/03/nuclear-ek-leverages-recently-patched-flash-vulnerability/,
2015. [Online; accessed 21-June-2015].

23

[21] Ralph Broenink. User browser properties for fingerprinting. http://letmetrackyou.org/

paper.pdf, 2011. [Presented on the 16th biannual Twente Student Conference on IT].

[22] Marjorie Sayer Anshu Aggarwal-Sailu Reddy David Gourley, Brian Totty. Http, the defini-
tive guide. http://shop.oreilly.com/product/9781565925090.do, 2002. [Online; accessed
8-June-2015].

[23] Dolors. Claude shannon’s theory on entropy. https://www.youtube.com/watch?v=

JnJq3Py0dyM.

[24] Calvin Ko Karl Levitt Dustin Lee, Jeff Rowe. Detecting and defending against web-server finger-
printing. https://acsac.org/2002/papers/96.pdf. [Published on the 18th annual Computer
Security Applications Conference, 2002].

[25] Peter Eckersley. How unique is your webbrowser? https://panopticlick.eff.org/

browser-uniqueness.pdf, 2014. [Online; accessed 24-June-2015].

[26] J Diaz-Verdejo J. Estevez-Tapiador, P. Garcia-Teodoro. Measuring normality in http traffic for
anomaly based intrusion detection. http://www.sciencedirect.com/science/article/pii/

S1389128604000064, 2003. [Online; accessed 5-June-2015].

[27] J. Gettys R. Fielding. Rfc 2616 - hypertext transfer protocol http1/1. https://www.ietf.org/
rfc/rfc2616.txt, 1999. [Online; accessed 5-June-2015].

[28] Saumil Shah. An introduction to fingerprinting. http://www.net-square.com/httprint_

paper.html.

24

A Script listings

parseflows.sh script to parse pcap files
This script iterates through all the pcap files and uses the tcpflow program to split the files in

ASCII files containing request headers per IP address. Within this script, the Procflow.sh script is
started that processes all the flow files.

#!/ bin /bash
pcap f i l e s are parsed us ing tcpf low , only HTTP reques t header

f l ows .
f l ows are then d iv ided per IP address to sub−f o l d e r s
Then , the proc f low . sh s c r i p t i s executed per d i r e c t o r y to c r e a t e

t ext f i l e s conta in ing header item p o s i t i o n s
The f o l d e r s conta in ing the f low f i l e s are c l eaned f o r the next

i t e r a t i o n
The end number in the FOR loop resembles the number o f pcaps that

w i l l be proce s s ed
R e g i s t e r i n g begin time to d i s p l a y at the end o f the proce s s
DATUM=‘date ‘

Looping through a l l the pcap f i l e s
f o r NUM in {1 . . 5 6}
do
S p l i t the pcap f i l e i n to s epara te r eque s t f l ows
tcp f low −e http −r ${NUM} . pcap dst port 80
Put the f l ows in s epara t e f o l d e r s per system
Virus f i l e s IPs
#mv /home/ ro land /Flows /192 .168 .204 .157∗ /home/ ro land /Flows/

Host1
#mv /home/ ro land /Flows /192 .168 .204 .229∗ /home/ ro land /Flows/

Host2
#mv /home/ ro land /Flows /172 .016 .165 .133∗ /home/ ro land /Flows/

Host3
Foxit IT f i l e s IPs
mv /home/ ro land /Flows /192 .168 .010 .002∗ /home/ ro land /Flows/

Host1
mv /home/ ro land /Flows /192 .168 .010 .015∗ /home/ ro land /Flows/

Host2
mv /home/ ro land /Flows /192 .168 .010 .057∗ /home/ ro land /Flows/

Host3
mv /home/ ro land /Flows /192 .168 .010 .075∗ /home/ ro land /Flows/

Host4
mv /home/ ro land /Flows /192 .168 .010 .076∗ /home/ ro land /Flows/

Host5
mv /home/ ro land /Flows /192 .168 .010 .083∗ /home/ ro land /Flows/

Host6
Good systems IPs
#mv /home/ ro land /Flows /010 .000 .002 .015∗ /home/ ro land /Flows/

Host1
#mv /home/ ro land /Flows /192 .168 .000 .103∗ /home/ ro land /Flows/

Host2
#mv /home/ ro land /Flows /192 .168 .001 .211∗ /home/ ro land /Flows/

Host3
Check to make sure no c l i e n t s are omitted
mv /home/ ro land /Flows /∗00080 /home/ ro land /Flows/Check

