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Abstract

Google Public DNS is a global open DNS service that Google offers for free. Since
its inception the service has become quite popular. Despite its popularity, revealing
the working principle of the service does not seem within Google’s future plans. The
only official and very limited information is published on Google’s official website. This
project is mainly conducted in the light of this limited information. The goal of this
project is to shed light on how Google Public DNS works.

In this paper, we explore two aspects of Google DNS: locality and cache coherency.
A topology is built around the globe with 5 authoritative name servers and RIPE Atlas
probes as DNS clients. In order to investigate the locality of Google DNS, lookups
are initiated by probes from all around the world and BIND logs of authoritative name
servers are observed to determine if the queries to an authoritative name server originate
in the Google data center where the query is received or in the closest data center to the
name server. This methodology then extended to discover whether Google maintains
a globally single shared cache or not. Another methodology presents the analyzing
simultaneously BIND logs and response TTL values in order to examine cache coherency
in a single Google location.

Our experiments showed that the queries to the authoritative name servers originate
in Google’s data center closest to the clients. Regarding cache coherency, we found out
that Google does not maintain a globally shared cache, each location has its own cache.
Further analysis targeting a single location showed that each location may not also
maintain a single shared cache by multiple resolvers, that is a hint to a possible cache
fragmentation, in turn, a possible performance penalty. This paper also presents some
routing anomalies of DNS queries and unexplained issues regarding cache coherency
which have arisen during our experiments.
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1. Introduction

In the last decade, there has been a dramatic growth in the number of internet users, as
of July 2014, the total number reached 3 billions [1]. Having said that, the performance
expectation of the users are also increased, especially on web browsing. Since web
browsers are getting more complex, DNS lookups may create bottlenecks, thus, DNS
resolution plays an important role in clients’ experience. A user can either prefer its
local ISP’s DNS resolver or a public DNS service, such as Google Public DNS and
OpenDNS.

Google Public DNS is one of the most preferred DNS providers around the world [2].
Google claims to offer free and fast DNS service to its clients. Despite its popularity,
there is only little information about the underlying mechanism of the service. As a
matter of fact, the only official explanation can be found on Google’s official website [3].
For this reason, we can simply identify it as a ”black-box”.

1.1. Google Public DNS

Google Public DNS is a free global service that can be used as an alternative to local ISP
resolvers. It uses global anycast addresses 8.8.8.8 and 8.8.4.4 to receive DNS queries from
the clients. The IP address for the service is announced globally by Google’s autonomous
system (AS15169)and the traffic will be routed via the shortest announced route seen
from the client’s perspective. Google DNS servers are spread around the globe. As of
February 2015, there are 13 locations as shown in Table 1.1. The IP subnets of those
locations are also published by Google in [3].

Google basically uses three main methods to mitigate the DNS latency as using power-
ful servers, using the edns-client-subnet option and a high cache coherency as published
in [3]. Since our focus is the cache coherency of Google Public DNS, here we mention
only the cache mechanism.

Google Public DNS has 2 levels of cache. Level 1 cache, a small per-machine cache,
contains the most popular domain names. If a query is not satisfied by Level 1 cache
then it is forwarded to another pool machines where cache is partitioned by names. Each
query for the same name are always handled by the same machine [4].

1.2. Research Questions

In light of the limited information on the working of Google Public DNS, we set out to
learn more about its workings. To do so, we will address the following research questions:
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City Country

Taipei Taiwan
Brussels Belgium
Groningen Netherlands
Morganton USA
Atlanta USA
Council Bluffs USA
Charleston USA
The Dalles USA
Tulsa USA
Lappeenranta Finland
Santiago Chile
Dublin Scotland
Singapore Singapore

Table 1.1.: Locations of Google public resolvers

1. Do queries to an authoritative name server originate in the region of the original
query to Google Public DNS or are they local to the authoritative name server?

2. Is there a single shared cache for the whole service or do queries from different
locations result in multiple queries to authoritative name servers? We subdivide
this question into four subquestions:

a) Is there any delay during the creation of the cache after flushing?

b) Is it possible to figure out that all Level 1 cache are identical?

c) Does Google Public DNS respect the TTL set by the authoritative name-
server?

d) Does Google Public DNS maintain a coherent Level 2 cache in a single loca-
tion?

