X

I

X
UNIVERSITY OF AMSTERDAM

Large-scale drive-by download detection:
visit”. process. analyse. report.

Master in System and Network Engineering

Students:

Adriaan Dens Martijn Bogaard
adriaan.dens@os3.nl martijn.bogaard@os3.nl
Supervisors:

Jop van der Lelie Wouter Katz

jop.vanderlelie@ncsc.nl wouter.katz@ncsc.nl

February 7, 2015

Abstract

Current malware analysis systems do not allow for concurrently visiting multiple web-
sites. In this paper we present an algorithm which solves this problem by hooking into
the APIs that a browser uses. The data received from the API hooking is added into a
graph (without loosing the URL context), after which analysis of malware can be done.
Additionally, a proof of concept has been developed which implements this algorithm.
Results show a significant performance gain compared to current systems.

Contents

(1__Introductionl 1
[1.1 Research Question| 1
1.2 Related workl 2

3
2.1 Drive-by downloads|. o 3

2.1.1 Bebaviour] 3
2.2 Libraries and APIsl 4
2.2.1 APl'hookingl 4
2.3 Web browser architecturel Lo L 5

[3 Approach and Methods| 8
3.1 Correlating HT'TP requests| 8
3.2 Algorithm| 9

[3.2.1 Prerequisites and considerations| 9
3.2.2 Steps 10
[3.3 Proof of concept| 11
[3.3.1 Prerequisites and changes| 11
3.3.2 Thesetup| 11

[4_Results| 14

4.1 Implementing the algorithm| 14

[4.1.1 Problems 14
4.2 Running the proof of concept| L. 15
4.3 Comparison with other malware analysis systems| 18

5 Conclusion 20

[6_Future workl 21
6.1 Proof of concept| 21

[Acknowledgements| 22

[References| 23

[Appendix A: Simple Analyser| 26

[Appendix B: Raw benchmark data] 27

[Appendix C: Cuckoomon modifications| 30

1 Introduction

In the digital world of today, malware is still a massive and growing problem. While
it was used to annoy users and system administrators in the early days, nowadays it
is used for extortion, cyber espionage and surveillance by criminal groups and rivalling
governments. One of the main causes of getting infected with malware is a drive-by
download while visiting a normal day-to-day website because, for example, the website
got hacked and infected.

In many cases [24], [10}, [11] however, it was not the actual website but one of the advertise-
ment networks that was compromised and which subsequently started serving malicious
code hidden in innocently-looking advertisement code. This is also called malvertising
[17].

National CERT organisations are interested in an early detection of such threats. While
automated systems to scan websites already exist, like CuCkO(ﬂ and AnubisE]7 one of the
main downsides is the time needed to analyse multiple websites.

The goal of this research project is to develop an algorithm that makes it possible to
examine multiple websites for the existence of malware using the same computer system
and at the same time, increasing the speed at which detection can occur. The effective-
ness of this algorithm will be proved by implementing it in a proof of concept.

1.1 Research Question
In cooperation with the Dutch National Cyber Security Center (NCSC-NL), our research
project focuses on the question:

How can we concurrently visit multiple URLs and still be able to determine which URL
was responsible for malicious activities?

To answer the research question, multiple sub-questions have been formulated:

e Which techniques are used by web browsers to make concurrently visiting multiple
URLSs possible?

e Which APIs are used by web browsers to make HTTP requests and retrieve web-
pages?

e How can an HTTP request be correlated to its source URL without the modifica-
tion of the used web browser?

e Which additional information sources (from the client or its environment), besides
what was used to correlate HT'TP requests, can be used to make the tracking of
malware to its source URL easier?

"http://cuckoosandbox.org
http://anubis.iseclab.org

1.2 Related work

The growing threat of malware resulted in many research projects in the last few years.
The detection and analysis of malware has been researched from several different angles
[8, B] and resulted in many proposed static and dynamic analysis techniques.

In 2013, Le et al. [16] presented a framework that describes the common stages and
characteristics of a drive-by download attack. They described four stages from placing
the malicious content on a webpage to the execution of the malicious activity.

In 2011, a paper from Canali et al. [2] was released about the problematic performance
of dynamic analysis and with a solution proposed in the form of “Prophiler”. Prophiler
is a filter that deploys static analysis techniques and that is able to reduce the load
by more than 85% compared to dynamic analysis. This result was realised without a
significant change in the amount of false negatives.

In the same year Rajab et al. [25] gave an overview of the trends regarding web malware
detection and how the malware tries to circumvent detection. This research focused
on the advantages and disadvantages of four techniques: Virtual Machine honeypots,
Browser Emulation honeypots, Classification based on Domain Reputation and Anti-
Virus Engines.

A different approach was taken by Rossow et al. [27]; Cortjens and El-Yassem [3];
Kinkhorst and Van Kleij [I5]. During multiple research projects they focused on the
ability to detect and identify malware on the network layer.

The usage of graphs to detect malware has been proposed before. Park and Reeves
proposed [22] the usage of graphs of system calls to detect the similarities and differences
in behaviour between the variations of a malware family. By focusing on the common
subgraph, new variants can be detected and categorized without prior knowledge of their
existence. A recent paper from Wiichner et al. [3I] described the usage of generating
graphs from API calls for a heuristic-based malware detection system.