#Create f o l d e r l i s t i n g s as input f o r the proc f low
s c r i p t . The end number resembles the number o f

25

host s
f o r NR in {1 . . 6}
do

Export v a r i a b l e so i t can be picked up by
proc f low . sh

export NR
check i f f i l e s are pre sent in f o l d e r . I f

not , sk ip .
i f t e s t −n ”$ (f i n d /home/ ro land /Flows/Host${

NR}/ −maxdepth 1 −name ’∗00080 ’ −pr in t −
qu i t) ”

then
l s /home/ ro land /Flows/Host${NR}/∗00080 > /

home/ ro land / f i l e s $ {NR} . tx t
remove path from f i l enames
cat /home/ ro land / f i l e s $ {NR} . tx t | sed ’ s

/ .∗\/// ’
Star t proc f low . sh f o r count ing headers
/home/ ro land /Flows/Host${NR}/ proc f low . sh /

home/ ro land / f i l e s $ {NR} . tx t
c l ean Host f o l d e r and f i l e s f i l e f o r next

i t e r a t i o n
rm /home/ ro land /Flows/Host${NR}/∗00080∗
rm /home/ ro land /Flows/Host${NR}/∗ . tx t
rm /home/ ro land / f i l e s $ {NR} . tx t
#r e s e t g l o b a l de f i ned v a r i a b l e
export NR=
e l s e
echo ”no f i l e s pre sent in /home/ ro land /Flows/

Host${NR}”
f i

done
echo ”>>>>>>>>>>>>> FILE $NUM i s proce s s ed <<<<<<<<<<<<”
done

showing begin− and end time o f the s c r i p t
echo ” S c r i p t s t a r t e d : ”
echo $DATUM
echo ” S c r i p t ended : ”
date
echo ”end o f program”

26

procflow.sh script to split flows and count headers
The procflow.sh script is started from within parseflows.sh. Every time parseflows.sh splits a pcap

file into separate flows, procflow.sh processes those flows. What procflow.sh does is split the flow
files further so every single request is in a separate file. Within every file the script searches for the
request labels that are defined in the script. If a match is found, the line number of the request is
copied to an output file with a similar name as the request header. This is continually repeated for
all files. All hits are appended in the output files.

#!/ bin /bash
This program s u b s t i t u t e s the r e f , cook i e and u r i headers with empty

content , because the content sometimes occup i e s more than one
l i n e

S c r i p t p i ck s op g l o b a l v a r i a b l e NR, de f ined in pa r s e f l ows . sh .
S c r i p t uses f i l e s . txt as parameter , de f in ed in pa r s e f l ows . sh .
FILENAME=$1
whi le read −r l i n e

do
NAME=$ l i n e
r e s e t f i l e counter
COUNT=0
S p l i t f i l e s so every f low header i s in a separa te f i l e
c s p l i t −n 1 −f ${NAME}xx −zk ${NAME} ’/ˆ\ s ∗$ / ’ {∗}

d e l e t e a l l s p l i t f i l e s sma l l e r than 2 bytes
f i n d −name ”∗80xx∗” −s i z e −2c −d e l e t e
Incrementa l counter to p roce s s a l l xx f i l e s

whi l e [−f ${NAME}xx${COUNT}]
do
remove blank l i n e s
sed − i ’/ˆ\ s ∗$/d ’ ${NAME}xx${COUNT}
S a n i t i z e f low f i l e s , remove reque s t content ; remove

unconvent iona l headers
cat ${NAME}xx${COUNT} | t a i l −n +2 | sed −e ’ s / : . ∗ $ / :/ g

’ −e ’/GET/ , $d ’ −e ’/POST/ , $d ’ −e ’/HEAD/ , $d ’ > ${
NAME}xx${COUNT}−out

count the headers
cat ${NAME}xx${COUNT}−out | grep −an ” Re f e r e r : ” | cut −

f 1 −d : >> /home/ ro land /Flows/Host${NR}/ r e f e r e r . txt
2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Host : ” | cut −f 1
−d : >> /home/ ro land /Flows/Host${NR}/ host . txt 2> /
dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ” [uU] ser −[aA]
gent : ” | cut −f 1 −d : >> /home/ ro land /Flows/Host${NR
}/ useragent . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Accept : ” | cut −
f 1 −d : >> /home/ ro land /Flows/Host${NR}/ accept . txt
2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Accept−Encoding
: ” | cut −f 1 −d : >> /home/ ro land /Flows/Host${NR}/
acceptencode . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Accept−Language
: ” | cut −f 1 −d : >> /home/ ro land /Flows/Host${NR}/
accept lang . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ” Cookie : ” | cut −
f 1 −d : >> /home/ ro land /Flows/Host${NR}/ cook i e . txt