The research questions above differ somewhat from the original plan submitted at
the start of the project, this is because we do not administer a popular domain and
the only way to interact with Level 1 cache was to use Flush Cache Tool1 which has
crashed during this project (Google claims that any resource record can be flushed out
of the whole service using this tool). Then we raised an issue ticket to Google Public
DNS Team and they reported that there was bug on the tool. Therefore, we discarded
the question 2a regarding cache flushing and the question 2b regarding Level 1 cache.
Instead, we added a new question 2d regarding Level 2 cache.

By answering these questions, we would like to add valuable information regarding
inner mechanism of Google Public DNS service.

1https://developers.google.com/speed/public-dns/cache

6



1.3. Related Work

There have been a large range of studies on the DNS performance, however, only few
on exploring DNS caching mechanisms. The study of Huang et al. [5] helped us get
the insight of the Public DNS working principle with examples including Google Public
DNS. They present the ”DNS Beacon” technique that is used in order to uncover geo-
graphic presence of the Public DNS systems. Their technique is based on recording the
unique IP addresses of the Public DNS servers by means of observing the authoritative
name server logs. This idea led us to develop the methodology regarding the locality
of Google Public DNS. In an early study by Jung et al. [6] studied how cache sharing
can impact caching effectiveness and evaluation of DNS performance from client-side
perspective. The methodology they presented as ”Trace-driven Simulation Algorithm”
which examines the response TTL values to evaluate cache hit and miss rate gave us
the idea of making use of decrement of the TTL values to analyze the cache coherency
of Google Public DNS. In a study of Schomp et al. [7], the authors evaluate the caching
behavior of recursive DNS servers and to what extent DNS servers are honest with the
TTL values. They present a methodology comparing the TTL values set by authori-
tative name servers and the response TTL values to determine if the TTL values are
modified by DNS servers.

Regardless, no research has been done regarding Google Public DNS cache coherency
and locality up to this time.

1.4. Contribution

The expected end result is a proof of concept on how Google Public DNS maintains their
cache coherency and locality around the world. The methodologies that we developed
are also applicable to other public DNS providers, such as; OpenDNS and Level3. Also,
our implications may contribute future studies in such a way that DNS cache coherency
may present a possible DNS performance penalty.
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2. Background Information

In this section, we give an overview of DNS infrastructure and RIPE Atlas probes.

2.1. DNS Overview

DNS (Domain Name System) is specified in RFC 1034 [8] and RFC 1035 [9]. We briefly
summarize the basic design and the terminology used in this project.

DNS is a hierarchical globally distributed database that maps the human-readable
domain names to the IP addresses of internet services (such as; www.example.org to
192.168.1.2). As a distributed service, the domain name space is cut into the portions
(called zone, such as; example.org) and the administration responsibility of the zones is
delegated to the authoritative name servers. Authoritative name servers maintain a zone
file containing mapping information (called resource record, RR). The RRs have different
types, however the most common type is ”A” (address) which basically indicates the IP
address of a certain domain name. Another important player of DNS is the resolver that
query RRs from authoritative name servers in response to the recursive query initiated
by the clients. A resolver may be administered by ISPs (local resolver) or by a public
DNS provider (public resolver) such as; Google Public DNS and OpenDNS.

In order to achieve a low client latency, DNS makes use of caching. When a resolver
conducts a DNS query on behalf of the clients, it stores the RR in its cache for further
queries, thus the resolver is able to respond to the client immediately without any further
search on the DNS tree [6].

Each RR has an expiration time (called Time-To-Live, TTL) which is set by the
authoritative name servers. TTL is an integer value in seconds and defines how long a
resource record should be kept in cache as described in RFC 1034 [8]. For instance, once
a resolver caches an RR with a certain TTL value, say 300 seconds, it is responsible for
decreasing the TTL value and after this period it must be discarded from the cache.

A DNS server is basically a software that implements DNS protocols. The most
widely used name server software is BIND (Berkeley Internet Name Domain [10]. The
authoritative name servers mentioned in this project are built by this software.

2.2. RIPE Atlas Probes

RIPE Atlas probe is a small hardware that can run network commands such as DNS
query, ping, and traceroute. The result of these measurements are collected and reported
to a database. The activity of the probe can be managed through a dashboard on RIPE
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Atlas website. The aim is to build the largest internet measurement network initiated
by RIPE NCC [11].

Everyone can register and create a user account on the site1 to create a measurement
with the probes. Each measurement deducts a number of credits from the user account.
A user can earn credits by hosting a probe [12]. The credit system meant especially to
distribute the usage of the probes evenly among the users. However, it is also used to
prevent abuse. Thus, no credit, no measurement.