The predecessor of NCSC-NL (GOVCERT.NL), together with NASK/CERT Polska,
started in 2007 with the development of their own system, the Honeyspider network
[12], for the dynamic analysis of websites. This system crawled the biggest and most
important websites of the Netherlands on a daily base. The downside of this system is
that it requires a lot of maintenance and therefore it started to become outdated.

2 Theory

For a better insight into the project, it is necessary to introduce certain theoretical con-
cepts first. The next section will use this theory as a basis for the design and development
of the algorithm.

2.1 Drive-by downloads

Browsing the Internet with an unpatched system can be dangerous. Software contains
mistakes and fixes for these mistakes are released on a daily basis. Part of those mistakes
can be (ab)used to get control over a computer system and be used to run malicious
software. Such mistakes are called vulnerabilities.

If such a vulnerability is used to take control of the web browser (or one of its plug-ins
like Flash or Java) and malicious software is downloaded to the system then this is called
a drive-by download [16]. Figure [1| shows the steps involved from visiting a website to
the moment the system is infected with malware.

By compromising the web browser and injecting malicious code (called exploitation), the
malware gets full control over the infected process, running with the same privileges as
the web browser on the host system. Depending on the system configuration this either
means that the system is now under the control of the attacker or that additional steps
are required to escalate the privileges to the intended level.

1 2 3 4 5
Browser loads Executes Executes Downloads Executes
| URL | » | exploit | » | shellcode ‘ » | malware to disk | » | malware |

Figure 1: The anatomy of a drive-by download malware infection. [13]

2.1.1 Behaviour

What happens after a malware infection depends on the malware and the goals of the
attacker. Common goals are persistence of the malware and further exploitation. The
former is achieved by writing executable code to the disk and optionally changing several
configuration files to make sure the code is executed at certain events, for example after
rebooting. The latter is achieved by dowloading further malicious components for the
next stage.

While some malware communicates directly with the kernel (via so-called system calls),
most malware [23] behaves like a normal application and uses the installed, or with the
operating system provided, libraries. The usage of such libraries can be detected when
the access to them is monitored.

A special class of malware [32] [33] is formed by those that infiltrate the operating system
kernel by loading malicious drivers. Such kernel malware is usually used as part of a
rootkit and is very hard to detect and analyse as it runs with the highest possible
privileges. From the moment the driver is loaded, it is able to hide itself, files, network
connections and other applications from the user and normal applications.

2.2 Libraries and APlIs

Libraries contain reusable parts of code to make the development of applications easier.
Applications use them so the developer does not have to worry about the low-level details
of the used system. The application programming interface (API) defines the exposed
interface of the library with the functions that can be used.

In the early days, libraries were primarily used by an application by statically linking to
it. This means that the library becomes part of the application and it is no longer possible
to determine which part of the application was originally part of the used libraries.

For size reduction and maintainability, dynamic linking was invented. The application
describes which libraries it needs and the linker of the operating system will glue the
applications and its dependent libraries (which are defined in the import section of
the application) together in the memory space of the application. This happens at
runtime.

Because the linker has to know all exported functions and their location, a symbol table
is part of every dynamic library. The same information can be used to hook into a
function during runtime or to trick the linker in loading a replacement for a function.
This is called API hooking [14].

2.2.1 API hooking

API hooking is a widely used technique to monitor or change the behaviour of appli-
cations. With API hooking the original function is replaced by a substitute (or hook).
This substitute function, for example, first logs the performed operation and then calls
the original function. Or the substitute could be a custom replacement of the original
function.

The technical implementation of API hooking is highly complex and platform specific.
Many different techniques [I] of hooking are possible as well. If the start of the applica-
tion can be controlled, the linker search path can be extended to include the replacement
library. Alternatively, the import section of the application can be modified. When the
application is already loaded or the modification of the application or system is unde-
sired, the function to be hooked can be overwritten in memory with a replacement or
a jump to a different location in memory as can be seen in Figure However, this

l Caller l Callee l Caller | Callee | l Caller | Callee |:

Hook function is called without calling Hook function is called, which in turn
ariginal function calls original function

Siluation without Hooking

Figure 2: Example of how an API function can be hooked at runtime by overwriting the
first bytes with a jump to a substitute function. If the original function has to
be preserved, a trampoline is added which consists of the overwritten bytes of
the original function. [19]

will prevent the ability to execute the original function unless the overwritten bytes are
carefully preserved and reconstructed somewhere else, a so-called trampoline.

2.3 Web browser architecture

Modern web browsers are complex applications consisting of many components which
have to work together. To develop a generic algorithm, it is crucial to have an in-depth
understanding of the inner workings of a web browser. This project focuses on Internet
Explorer, Mozilla Firefox, Chromium and Apple Safari. Those four browsers combined
have a marketshare of more than 90%F][

All modern web browsers allow the usage of multiple tabs in a single window. The
underlying implementations of those tabs differ greatly. Internet Explorer and Safari use
only libraries provided by the operating system while Firefox and Chromium decided to
use their own libraries. Some browsers decided to use multiple processes and sometimes
even a new process for every single tab.

Internet Explorer supports tabs since version 7 and version 8 was improved with
the ability to run tabs in their own process (see Figure [3). This feature is called
“loosely-coupled IE” [34], every process runs independently from the other processes
and runs with its own network stack and instances of content plug-ins like Flash or
Silverlight.