27

2> /dev/ n u l l
cat ${NAME}xx${COUNT}−out | grep −an ” Connection : ” |

cut −f 1 −d : >> /home/ ro land /Flows/Host${NR}/
connect ion . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Content−Type : ” |
cut −f 1 −d : >> /home/ ro land /Flows/Host${NR}/
contentype . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Content−Length
: ” | cut −f 1 −d : >> /home/ ro land /Flows/Host${NR}/
content l ength . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Cache−Control
: ” | cut −f 1 −d : >> /home/ ro land /Flows/Host${NR}/
cachecont ro l . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Pragma : ” | cut −
f 1 −d : >> /home/ ro land /Flows/Host${NR}/pragma . txt
2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Range : ” | cut −f 1
−d : >> /home/ ro land /Flows/Host${NR}/ range . txt 2>

/dev/ n u l l
cat ${NAME}xx${COUNT}−out | grep −an ” I f−Unmodified−

Since : ” | cut −f 1 −d : >> /home/ ro land /Flows/Host${NR
}/ i funmod i s ince . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”DNT: ” | cut −f 1 −
d : >> /home/ ro land /Flows/Host${NR}/ dnt . txt 2> /dev
/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ” I f−Match : ” | cut
−f 1 −d : >> /home/ ro land /Flows/Host${NR}/ i fmatch .
txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ” I f−None−Match
: ” | cut −f 1 −d : >> /home/ ro land /Flows/Host${NR}/
ifnonematch . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ” I f−Modified−
Since : ” | cut −f 1 −d : >> /home/ ro land /Flows/Host${NR
}/ i f m o d i s i n c e . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ” Orig in : ” | cut −
f 1 −d : >> /home/ ro land /Flows/Host${NR}/ o r i g i n . txt
2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ” I f−Range : ” | cut
−f 1 −d : >> /home/ ro land /Flows/Host${NR}/ i f r a n g e .
txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”x−f l a sh
−v e r s i on : ” | cut −f 1 −d : >> /home/ ro land /
Flows/Host${NR}/x−f l v e r . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”X−[rR] equested −[wW] i t h
: ” | cut −f 1 −d : >> /home/ ro land /Flows/Host${NR}/x−requested
−with . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”SOAPAction : ” |
cut −f 1 −d : >> /home/ ro land /Flows/Host${NR}/
soapact ion . txt 2> /dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”Upgrade−
Insecure−Requests : ” | cut −f 1 −d : >> /home/ ro land /
Flows/Host${NR}/ upgrade−i n s ecure−r e q u e s t s . txt 2> /
dev/ n u l l

cat ${NAME}xx${COUNT}−out | grep −an ”X−Moz : ” | cut −f 1
−d : >> /home/ ro land /Flows/Host${NR}/x−moz . txt 2>

/dev/ n u l l

28

I n c r e a s e counter
COUNT=$ ((COUNT+1))
done

done < ”$FILENAME”
r e p l a c e newl ines with commas , f o r b e t t e r r e a d a b i l i t y and e a s i e r

count ing
cat /home/ ro land /Flows/Host${NR}/ r e f e r e r . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s / r e f e r e r . txt
cat /home/ ro land /Flows/Host${NR}/ host . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s / host . txt
cat /home/ ro land /Flows/Host${NR}/ useragent . txt | t r ”\\n” ” ,” >> /home