The probes are distributed across the world as shown in figure 2.1.

Figure 2.1.: RIPE Atlas probes distribution around the world [13]

We use these probes during the research to act as clients. The fact that they are
spread around the globe is quite helpful for our research.

1https://atlas.ripe.net/
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3. Methodology

3.1. General Topology

As the starting point of our research, we configured five authoritative name servers with
BIND. We enabled the query log setting to be able to see the incoming DNS queries. We
located these authoritative name servers in countries close to one of the Google Public
DNS servers: The Netherlands, Chile, England, USA, and Singapore, as shown in the
figure 3.1.

Figure 3.1.: The location of our authoritative name servers

With the help of SURFnet, we registered a domain name called inspectorgoogle.net.
In table 3.1, five delegated subdomain names are shown with the associated authoritative
name servers.

We chose to use gTLD .net is because the gTLD name server have a better globally
distributed presence than .nl [14]. It minimizes any influence caused by unnecessary
traffic from and to the name servers.
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Subdomain name Location of the authoritative name servers

nl.inspectorgoogle.net The Netherlands
cl.inspectorgoogle.net Chile
uk.inspectorgoogle.net UK
us.inspectorgoogle.net USA
sg.inspectorgoogle.net Singapore

Table 3.1.: Delegated subdomains to the authoritative name servers

3.2. Origin of the DNS Query from Google Public DNS

To answer the research question mentioned in section 1 about locality, we applied the
following methodology. We configured RIPE Atlas probes to send one DNS query to all
of our authoritative name servers at a specific time stamp. The location of the probes
were particularly picked to represent each continent in the world. By correlating the
BIND query logs of the authoritative name servers and the time stamp of the DNS
queries sent from the probes, we would be able to determine the origin of these queries.

Since Google Public DNS servers located around the world, it is interesting to know
from which Google Public DNS server the query to the authoritative name servers origi-
nate. There are two possibilities: the Google Public DNS server close to the authoritative
name servers or the one that close to the clients instead.

If the query originates from a Google Public DNS server close to the client, it would
give us a small hint that there might not be a single globally shared cache. Had there
been a single shared cache, we would expect that the query will be processed internally
by Google Public DNS which will forward the query to the Google Public DNS server
closest to the authoritative name servers.

3.3. Round Trip Time

We wanted to compare the round trip time (RTT) of traceroute to Google Public DNS
from different location of the world between two or more countries.

The aim is to find out whether the network connection to Google Public DNS are
more or less equal around the world or not. The higher round trip time the worse the
overall performance would be. Despite the round trip time is not the only performance
parameter of DNS, it affects the performance greatly.

We configured the probes in certain locations to traceroute to 8.8.8.8. The result of
this measurement is RTT from the probe to 8.8.8.8 and we would also be able to see the
edge router to the Google Public DNS autonomous system from the probes.
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3.4. Correlation Between Edge Router to AS15169 and
the Origin of the DNS Query

By doing traceroute, we will be able to find out the edge router of a certain autonomous
system. This is also valid in the case of doing traceroute to 8.8.8.8. We will be able to
know the edge router to AS15169 of Google Public DNS.

The reason of this experiment is to get more information on how Google Public DNS
handles the incoming DNS query inside their own autonomous system. This is also to
confirm the claim of Google that they are using anycast to route the packet to the closest
Google Public DNS.

The probes are the source of traceroute and sending DNS queries to one of the au-
thoritative name servers. The measurements is done at a certain short time interval
during a certain period of time. Then the result of the traceroute and the query log of
the name servers will be compared to see if there is any correlation between them.

Our aim here is to find out if a packet to 8.8.8.8 is routed through a certain edge router,
whether or not the DNS query from the same source will be handled by or routed to the
same Google Public DNS server.

3.5. Global Cache Analysis

To determine if Google Public DNS maintains a globally shared Level 2 cache or not,
which addresses the second research question, we followed 4 steps:

1. We let Google Public DNS service, say the public DNS server in Brussels, cache
an A record that is administered by the authoritative name server located in the
Netherlands, say test.nl.inspectorgoogle.net. To achieve this, the same queries
originated from a client in London that is served by the public server in Brussels
location. To make sure that the RR is certainly cached, consecutive queries are
done per one second within the TTL of the A record until no more query logs are
shown in BIND logs. By this means, we can assume that the A record is stored at
least in Level 2 cache in Brussels.