Starting each tab in its own process comes with an inevitable overhead of using more
memory and a slower startup. For this reason a process in Internet Explorer can host
multiple tabs. The number of tabs in a single process and the maximum number of
processes is determined by the configuration. For backwards compatibility, Internet
Explorer also provides the option to disable the usage of multiple processes and host all
tabs in a single browser process.

The network stack used in Internet Explorer is provided by the Windows operating
system and is called WinINet [29]. This library provides high-level access to functions

3http://gs.statcounter.com/#desktop-browser-ww-monthly-201412-201412-bar
“http://www.netmarketshare.com/browser-market-share.aspx?qprid=1&qpcustomb=0

iexplore.exe

| Protected-mode Broker Object

J
e
!

e

iexplore.exe (tab process 1) iexplore.exe (tab process n)

Toolbar Extensions Toolbar Extensions
ActiveX Controls ActiveX Controls

Browser Helper Browser Helper
Objects Objects

Figure 3: The Internet Explorer process model starting from version 8. [35]

that perform HTTP and FTP requests and utility functions for caching, proxies and
security. After initiating and configuring the request, WinINet will perform the necessary
steps to execute the request. WinINet depends on the Winsock library [30] to setup the
required network connections and Schannel [I8] is used to provide transparent support
for SSL/TLS connections.

Firefox uses only a single process for web content and only runs plug-ins from a different
process. A long-term project to change that is called Electrolysisﬂ and has been devel-
oped since 2009. In the new architecture, the entire rendering is moved to a dedicated
and sandboxed “content” process and the main process is used to host the user interface
and serves as a proxy between the outside world and the content process. A long-term
goal is to spread the rendering of tabs over more than one content process so that when
a content process crashes, not all tabs are affected.

To be platform independent, Firefox does not directly interface with the provided li-
braries of the operating system. Instead a platform-neutral API called “NSPR” (Netscape
Portable Runtime, [20]) is used. Together with the Network Security Services (NSS, [21])
library that provides the functionality to create SSL/TLS connections, they are used by
the high-level network library called Necko. Necko provides the interface to perform
HTTP and other protocol requests without revealing the underlying protocol, transport
level or platform specific implementation details and is comparable to WinINet.

Chromium is the open-source version of the Google Chrome browser and it is, except
for a couple of proprietary components, identical to Chrome. The big innovation of
Chrome [26] was to use multiple processes instead of a single process. Besides its own
process for every tab, it also has the plug-ins and audio subsystem in their respective

Shttps://wiki.mozilla.org/Electrolysis

processes. The subprocesses run in a sandbox with limited privileges and use the main
process to communicate with the outside world.

URLRequest —>{ URLRequestJob fre:x:irrrrmomeoroeeoee > URLRequestFtpJob

URLRequestDataJob URLRequestFileJob

HttpTransactionFactory [— HttpTransaction

ripNeterSession 7“

/

HttpStreamFactory ——| HttpStream >_—> StreamSocket
] v :
SpdySessionPool — HttpSpdyStream _

Figure 4: A high-level overview of the components involved in requesting a URL in
Chromium. Platform specific details related to sockets are hidden in Stream-
Socket and the usage of SSL/TLS is made transparent by using the interface-
compatible SSLSocket instead of StreamSocket. [4]

The library used by Chromium for network access is custom developed and tightly
integrated into the engine. It provides similar functionality as Necko and WinINet, using
a high-level interface (see Figure , but it also contains low-level interfaces that use the
operating system’s socket APIs directly. To provide transparent SSL/TLS support, the
same library as Firefox is used: NSS.

Safari is the last browser that was examined in this project. Since QOllﬂ support for
using multiple processes has been added. Safari is closed-source but built on top of many
open-source components like JavaScriptCore and WebKit.

Safari uses a dedicated process for every tab until a certain limit is reached. Once this
limit is reached, multiple tabs are hosted in a single process. The network operations
for the main and tab processes are concentrated in a dedicated network process. Only
this process will retrieve the webpages and uses the IPC subsystem to deliver the result
to the correct process.

CFNetwork is the library that is used by Safari for its network access. This library is one
of the core frameworks of the OS X operating system and available for all applications.
It provides interfaces for all relevant web related protocols. A unified interface called
NSUrl, similar as seen in other libraries, is also available. However, because of the closed-
source nature of Safari it is not possible, without an extensive reverse engineering effort,
to determine if it is used instead of directly using the provided APIs of the CFNetwork
library.

Shttps:/ /lists.webkit.org/pipermail /webkit-help/2011-July/002298.html

3 Approach and Methods

In this section, we discuss our approach for the large-scale detection of drive-by down-
loads and how we want to implement it in a proof of concept. But we start with inves-
tigating how to correlate different HT'TP requests that logically belong together.

3.1 Correlating HTTP requests

The challenge faced when multiple websites have to be loaded at the same time, is to
know which HTTP request corresponds to which website. Many webpages consist of
dozens of resources that have to be loaded. The loading of some resources can even be
delayed until after certain predefined events. In some libraries, the requesting of a web
resource consists of several independent steps.

A solution would be to modify the web browser in such a way that it exposes this
information with an easy to use interface. While this would solve the problem, regular
maintenance would be required to keep this system working as the browser executable
has to be changed for every release.