/ ro land /Flows/Host${NR}/ T x t f i l e s / useragent . txt
cat /home/ ro land /Flows/Host${NR}/ accept . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s / accept . txt
cat /home/ ro land /Flows/Host${NR}/ acceptencode . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / acceptencode . txt
cat /home/ ro land /Flows/Host${NR}/ accept lang . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / accept lang . txt
cat /home/ ro land /Flows/Host${NR}/ cook i e . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s / cook i e . txt
cat /home/ ro land /Flows/Host${NR}/ connect ion . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / connect ion . txt
cat /home/ ro land /Flows/Host${NR}/ contentype . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / contentype . txt
cat /home/ ro land /Flows/Host${NR}/ content l ength . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / content l ength . txt
cat /home/ ro land /Flows/Host${NR}/ cachecont ro l . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / cachecont ro l . txt
cat /home/ ro land /Flows/Host${NR}/pragma . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s /pragma . txt
cat /home/ ro land /Flows/Host${NR}/ range . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s / range . txt
cat /home/ ro land /Flows/Host${NR}/ i funmod i s ince . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / i funmod i s ince . txt
cat /home/ ro land /Flows/Host${NR}/ dnt . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s /dnt . txt
cat /home/ ro land /Flows/Host${NR}/ i fmatch . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s / i fmatch . txt
cat /home/ ro land /Flows/Host${NR}/ ifnonematch . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / i fnonematch . txt
cat /home/ ro land /Flows/Host${NR}/ i f m o d i s i n c e . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / i f m o d i s i n c e . txt
cat /home/ ro land /Flows/Host${NR}/ o r i g i n . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s / o r i g i n . txt
cat /home/ ro land /Flows/Host${NR}/ i f r a n g e . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s / i f r a n g e . txt
cat /home/ ro land /Flows/Host${NR}/x−f l v e r . txt | t r ”\\n” ” ,” >> /home/

ro land /Flows/Host${NR}/ T x t f i l e s /x−f l v e r . txt
cat /home/ ro land /Flows/Host${NR}/x−requested−with . txt | t r ”\\n” ” ,”

>> /home/ ro land /Flows/Host${NR}/ T x t f i l e s /x−requested−with . txt
cat /home/ ro land /Flows/Host${NR}/ soapact ion . txt | t r ”\\n” ” ,” >> /

home/ ro land /Flows/Host${NR}/ T x t f i l e s / soapact ion . txt
cat /home/ ro land /Flows/Host${NR}/ upgrade−i n s ecure−r e q u e s t s . txt | t r

”\\n” ” ,” >> /home/ ro land /Flows/Host${NR}/ T x t f i l e s /upgrade−
i n s ecure−r e q u e s t s . txt

29

cat /home/ ro land /Flows/Host${NR}/x−moz . txt | t r ”\\n” ” ,” >> /home/
ro land /Flows/Host${NR}/ T x t f i l e s /x−moz . txt

echo ”end o f program”
echo $COUNT

30

countnum.sh script count the linenumbers the headers are positioned on
This script uses the ouputfiles from the procflow.sh script as input. All the collected linenumbers

are counted and totals per line number are presented in a file that also has a similar name as the
request header.

#!/ bin /bash
t h i s s c r i p t counts the number o f r e c u r r i n g numbers in a f i l e and

outputs t h i s to the s c r e en and a r e s u l t f i l e
input i s the f i l ename o f the f i l e that needs to be counted
S c r i p t needs to run only once to count the t o t a l s
f o r INPUT1 in ∗ . tx t
do
#Check presence o f a c e r t a i n number in the f i l e (b1 , b2 e t c) and