2. Since Google Public DNS may maintain a globally distributed cache database,
it may take a while to deliver the cache entry at different geographical areas.
To overcome this uncertainty, the clients in different locations wait for different
amount of time (the range is between 1 minute and default TTL value in different
experiments) before doing queries from different continents.

3. After the waiting time, the client in USA (served by Morganton), the client in
Singapore (served by Singapore) and the client in Chile (served by Chile) initiate
queries for the same A record, test.nl.inspectorgoogle.net.

4. Meanwhile, we traced the BIND logs of the authoritative name server to check
if any incoming query is logged originating from the Google resolvers in USA,
Singapore and Chile.
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The topology in figure 3.2 illustrates the 4 steps mentioned above.

Figure 3.2.: The topology of the steps

3.6. TTL and BIND Log Analysis

One concrete way to figure out how Google Public DNS maintains the Level 2 cache for
unpopular domain names in a certain location is to observe BIND logs and TTL values
in DNS responses received by the client, simultaneously. Our aim here is to present
a technique addressing the research question 2d: Does Google Public DNS maintain a
coherent Level 2 cache in a single location?

A process built by two python programs is used to fulfill this duty. Figure 3.3 shows
the basic working principle of the flow. The first program originates DNS queries from
the client (step 1) and parses the TTL value in the response real time (step 2). If the
TTL is equal to default TTL of the RR, the program then parses the BIND logs to check
whether it receives a DNS query from one of the Google resolvers and records the IP
address of the resolver and the response TTL. If the TTL value is not equal to default
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TTL, which also implies the query is responded by the cache, then it records only the
TTL value (step 3). Second program analyzes the output of the first program and sets
a cache ID to each response containing the default TTL value. Moreover, it relates the
cache responses with a previously set cache ID based on the decrement of TTL (step 4).
Hence, we are able to match the responses with the related cache ID. Finally, process
waits for a certain period and be ready to originate new queries (step 5).

A sample output of the process with default TTL of 300 and query interval of 10
seconds is shown in Table 3.2. The first and second queries seem to be answered from
different caches since both receives default TTL value, thus both queries have different
cache IDs. The third query and fourth query can be associated with first and second
queries, respectively, based on TTL decrement.

Query ID Timestamp Cache ID Google Resolver IP TTL

1 01:50:02 1 2a00:1450:400c:c05::153 300
2 01:50:12 2 74.125.181.83 300
3 01:50:22 1 Cache Response 280
4 01:50:32 2 Cache Response 280

Table 3.2.: A sample output of TTL and BIND Log analysis

A simple scenario can be described as follows: The authoritative name server in
London is selected as the vantage point which is queried by Brussels location. The
A record to be queried is set to test.uk.inspectorgoogle.net. The name server itself
maintains the client role, thus the process runs in the same physical machine.

The concerns and measures regarding this analysis are as below:

1. Since Google Public DNS may carry out different policies in different locations,
4 authoritative name servers are selected as vantage points which are located in
London, New York, Chile and Singapore, each gets queries from different Google
Public DNS locations, Brussels, Morganton, Chile, Singapore, respectively.

2. By the reason of a potential change in the cache behavior at different hours of the
day, time of day should be taken into consideration.

3. The RRs with higher and lower TTL values may change the behavior. Therefore,
the experiments with different TTL values should be carried out.
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Figure 3.3.: Flow of TTL and BIND Log Analysis
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4. Results and Implications

4.1. Origin of the Queries

We chose 50 countries distributed as even as possible. One probe is randomly picked
from each country. A DNS query to one of our name servers is configured to be sent
from these probes. The authoritative name server used here is the one in USA which
is authoritative for us.inspectorgoogle.net. This authoritative name server is randomly
picked and there is no any influence to the result of this research.

A part of the result can be seen in table 4.1. We can see that the origin of the query
is coming from Google Public DNS closest to where the query was sent instead of the
authoritative name server. The complete result is available in the appendix D.

Probe Location Origin of The Query

Bangladesh Singapore
Saudi Arabia Belgium
Indonesia Singapore
Algeria Belgium
Russia Finland

Table 4.1.: Probe location and the origin of the query

It gives us a hint that indeed there might be no globally single shared cache. As
mentioned in the previous chapter, had there been a single globally shared cache around
the world, it should have different result. We would expect that the query will originate
from the Google Public DNS server close to the authoritative name server. It would
indicate that the DNS query is routed through Google autonomous system and there is
an internal process handling the query inside the Google network.