Another solution could be to log all the network traffic and analyse it. While this in-
formation is always available, it would require complex protocol and content parsers to
reconstruct the original network streams and extract useful information from it. Ad-
ditionally, an encrypted connection would require a proxy that uses on-the-fly creation
of certificates. Even then it would be trivial to circumvent this system as scripting
languages and browser plug-ins could be used to dynamically request resources.

A better solution would be to correlate an HTTP request to its originating webpage by
observing the behaviour and environment of the web browser. By hooking and logging
the API calls that are made by the web browser, the full process and thread context of
every call is available or can be reconstructed from earlier calls (as can be seen in Figure
. As all modern web browsers use high-level network libraries, this is the ideal place
to monitor. When combined with other interesting APIs, a full insight in the behaviour
of the web browser is available and detecting malicious behaviour is a matter of writing
the correct behavioural analysers.

An alternative for API hooking would be to write a custom operating system driver and
monitor the syscalls. While this would still give most of the information API hooking
would give and much harder to detect by the malware, it is much harder to implement
and the information gained from intercepting the API calls to the high-level network
libraries would not be available.

11:19:35,966 3024 InternetOpenW ProxyBypass => SUCCESS
AccessType => 0x00000000
Agent =>Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; Trident/4.0; SL
.NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media er PC
6.0; .NET4.0C; .NET4.0E)
Flags => 010000000
ProxyName =>

11:19:35,966 3024 InternetConnectW Username => SUCCESS [0x00cc0008

Service => 3

InternetHandle =>[0x00cc0004]
ServerName => www . example .com
Flags => 0x00000000

ServerPort => 80

Password =>

11:19:35,966 3024 HttpOpenRequestW Version => SUCCESS 0x00cc000c

InternetHandle =>
Flags => 4194816

Verb =>GET

Referer =>

Path => /

11:19:35,966 3024 HttpAddRequestHeadersW Headers => Accept-Language: en-us User-Agent:Mozilla/4.0 (compatible; MSIE 8.0; SUCCESS 0x00000001
Windows NT 6.1; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729;
.NET CIR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E) Accept-Encoding:

Figure 5: Example of the API calls involved when the WinINet library is used to load
a URL. The red rectangles show the handles that can be used to identify the
API calls that belong to a single request.

3.2 Algorithm

The proposed algorithm takes a list of URLSs as input, visits them and returns the URL(s)
which behave(s) abnormally, if any. To be able to visit those URLs concurrently, thus
enabling large-scale analysis, the algorithm has to be capable of linking events to a
URL from the input. This is done by monitoring the network traffic and additional
information (explained in . After gathering this data, the events are stored in a
graph after which analysis can be run to detect potential drive-by downloads.

The algorithm is as follows:
1. Visit (the URLs).
2. Process (the data).
3. Analyse (the graph).
4. Report (the findings).

3.2.1 Prerequisites and considerations

To correctly associate API calls with a browsing context and analyse the machine’s
behaviour after visiting a URL, monitoring is needed as explained in The question
is what information should be monitored, aside from network calls, to detect drive-by
downloads. According to Sami et al. [28], process, file, registry and console operations
are the top API categories when it comes to malware. These operations also score
highly in a research [23] where 550,000 malicious PE files were investigated. To track

the behaviour of drive-by downloads, we thus consider process spawns, shell commands
and file operationsﬂ These operations should only be tracked for processes in the process
subtree of the browser as other system activity is not of interest for detecting drive-by
downloads.

One of the major consideration that was made, is the fact that the algorithm should work
on multiple operating systems and multiple web browsers. The second consideration is a
reasonable running time, i.e. the algorithm should run in an acceptable time on normal
commodity hardware.

3.2.2 Steps

Step 1: Visit

After the monitoring is set up, potentially malicious websites can be visited. The be-
haviour of a website can be tracked in such a way that multiple websites can be visited
at one given time. This coincides with our research question of concurrently visiting
websites.

Step 2: Process

The API calls triggered by the visiting of the URLs are put into a directed acyclic graph
(DAG). Causally related events are connected by an edge. This relationship between
events allows tracking and linking events to a browsing context/URL. Optionally, an
abstraction of these API calls can be defined to decrease the size of the graph and thus
speed up operations performed on the graph. API calls are henceforth abstracted as
“events” but it is not actually necessary to create high-level events.

As an example of causally related events, say that a webpage is cached by a browser.
Then the cached version of that webpage is stored on disk. The visiting of that webpage
and the following cache write are causally related and hence a directed edge should be
created between the calls.

Although no specific structure of the DAG is required, a tree structure seems the most
fitting for the problem of tracking events to a browsing context. In this structure each
browsing context has its own subtree of events.

Step 3: Analyse

After the graph has been created, analysis algorithms can be run on the graph. It is
important to note that no analysis is done in Step 2, only events are added to the graph.
It is up to the analysers in this step to find malicious behaviour. Analysers are highly
dependent on the graph structure to correctly interpret the graph.

"For Microsoft Windows, the Registry should also be considered.

10

Step 4: Report

The final step is reporting to the user. After Step 3, each analyser reports its find-
ings back to the user. The analyser should give clear and precise information of what
happened.