count them . Put a l l r e s u l t s in a v a r i a b l e .
NR1=‘grep −o ’\b1\b ’ ${INPUT1} |wc −l ‘
NR2=‘grep −o ’\b2\b ’ ${INPUT1} |wc −l ‘
NR3=‘grep −o ’\b3\b ’ ${INPUT1} |wc −l ‘
NR4=‘grep −o ’\b4\b ’ ${INPUT1} |wc −l ‘
NR5=‘grep −o ’\b5\b ’ ${INPUT1} |wc −l ‘
NR6=‘grep −o ’\b6\b ’ ${INPUT1} |wc −l ‘
NR7=‘grep −o ’\b7\b ’ ${INPUT1} |wc −l ‘
NR8=‘grep −o ’\b8\b ’ ${INPUT1} |wc −l ‘
NR9=‘grep −o ’\b9\b ’ ${INPUT1} |wc −l ‘
NR10=‘grep −o ’\ b10\b ’ ${INPUT1} |wc −l ‘
NR11=‘grep −o ’\ b11\b ’ ${INPUT1} |wc −l ‘
NR12=‘grep −o ’\ b12\b ’ ${INPUT1} |wc −l ‘
NR13=‘grep −o ’\ b13\b ’ ${INPUT1} |wc −l ‘
NR14=‘grep −o ’\ b14\b ’ ${INPUT1} |wc −l ‘
NR15=‘grep −o ’\ b15\b ’ ${INPUT1} |wc −l ‘
NR16=‘grep −o ’\ b16\b ’ ${INPUT1} |wc −l ‘
NR17=‘grep −o ’\ b17\b ’ ${INPUT1} |wc −l ‘
NR18=‘grep −o ’\ b18\b ’ ${INPUT1} |wc −l ‘
NR19=‘grep −o ’\ b19\b ’ ${INPUT1} |wc −l ‘
NR20=‘grep −o ’\ b20\b ’ ${INPUT1} |wc −l ‘
NR21=‘grep −o ’\ b21\b ’ ${INPUT1} |wc −l ‘
NR22=‘grep −o ’\ b22\b ’ ${INPUT1} |wc −l ‘
NR23=‘grep −o ’\ b23\b ’ ${INPUT1} |wc −l ‘
NR24=‘grep −o ’\ b24\b ’ ${INPUT1} |wc −l ‘
NR25=‘grep −o ’\ b25\b ’ ${INPUT1} |wc −l ‘
NR26=‘grep −o ’\ b26\b ’ ${INPUT1} |wc −l ‘
NR27=‘grep −o ’\ b27\b ’ ${INPUT1} |wc −l ‘
NR28=‘grep −o ’\ b28\b ’ ${INPUT1} |wc −l ‘
NR29=‘grep −o ’\ b29\b ’ ${INPUT1} |wc −l ‘
NR30=‘grep −o ’\ b30\b ’ ${INPUT1} |wc −l ‘
NR31=‘grep −o ’\ b31\b ’ ${INPUT1} |wc −l ‘
NR32=‘grep −o ’\ b32\b ’ ${INPUT1} |wc −l ‘
NR33=‘grep −o ’\ b33\b ’ ${INPUT1} |wc −l ‘
NR34=‘grep −o ’\ b34\b ’ ${INPUT1} |wc −l ‘
NR35=‘grep −o ’\ b35\b ’ ${INPUT1} |wc −l ‘
#Print the r e s u l t on the screen , but a l s o put i t in a f i l e
#Add . doc extens i on so th f i l e s are not picked up by the f o r loop
echo ”The t o t a l number o f 1 s are : ${NR1}” | t e e counted−${INPUT1} . doc
echo ”The t o t a l number o f 2 s are : ${NR2}” | t e e −a counted−${INPUT1} .

doc
echo ”The t o t a l number o f 3 s are : ${NR3}” | t e e −a counted−${INPUT1} .

31

doc
echo ”The t o t a l number o f 4 s are : ${NR4}” | t e e −a counted−${INPUT1} .

doc
echo ”The t o t a l number o f 5 s are : ${NR5}” | t e e −a counted−${INPUT1} .

doc
echo ”The t o t a l number o f 6 s are : ${NR6}” | t e e −a counted−${INPUT1} .

doc
echo ”The t o t a l number o f 7 s are : ${NR7}” | t e e −a counted−${INPUT1} .

doc
echo ”The t o t a l number o f 8 s are : ${NR8}” | t e e −a counted−${INPUT1} .

doc
echo ”The t o t a l number o f 9 s are : ${NR9}” | t e e −a counted−${INPUT1} .

doc
echo ”The t o t a l number o f 10 s are : ${NR10}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 11 s are : ${NR11}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 12 s are : ${NR12}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 13 s are : ${NR13}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 14 s are : ${NR14}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 15 s are : ${NR15}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 16 s are : ${NR16}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 17 s are : ${NR17}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 18 s are : ${NR18}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 19 s are : ${NR19}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 20 s are : ${NR20}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 21 s are : ${NR21}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 22 s are : ${NR22}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 23 s are : ${NR23}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 24 s are : ${NR24}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 25 s are : ${NR25}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 26 s are : ${NR26}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 27 s are : ${NR27}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 28 s are : ${NR28}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 29 s are : ${NR29}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 30 s are : ${NR30}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 31 s are : ${NR31}” | t e e −a counted−${INPUT1

32

} . doc
echo ”The t o t a l number o f 32 s are : ${NR32}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 33 s are : ${NR33}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 34 s are : ${NR34}” | t e e −a counted−${INPUT1