4.2. Round Trip Time

We chose two regions that relatively differs in terms of internet connection and also the
number of Google Public DNS servers located in the region. Southeast Asia and Western
Europe were the chosen regions. Because of the limitation of RIPE Atlas probes, we
decided to only choose five countries from each region. In each country, we set five
randomly picked probes to do traceroute to 8.8.8.8.

The result in table 4.2 shows that the average round trip time in Southeast Asia is
higher than in Western Europe.
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Country Name Average RTT (in ms)

Indonesia 17
Philippines 45
Vietnam 40
Singapore 3
Malaysia 64
The Netherlands 5
France 3
Germany 2
Switzerland 2
Luxembourg 25

Table 4.2.: The comparison of RTT between Southeast Asia and Western Europe

The result is arguably really limited. We could not determine the quality of the
internet connection in which the probe connected to. We also did not have a lot of
samples because of the credit limitation. Nevertheless, it still gives an indication that
the use of Google Public DNS in the country with less number of distribution of Google
Public DNS servers has clearly some performance penalty. It could be better to use
local DNS provided by ISP provider since it is closer to the client location and therefore
resulted in a way less lower round trip time.

4.3. Correlation between Edge Router to AS15169 and
the Origin of the DNS Query

The same setup as the previous measurement in section 4.2 was used. We chose the
same five countries in Southeast Asia and five in Western Europe to examine. The same
five probes each countries were also picked. In addition of a traceroute to 8.8.8.8, we
also set up the probes to send a DNS query to our authoritative name server in USA
(us.inspectorgoogle.net). In the end, we correlated the result of the traceroute with the
BIND query logs to identify the edge router and eventually analyzed the origin of the
incoming queries.

From all of the countries, we observed an interesting result from Malaysia. The DNS
queries from other countries always went through the same edge router (based on the
network where the probe is connected to) and also handled always by the same Google
Public DNS server. However, the DNS query sent from the RIPE Atlas probe in Malaysia
had a different behavior. The packet went always through the same edge router (also in
Malaysia) but the DNS query was handled by a different Google Public DNS server in
Singapore and Taiwan interchangeably in an undefined pattern.

It indicates that although each probe is always routed through the same edge router,
the DNS query from the same probe could be handled by a different public resolver.
This may imply that Google has its own mechanism to handle incoming queries. The

17



Figure 4.1.: Two Google Public DNS server handled DNS query from Malaysia

measurement result that shows DNS query from Malaysia is shifted to Google Public
DNS server in Taiwan also indicates that this mechanism could lead to a performance
penalty.

4.4. Globally Shared Cache

After following the steps indicated in the section 3.5, no sign is found regarding the
existence of a single shared cache. Even if we let Google cache the RR sending queries
to Brussels locations, we observed that authoritative name server receives queries from
each Google data center independently. A possible delay of data synchronization across
the locations are taken into consideration, however, even after hours no indication of a
shared cache is detected. The same scenario is applied targeting different Google Public
DNS server locations, however, the result did not differ.

4.5. Level 2 Cache Coherency in a Single Google
Location

In order to investigate the Level 2 cache coherency in a single Google location, the
method is applied described in the section 3.6. Our first finding was that Google does
not manipulate the TTL values set by authoritative name servers unless it is more than
6 hours, addressing the research question 2c. Even if the TTL values were set to higher
than 6 hours (eg. 12 hours), the maximum TTL value received in the DNS responses was
6 hours. For this reason, our experiments could have a maximum TTL of 6 hours. The
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results of an experiment with the default TTL set to 300 seconds and query interval to 10
seconds is shown in the appendix B. Four findings can be derived from this experiment:

1. Four queries were not responded by the cache since response TTL values are equal
to default TTL and those queries were also shown in BIND logs.

2. The cache responses seemed to have responded by multiple caches as shown in
”Cache ID” column.

3. The TTL values were decreasing gradually till zero.

4. The first and sixth queries were sent by the same resolver IP address.

The first two findings imply that Level 2 cache may be fragmented in a single location
(Brussels in this experiment) as opposed to what Google claims [3]. The third finding
shows that the RRs in Level 2 cache seem not evicted by Google, as we can observe the
TTL values decreasing gradually till 10 seconds. This also may point out that Level 2
cache is big enough that can keep our records until TTL expires, in turn, strengthen
our implications. At first sight, the fourth finding creates an impression of NAT usage,
whereas those addresses are IPv6. As discussed in section A, Google stated that egress
IP addresses are shared by multiple resolvers. This made a possible mapping of resolver
IP to cache not applicable.