3.3 Proof of concept

For the proof of concept (PoC), Cuckoo [6] will be used. Cuckoo is a malware analysis
system that runs malware in a virtual environment, tracks its behaviour and reports
these results to the user. The focus of the proof of concept will be on the gathering
and processing of the data. The actual detection of malware is outside the scope of this
project, only a simple analyser will be written to show the working of the algorithm. As
such, no validation of the effectiveness to detect malware will be performed.

Cuckoo was chosen because it already implements a great deal of the prerequisites of
the algorithm, discussed in Cuckoo, through Cuckoomon [7], provides a series of
hooks which monitors calls between the browser and the operating system.

These hooks, conveniently, also monitor the network calls made by the browser. Al-
though only Internet Explorer is supported by Cuckoo, due to the scope of the project,
this is not a problem.

3.3.1 Prerequisites and changes

As explained in Internet Explorer uses Windows’ “Schannel” [1§] to encrypt HTTP
requests and decrypt HTTP responses. Monitoring these calls via API hooking will
allow us to monitor traffic on the operating system level without any need for a proxy
to decrypt the traffic.

As already explained, Cuckoo uses Cuckoomon, which uses hooks to monitor calls, to
keep track of the browser activity. Besides adding new hooks and deleting irrelevant
hooks for drive-by downloads, nothing major has to be changed to Cuckoomon. The list
of hooks added and deleted can be found in Appendix C.

The current development version, 1.2-dev, only accepts one URL at a time. To allow
for concurrently visiting multiple websites in one sandbox environment, Cuckoo has to
be extended.

3.3.2 The setup

To test the algorithm, we will use the adapted Cuckoo with Virtualbox as the sandbox
environment. As the virtual machine’s operating system, we will use Windows 7 as this
is widely used and also frequently targeted by malware developers. As the browser, we

11

will use Internet Explorer 8. This browser doesn’t implement the latest vulnerability
mitigations, but is still supported by the vendor. This makes it a relative easy and
populair target for drive-by downloads.

The adapted Cuckoo will be provisioned with a subset of a list with the most visited
websites of the world®|and one malicious website which serves a drive-by download which
Spawns processes.

The structure of the graph will be a tree, as suggested in [3.2.2] Figure [6] shows an
example of how the graph should look for a website with a drive-by download.

After confirming that the PoC works, a comparison will be made with two malware
analysis systems: Cuckoo and Anubis.

Shttp://www.alexa.com/topsites

12

Sursmorgpaqqe d[qeug\rao[dxs jouteiuf
\WOSOIANOIBMPOS\YAS N LNHIAND ™ ATNH Pey

JMS PE-SNOIDI[BW/WO0d" JOAIS-Spe//:dNy [HD

1210]dXF 1OUIAIUN\IJOSOIII A

- — ourods 9//:d
\OTEAMOS\IASN LNTRNND AHNH Peay el

axa-a1ojdxar axaao[dxar axaa1o[dxar

$50001 1SOH JosK[euy

WX UTRWOPSSOID/ WO JAAIS-Spe//:dNy [HD

Sdr ropeay/wodardwexs//:dny 149

wododwexa/:dny 140

axa-a10[dxa1

$80'9[A18/woo ardwexay:dny 140

Siorordwexey:dny 190

axa'a10[dxar

Figure 6: An impression of how the generated graph should look. The red vertexes are

marked by the imaginary analyser as malicious.

4 Results

This section discusses the implementation of the algorithm, the problems encountered
and a comparison with the latest Cuckoo version.

4.1 Implementing the algorithm

What follows is a short overview of how the algorithm was implemented, the actual code
can be found on GitHuh’l

1. Visit To support the parallel visiting of URLs in one virtual machine, Cuckoo had
to be extended. Support for this was added using tabs, but this left us with a
problem to detect when a new URL was fed to a tab (see [.1.1)). To solve this
problem, every URL in this PoC is now opened in its own window.

2. Process In this step, the API calls were bundled into ten different events before
being added to the graph. If no relation was found between an event and a previous
event, an edge was created between the event itself and the event which represents
the browser context. The HT'TP ‘Referer’ header was used to find relations between
HTTP events, essentially creating a referer tree [9].

3. Analyse To implement the analysis phase of the algorithm, a simple analyser was
written that detects process spawns within browsing contexts. Appendix A shows
pseudo code of the analyser.

4. Report Reporting is done on the commandline but generated graphs of anomalies
are saved to the disk in the folder structure of Cuckoo. The raw data that was
generated by the virtual machine, is also retained in the Cuckoo folder structure.

4.1.1 Problems

Opening a new URL in the same browser context was not detectable by the
monitored API calls. On top of that, processes were reused when a browsing context
was closed and a new one was opened, this made it essentially the same as reusing
the browsing context. Internet Explorer also behaves differently when interacting with
the automation interface (COM) compared to real user interaction, leaving us without
distinct APT calls that could be used to detect the opening of a new URL. Therefore we
decided to use a new Internet Explorer process for each URL which gives us a process
ID per browser context.

Working with JSON was extremely slow in Cuckoo. After the virtual machine has
done its work, BSON files are transferred to the host machine. These BSON files
are then parsed by Cuckoo and analysed after which a JSON file is written. Our

%https://github.com/MartijnB/cuckoo/tree/multi-url

14

https://github.com/MartijnB/cuckoo/tree/multi-url

mass-analyse.py depended on this JSON, which made it very slow to use. A BSON
parser was written to skip the whole JSON step and thus we were able to work earlier
on the data, giving us a significant speedup.