} . doc
echo ”The t o t a l number o f 35 s are : ${NR35}” | t e e −a counted−${INPUT1

} . doc
done
a l s o p r i n t the t o t a l amount o f numbers pre sent in the f i l e
TOTAL=$ (($NR1+$NR2+$NR3+$NR4+$NR5+$NR6+$NR7+$NR8+$NR9+$NR10+$NR11+

$NR12+$NR13+$NR14+$NR15+$NR16+$NR17+$NR18+$NR19+$NR20+$NR21+$NR22+
$NR23+$NR24+$NR25+$NR26+$NR27+$NR28+$NR29+$NR30+$NR31+$NR32+$NR33+
$NR34+$NR35))

echo ”The t o t a l amount o f numbers i s : $TOTAL” | t e e −a counted−${
INPUT1} . doc

echo ”end o f program”

33

B Consistency checking

This research relied on several scripts and third party programs to obtain the desired results. In order
to be sure that the processing of these programs did not influence the results, some tests were done
prior to using the programs for the research.

The goal of these tests was to be certain that the header order is not changed during processing.
It was tested by looking with Wireshark at a dozen of small pcap files, with only a few headers and
writing down the header order (it is assumed that Wireshark shows the correct header order). Next,
the files were processed by the different programs (Tcpflow, Csplit) and after that, the header order
was checked again. After individually checking the programs, the small pcaps were also completely
parsed and processed and the end result was again compared with the header orders that were written
down. These tests did not show any inconsistencies. Below are three pictures 12, 13 and 14 of a test
file. On picture 12 the header order is shown of the test file in Wireshark. The startline will be
removed during processing, so counting starts with the first header, in this case the ’Host:’ header.

Picture 13 shows the header after processing by tcpflow. The header order is not changed. The
number files that are the end result of the process show on what position a header was found. The
picture 14 shows the position of the accept header, which is three. This is the correct position.

Figure 12: HTTP headers in Wireshark

Figure 13: HTTP headers after processing by tcpflow

34

Figure 14: HTTP header number as endresult

35

C Header examples

This section shows several examples of headers that are used by specific programs or by the browser
to retrieve webpages. Requests to the same webpage are mostly consistent. The nu.nl website shows
consistency with different headers:

Figure 15: Consistent HTTP header order of nu.nl

36

Also CNN.com shows a consistent header ordering:

Figure 16: Consistent HTTP header order of cnn.com

37

The Tweakers.net headers shows a fairly consistent ordering. Consistency is broken when probably
a shockwaveflash item is requested (fourth header in the picture):

Figure 17: Fairly consistent HTTP header order of tweakers.net

The header order between the different websites is also reasonably consistent. Header order
drastically changes when certain programs are run. The pictures 18, 19 and 20 are some examples of
this.

Windows update uses only a few headers:

38

Figure 18: Windows update

Avast anti-virus update checking also uses some request headers:

Figure 19: Avast anti-virus

IBM’s Tealeaf program using a lot of experimental headers:

Figure 20: IBM Tealeaf

39

D Request header listings

In this section, the listings of headers that were retrieved from the pcap files are presented. This
script was used as input for building the other scripts. The script uses the name of the pcap file as
an input parameter. It creates HTTP request flows with the Tcpflow program and processes these.
All header content is removed and the headers are saved in an output file. Then a ’cat’ command
using sort, unique and grep options sorts this file and removes duplicate entries.

searchhdr.sh script for making an inventory of the headers

#!/ bin /bash
search d i f f e r e n t type o f headers pre sent in pcap f i l e s
t cp f low −e http −o /home/ ro land / output −r /home/ ro land /$1 . pcap dst

port 80
f o r f i l e in /home/ ro land / output /∗00080;
do
cat $ f i l e | sed −e ’ s / : . ∗ $ / : /g ’ −e ’ s /GET.∗ $/ /g ’ −e ’ s /HEAD.∗ $/ /g ’

−e ’ s /POST.∗ $/ /g ’ −e ’ s /ˆ <.∗$/ /g ’ −e ’ s /ˆ<.∗$/ /g ’ >> /home/
ro land / o u t f i l e . txt

done
rm /home/ ro land / output /∗
echo ”end o f program”

The command used to view the header inventory file is:

cat o u t f i l e . txt | s o r t | uniq | cut −c−45| grep −a ’ : ’
This l i n e was used to c l e a r readab le overview and f i l t e r out p o s s i b l e

unwanted matches in the output f i l e .