Another interesting observation during the experiments was that some cache re-
sponses had a TTL value that could not be related to any cache ID, labeled as UN-
KNOWN SOURCE in appendix C. Despite this, those responses can be related to each
other depending on the decrement of the TTL, such as; queries with id 7 and 24. We
name such a case as ”Ghost Cache”. In addition, more than one ghost cache can be
detected within a TTL interval. Two ghost caches can be seen in appendix C labeled
as UNKNOWN SOURCE1 and UNKNOWN SOURCE2. However, we do not have a
satisfactory explanation for the ghost cache.

Tests were performed in consideration of the concerns mentioned in section 3.6. The
same behavior and similar results were observed in different locations of Google Public
DNS (New York, Chile and Singapore), TTL values (300, 600, 1800, 3600, 7200, 21600
seconds) and time of day. During the tests, the DNS clients were configured in order to
do recursive queries to 8.8.8.8 and 8.8.4.4. No queries were sent to the IPv6 addresses
of Google Public DNS.
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5. Conclusions and Future Work

We explored the locality and cache coherency of Google Public DNS service. Our ex-
periments showed that recursive queries to an authoritative name server originate in
the Google data center where the query is received. This means that DNS traffic is
not routed within Google cloud, instead, each public resolver handles the DNS lookup
by its own throughout the Internet. Actually, origin of the queries was a hint of that
Google does not have a single globally shared Level 2 cache (Level 1 cache could not
be analyzed due to technical limitations discussed in section 1.2). Our further analysis,
using clients and authoritative name server in different continents, proved that Google
stores different Level 2 cache in each location.

Tests and observations using the methodology described in section 3.6, posed a possi-
ble Level 2 cache fragmentation in contrast with the Google’s aim[3]. As Google states
cache fragmentation decreases the cache hit rate, in turn, increases the client latency.
Our implications are hints to a possible performance penalty. Since there are currently
privacy discussions on Google DNS, if such a study is done that comparing the per-
formance of Google DNS and Local ISP resolvers and proving that local resolvers are
performing better, then it would be another reason against using Google DNS service.
Still very limited information is revealed by Google. Thus, future investigations would
probably need more clues especially on the load-balancing strategy and the cache levels.
The ghost cache issue discussed in section 4.5 is still open and gives an impression that
there exists a complex inner mechanism, even more than two levels of cache.
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A. Reflection

In this section we reflect on our experiences during the research project and what we
have learned from this.

At the beginning of the project, since our main question was related to cache coherency
we began with analyzing the BIND logs while originating queries to 8.8.8.8 from RIPE
probes. Then we realized that, we first needed to find the answer of locality related
question. Because we were unable to make sense of IP addresses shown in BIND logs.
Before observing application layer (DNS), we should have started with network layer
behavior. That costed us unnecessary workload.

After we figured out that there might not be a globally single shared cache, we con-
tacted Google DNS team and verified our implication.

Since the Flush Cache tool has a bug during our project as mentioned in section
1.2, we changed our focus entirely to Level 2 cache. First we thought that resolver IP
addresses might give a clue about the cache machines behind. However, we observed
that our name servers receive queries from the same resolver IP address occasionally.
We asked Google if they use NAT and they responded as multiple resolvers share the
same egress IP address. Thus, our plan of mapping resolver IP to cache failed.

Even if Google did not tend to share information when it comes to technical details,
they were friendly and willing to help during our correspondences.

We also had a credit limitation while using RIPE Atlas probes. The probes are
manageable by using credits and each measurement needs certain credits. For example,
one DNS query costs 20 credits and one traceroute measurement costs 30 credits. One
of the reason of credits is to prevent any abuse to the system. Another limitation we
have is regarding the maximum number of simultaneous measurements to a specific
target. In our research we sent a DNS query through 8.8.8.8 and we could not do
lots of measurement at once. After discussion with Daniel Quinn from RIPE, we got
special arrangement for our project and therefore can use RIPE atlas probes without
this limitation.
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B. Results of the TTL analysis in a
Single Location