4.2 Running the proof of concept

Running the proof of concept is as simple as running Cuckoo and running our Python
script. Listing [I] shows how the PoC is run. As explained in section the URL
list contains the Top 20 most visited websites and one website with malware. Figure
shows the full graph created in the process phase. Notice the red dots in the top left
corner of the graph which indicate process spawns and the purple dots which indicate
shell command executions. The analyser run in phase 3 successfully found this anomaly
and reported it back to the user. A graph of the browsing context in which this anomaly
occurred, was also shown to the user, as can be seen in Figure

Listing 1: Mass analyser being run

$ python cuckoo.py &

$ python utils/mass-analyse.py url_list.txt

Warning: Task with ID 22 is not yet completed; Waiting...

INFO:root:Parse log....

[...1

PID 2876 ’iexplore.exe’ spawned from parent PID 2860

Visiting: http://google.com/

PID 3656 ’iexplore.exe’ spawned from parent PID 2860

Visiting: http://unsuspicious.com/

PID 2108 ’iexplore.exe’ spawned from parent PID 2860

Visiting: http://google.nl/

PID 3064 ’iexplore.exe’ spawned from parent PID 2860

Visiting: http://imdb.com/

PID 1012 ’iexplore.exe’ spawned from parent PID 2860

Visiting: http://facebook.com/

PID 3728 ’control.exe’ spawned from parent PID 3656

PID 2848 ’repfix.exe’ spawned from parent PID 3656

PID 1944 ’rundll32.exe’ spawned from parent PID 3728

PID 3780 ’ynuni.exe’ spawned from parent PID 2848

[...1

Analyser °’Subprocess_from_tab’: The URL ’http://unsuspicious.com’ spawns
a process called ’control.exe’, ’repfix.exe’, ’rundll32.exe’ and
’ynuni.exe’.

15

(T

et
IFTPPOIRprees Liy

I:I HTTF Request - Socket operations
- Filz operations - Shell cormrmand - Process created
- Registry operations - Anomalies

Figure 7: An example of the graph generated by visiting the 20 websites and one mali-
cious website. The arrows indicate malicious events generated by the malware.

e

mplertfixexe

mRoot%\system32rundil32.exe
|_RunDLL CAUsers\Cuckoo\AppData\Local\Ter

Figure 8: An example of the subgraph where a single website was responsible for malware.
For clarity, only the labels of visited URLs, involved processes and executed shell
commands are shown.

4.3 Comparison with other malware analysis systems

To quantify the improvement that was made, several benchmarks were run against our
improved version, henceforth called “Roadrunner”[r_q Those benchmarks were compared
with a development snapshot of Cuckoo 1.9"] and Anubis.

The benchmarks consist of provisioning the system with one or more URLs. With
Cuckoo, the time is measured until the status changes to “reported”. Anubis reports
contain a “time needed” value which was used as the benchmark time. The Roadrunner
benchmark measures the time between submitting the URL list and the exit of the de-
veloped analysis script. Each benchmark was run 25 times to filter out anomalies.

For Roadrunner, benchmarks were executed with 1, 5, 10, 25, 50 and 100 URLs. If
the benchmark crashed (or hit the critical time-out) the measurement was discarded as
this is a known issud™ with no easy workaround. Cuckoo and Anubis do not allow for
more than 1 URL being visited in one run. Cuckoo, however, can be provisioned with
more than one URL after which Cuckoo visits them sequentially. However, not enough
time was available to benchmark Cuckoo with 50 and 100 URLs. Because Anubis is
a hosted system outside our control, it was not possible to run the benchmark with
high(er) URL counts without knowing the implications on performance. For this reason
a maximum of 10 URLs was benchmarked. Based on the fact that both systems visit the
URLs sequentially and the benchmarks show an (almost) linear increase, extrapolation
is possible with an acceptable margin of error.

Table [1] shows the summary"3| of the benchmarks. This table gives the mean time over
25 runs with a certain amount of URLs. A rough comparison in the speed between
Cuckoo and Anubis on one side and Roadrunner on the other side has also been made.
Although the difference is significant, a important sidenote must be made that speed
is not the primary goal of Cuckoo and Anubis and that Cuckoo, if wanted, can be
speeded up by configuration tweaks. The changes made to speedup the proof of concept
removed a lot of the detailed insights Cuckoo gives in the behaviour of malware. For
this project, however, only the data that makes it possible to detect malicious activity
is of importance, not detailed insight of the exact behaviour of malware.

Figure [0 and Figure [I0] show these numbers in a different way. Figure [0] shows the
boxplots of the different runs of Roadrunner. We can say that for a higher amount of
URLs, there is bigger a variance in the time it takes to complete. It was not expected
that this would result in such a (relatively) big spreading and there is no satisfactorily
explanation for this behaviour. The expected result was that the differences between
websites would even out on higher URL counts. Figure [10]is a visual representation of
Table |1}, on the x-axis we see the number of URLs; the y-axis the time it takes to analyse
these URLs.