Twenty-three headers were found in the pcap files from the baseline systems.

Accept :
Accept−Encoding :
Accept−Language :
Cache−Control :
Connection :
Content−Length :
Content−Type :
Cookie :
Host :
I f−Match
I f−Modified−Since :
I f−None−Match :
I f−Range :
I f−Unmodified−Since :
Or ig in :
Pragma :
Range :
Re f e r e r :
SOAPAction :
Upgrade−Insecure−Requests :
User−Agent :
X−Moz :
X−Requested−With :

40

After analyzing the pcap files from the Fox-IT systems, seventy-five headers were retrieved. This
includes four headers that were written both with upper- and lowercase characters.

Accept :
accept−encoding :
Accept−Encoding :
Accept−Language :
Ajax−Request :
Author izat ion−Code :
Cache−Control :
Connection :
Content−D i s p o s i t i o n :
Content−Length :
Content−Type :
Cookie :
Cookie :
DNT:
Host :
I f−Match :
I f−Modified−Since :
I f−None−Match :
I f−Range :
I f−Unmodified−Since :
Or ig in :
Pragma :
Range :
Re f e r e r :

Reques tVer i f i ca t i onToken :
Rest−Author izat ion−Code :
Sec−WebSocket−Key :
Sec−WebSocket−Protoco l :
Sec−WebSocket−Vers ion :
SOAPAction :
UA−CPU:
UA−Java−Vers ion :
Upgrade :
user−agent :
User−Agent :
x−Akamai−Streaming−Sess ionID :
X−APP−VERSION:
X−Booking−AID :
X−Booking−Exp :
X−Booking−Pageview−Id :
X−Booking−Sess ion−Id :
X−Cor r e l a t i on Id :
X−CSRFToken :
X−Disqus−Publ i sher−API−Key :
X−DNT−Vers ion :
x−f l a sh−ve r s i on :
X−IDCRL ACCEPTED:
X−Last−HR:
X−Last−HTTP−Status−Code :
X−Moz :
X−NEW−APP:
X−NewRelic−ID :

41

X−Of f i c e−Vers ion :
X−Old−UID :
x−prototype−v e r s i on :
X−Prototype−Vers ion :
x−requested−with :
X−Requested−With :
X−Retry−Count :
X−Signature :
X−TeaLeaf :
X−TeaLeaf−Browser−Res :
X−TeaLeaf−Page−Cui−Bytes :
X−TeaLeaf−Page−Cui−Events :
X−TeaLeaf−Page−Dwell :
X−TeaLeaf−Page−Img−Fa i l :
X−TeaLeaf−Page−Last−Fie ld :
X−TeaLeaf−Page−Render :
X−TeaLeaf−Page−Url :
X−TeaLeaf−Screen−Res :
X−TeaLeafSubType :
X−TeaLeafType :
X−TeaLeaf−UIEventCapture−Vers ion :
X−TeaLeaf−Vis i t−Order :
X−Ver i fy :

42

E Graphs

This section contains the header occurrence comparisons between the baseline systems en the Fiesta
and Nuclear EK infections. Furthermore it also contains the graphs regarding these infections overlaid
on the Fox-IT systems.

The graphs show on how many different positions a header was seen. When a bar of the graph
reaches to the number four, then this means that the header was seen on four different positions on
this system.

(a) System 1 - uninfected (b) System 1 - with Fiesta infection overlayed

The change in header order after the Fiesta infection is overlaid is clearly visible. For the two
Windows hosts in the pictures 22a, 22b, 23a en 23b, this distinction is less clear. From all three used
exploit kits, the Fiesta exploit kit has the least impact on header order changes.

43

(a) System 2 - uninfected

(b) System 2 - with Fiesta infection overlayed

(a) System 3 - uninfected

(b) System 3 - with Fiesta infection overlayed

The Nuclear EK infection also has a minor impact on header order change. This is also the case

44

for the Windows hosts.

(a) System 1 - uninfected (b) System 1 - with Nuclear EK infection overlayed

(a) System 2 - uninfected

(b) System 2 - with Nuclear EK infection overlayed

45

(a) System 2 - uninfected
(b) System 3 - with Nuclear infection overlayed

46