Query ID Timestamp Cache ID Google Resolver IP TTL

1 01:50:02 1 2a00:1450:400c:c05::153 300
2 01:50:12 2 74.125.181.83 300
3 01:50:22 1 Cache Response 280
4 01:50:32 2 Cache Response 280
5 01:50:42 2 Cache Response 270
6 01:50:52 3 2a00:1450:400c:c05::153 300
7 01:51:02 2 Cache Response 250
8 01:51:12 2 Cache Response 240
9 01:51:22 1 Cache Response 220
10 01:51:32 3 Cache Response 260
11 01:51:42 4 74.125.17.209 300
12 01:51:52 2 Cache Response 200
13 01:52:02 2 Cache Response 190
14 01:52:12 1 Cache Response 170
15 01:52:22 2 Cache Response 170
16 01:52:32 1 Cache Response 150
17 01:52:42 1 Cache Response 140
18 01:52:52 2 Cache Response 140
19 01:53:02 2 Cache Response 130
20 01:53:12 1 Cache Response 110
21 01:53:22 1 Cache Response 100
22 01:53:33 2 Cache Response 100
23 01:53:43 4 Cache Response 180
24 01:53:53 1 Cache Response 70
25 01:54:03 2 Cache Response 70
26 01:54:13 1 Cache Response 50
27 01:54:23 2 Cache Response 50
28 01:54:33 2 Cache Response 40
29 01:54:43 2 Cache Response 30
30 01:54:53 1 Cache Response 10
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C. Ghost Cache Sample

Query ID Timestamp Cache ID Google Resolver IP TTL

1 07:20:01 1 74.125.181.86 300
2 07:20:11 1 Cache Response 290
3 07:20:21 2 74.125.181.80 300
4 07:20:31 3 74.125.47.83 300
5 07:20:41 4 74.125.47.80 300
6 07:20:51 2 Cache Response 270
7 07:21:01 UNKNOWN SOURCE1 Cache Response 250
8 07:21:11 4 Cache Response 270
9 07:21:21 2 Cache Response 240
10 07:21:31 4 Cache Response 250
11 07:21:41 2 Cache Response 220
12 07:21:51 2 Cache Response 210
13 07:22:01 1 Cache Response 180
14 07:22:11 4 Cache Response 210
15 07:22:21 1 Cache Response 160
16 07:22:31 3 Cache Response 180
17 07:22:41 2 Cache Response 160
18 07:22:51 1 Cache Response 130
19 07:23:01 1 Cache Response 120
20 07:23:11 3 Cache Response 140
21 07:23:21 1 Cache Response 100
22 07:23:31 4 Cache Response 130
23 07:23:41 1 Cache Response 80
24 07:23:52 UNKNOWN SOURCE1 Cache Response 80
24 07:23:52 2 Cache Response 80
24 07:23:52 3 Cache Response 80
25 07:24:02 UNKNOWN SOURCE2 Cache Response 90
26 07:24:12 3 Cache Response 60
27 07:24:22 2 Cache Response 40
28 07:24:32 UNKNOWN SOURCE2 Cache Response 60
29 07:24:42 UNKNOWN SOURCE2 Cache Response 50
30 07:24:52 UNKNOWN SOURCE2 Cache Response 40
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D. Probe Location and the Origin of
the Query

Probe Location Origin of The Query

Bahrain Belgium
Bangladesh Singapore
Bhutan Belgium
China Taiwan
India Singapore
Indonesia Singapore
Iran Belgium
Israel Belgium
Japan Taiwan
Kazakhstan Finland
South Korea Taiwan
Malaysia Singapore
Saudi Arabia Belgium
Singapore Singapore
Turkey Belgium
Argentina Chile
Brazil Chile
Chile Chile
Colombia USA
Ecuador USA
Paraguay USA
Peru Chile
Uruguay USA
Venezuela USA
Mexico USA
USA USA
Algeria Belgium
Niger Belgium
Tunisia Belgium
Togo Belgium
South Africa Belgium
Madagascar Belgium
Kenya Belgium
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Probe Location Origin of The Query
Mauritius Belgium
Cameroon Belgium
Liberia Belgium
Finland Finland
Iceland Belgium
Portugal Belgium
Malta Belgium
Bulgaria Belgium
Russia Finland
Ukraine Finland
Estonia Belgium
Germany Belgium
Italy Belgium
Tonga Taiwan
Vanuatu Taiwan
New Zealand Taiwan
Samoa USA
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