Phttp://en.wikipedia.org/wiki/Geococcyx

"https://github.com/cuckoobox/cuckoo/commit/6177071cfd57500fbf 1dc17a66£5af£39051c75¢

12The monitor component of Cuckoo is under active development and a significant upgrade is expected
in the coming months.

13The raw numbers used to generate the table and graphs can be found in Appendix B.

18

https://github.com/cuckoobox/cuckoo/commit/6177071cfd57500fbf1dc17a66f5aff39051c75e

10RL - HH
5 Urls — HH
10 URLs - H -4
25 URLs HT H-
50 URLS s
100 URLs — b----[] }--

100 200 300 400

Seconds

Figure 9: A boxplot of the Roadrunner benchmark durations. A higher URL count results
in a higher variance of the duration.

1 URL 5 URLs 10 URLs 25 URLs 50 URLs 100 URLs

Anubis 274s 1397s 2793s - - -
Cuckoo 152,8s 769,7s 1575,2s 3947,1s - -
Roadrunner 48,83 74,8s 102,4s 160,1s 286,4s 450,9s
Improvement 3-5,5x 10-18x 15-27x 24x - -

Table 1: Mean runtime in seconds of Cuckoo, Roadrunner and Anubis. Limitations of
available time prevented the benchmarking of Anubis and Cuckoo with higher
URL counts.

30,000

25,000

20,000

15,000 === Anubis

Seconds

Cuckoo

«====Roadrunner

10,000

5,000

1 5 10 25 50 100
URLs

Figure 10: A line chart with the results of the benchmarks. To give an indication how
long it would take for higher amounts of URLs, the data of Anubis and Cuckoo
have been extrapolated for up to 100 URLs. Roadrunner is in all cases faster
than both existing systems which run sequentially.

5 Conclusion

This research project focused on the question how the detection of drive-by downloads
can be improved by the means of concurrently visiting multiple URLs whilst still being
able to determine which URL was responsible for malicious activities. To reach this goal
four subquestions have been formulated and answered.

Web browsers are all implemented with the ability to concurrently visit multiple URLs
in a different way. Some browsers were implemented to use multiple threads in a single
process, but most modern browsers use subprocesses dedicated to a single or a few
URLs. When multiple processes are used, it depends on the implementation whether
that process is directly fetching the webpages or that the main process or an intermediate
process is used.

How webpages are retrieved and what the involved APIs are, is highly dependent on
the implementation. Two of the examined browsers use the high-level HTTP library
provided by the operating system while the other browsers implemented their own.
Such implementations are, for example, a custom library that is independent from other
components of the web browser or an implementation where the network library is tightly
integrated in the browser engine.

By monitoring the API calls to the network stack and the process and thread context
they are made from, an individual HTTP request can be linked to its source. While
other methods are possible, with monitoring, no modifications to the web browser are
required while still all information is available.

Additional information that can be used to detect the malicious behaviour includes
process, file, registry and other network related API calls. While information sources
like network sniffing, syscall observation and other passive techniques could be used, no
additional information would be gained.

Based on this research, this paper proposes an algorithm that enables the possibility
to do large-scale drive-by download detection by concurrently visiting multiple URLs
whilst still being able to determine the URL responsible for the observed malicious
behaviour. To validate the working and effectiveness of this algorithm, a proof of concept
has been developed for the detection of drive-by downloads. A significant performance
gain compared to current malware analysis systems has been observed.

20

6 Future work

Our study focused on finding a generic algorithm which allows for large-scale detection
of drive-by downloads. Currently, the analysis phase is done after processing the events
and creating the graph. Real-time analysis on the graph would allow for faster detection
and reporting but might have more overhead. The optimal moment to analyse the graph
should be investigated.

During the proof of concept, an abstraction was made from low-level API calls to high-
level events. While this greatly reduces the effort needed to analyse the graph, this
poses a risk that crucial information might be missed. Further effort should be invested
in finding an optimal granularity for the graph.

Additional intellectual effort should also be invested in the defining of relations between
events. In our proof of concept, the relations between events are simplistic and straight-
forward. With more effort, better and more complex relations can be found and defined
in the graph.

6.1 Proof of concept

The proof of concept in its current state is not ready for deployment. While tests during
the development with real malware suggest that even a simplistic analyser is able to
detect certain malware families, more advanced analysers should be developed. The
current analyser also gives a false positive on a website that uses Java applets. While
none of the tested websites use such applets, creating a whitelist of processes that can
legitimately be started by browser plug-ins should be considered.

Another limitation is the stability of the proof of concept. In up to twenty percent of the
cases, the proof of concept would never go to a completed state. As this was not related
to a specific website or malware sample, this is not seen as a fundamental mistake in
the algorithm, but a bug in the implementation. No time was available to resolve this
issue and a major update for Cuckoo is around the corner that resolves several known
issues.

21

Acknowledgements

We would like to thank our supervisors, Jop van der Lelie and Wouter Katz from the
Dutch National Cyber Security Center, for the support and insight they have given
during our research project. They have greatly improved the quality of this paper.

We would also like to thank the Cuckoo developers (especially Jurriaan Bremer) who
helped us understand the inner workings of Cuckoo and even helped us resolving the
bugs we introduced during this project.

22

References

1]

[2]

[13]

J. Bremer. x86 API Hooking Demystified, 2012. http://jbremer.org/
x86-api-hooking-demystified Accessed on: 2015-01-24.

D. Canali, M. Cova, G. Vigna, and C. Kruegel. Prophiler: A Fast Filter for the
Large-scale Detection of Malicious Web Pages. In Proceedings of the 20th Interna-
tional Conference on World Wide Web, WWW ’11, pages 197-206, New York, NY,
USA, 2011. ACM.

J. Chang, K. K. Venkatasubramanian, A. G. West, and I. Lee. Analyzing and
Defending Against Web-based Malware. ACM Comput. Surv., 45(4):49:1-49:35,
Aug. 2013.

Network Stack. File: Chromium HTTP Network Request Diagram.svg (Modified)
http://www.chromium.org/developers/design-documents/network-stack Ac-
cessed on: 2015-01-24.

D. Cortjens and T. El Yassem. Securing an outsourced network: Detecting and
preventing malware infections. 2012.

Automated Malware Analysis - Cuckoo Sandbox. http://cuckoosandbox.org.
Accessed on: 2015-01-06.

Cuckoo Sandbox Monitor Component. https://github.com/cuckoobox/
cuckoomon. Accessed on: 2015-01-21.

M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A Survey on Automated Dynamic
Malware-Analysis Techniques and Tools. ACM Computing Surveys, Vol. 44, No. 2,
Article 6, February 2012.

Z. L. Feng Qiu and J. Cho. Analysis of User Web Traffic with a Focus on Search
Activities. 2005.

Analysis of malicious advertisements on telegraafnl. http://blog.fox-it.com/
2013/08/01/analysis-of-malicious-advertisements-on-telegraaf-nl/,

2013. Accessed on: 2015-01-08.

Malicious advertisements served via Yahoo. http://blog.fox-it.com/2014/01/
03/malicious-advertisements-served-via-yahoo/, 2014. Accessed on: 2015-
01-08.

Honeyspider Network. http://www.honeyspider.net. Accessed on: 2015-01-07.

W. Huang. Newest Adobe flash 0-day used in new drive-by down-
load variation: drive-by cache, targets human rights website, 2011. File:
drive-by-download-drive-by-cache.png (Modified) http://blog.armorize.
com/2011/04/newest-adobe-flash-0-day-used-in-new.html| Accessed on:
2015-01-24.

23

http://jbremer.org/x86-api-hooking-demystified
http://jbremer.org/x86-api-hooking-demystified
http://www.chromium.org/developers/design-documents/network-stack
http://cuckoosandbox.org
https://github.com/cuckoobox/cuckoomon
https://github.com/cuckoobox/cuckoomon
http://blog.fox-it.com/2013/08/01/analysis-of-malicious-advertisements-on-telegraaf-nl/
http://blog.fox-it.com/2013/08/01/analysis-of-malicious-advertisements-on-telegraaf-nl/
http://blog.fox-it.com/2014/01/03/malicious-advertisements-served-via-yahoo/
http://blog.fox-it.com/2014/01/03/malicious-advertisements-served-via-yahoo/
http://www.honeyspider.net
http://blog.armorize.com/2011/04/newest-adobe-flash-0-day-used-in-new.html
http://blog.armorize.com/2011/04/newest-adobe-flash-0-day-used-in-new.html

[14]

[15]

[16]

[17]

23]

[24]

[25]

[26]

I. Ivanov. API hooking revealed, 2002. http://www.codeproject.com/Articles/
2082/API-hooking-revealed Accessed on: 2015-01-28.

T. Kinkhorst and M. Van Kleij. Detecting the ghost in the browser: Real time
detection of drive-by infections. 2009.

V. L. Le, I. Welch, X. Gao, and P. Komisarczuk. Anatomy of Drive-by Download
Attack. In Proceedings of the Eleventh Australasian Information Security Confer-
ence - Volume 138, AISC ’13, pages 49-58, Darlinghurst, Australia, Australia, 2013.
Australian Computer Society, Inc.

Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing Your Enemy: Understand-
ing and Detecting Malicious Web Advertising. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security, CCS '12, pages 674-686,
New York, NY, USA, 2012. ACM.

Microsoft - Secure Channel. https://msdn.microsoft.com/en-us/library/
windows/desktop/aa380123%28v=vs.85%29.aspx. Accessed on: 2015-01-21.

J. Newger. N-CodeHook - A detours like inline patching lib, 2008. Image constructed
from NCodeHookO.png, NCodeHook1.png and NCodeHook2.png (Modified) http:
//newgre.net/node/5| Accessed on: 2015-01-28.

NSPR - Morzilla Developer Network. https://developer.mozilla.org/en-US/
docs/Mozilla/Projects/NSPR. Accessed on: 2015-01-26.

Network Security Services - Mozilla Developer Network. https://developer.
mozilla.org/en-US/docs/Mozilla/Projects/NSS. Accessed on: 2015-01-26.

Y. Park and D. Reeves. Deriving Common Malware Behavior Through Graph
Clustering. In Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, ASIACCS 11, pages 497-502, New York, NY, USA,
2011. ACM.

P. Porter. Top Maliciously Used APIs, 2013. https://www.bnxnet.com/
top-maliciously-used-apis| Accessed on: 2015-01-28.

Malware in Ad Networks Infects Visitors and Jeopardizes
Brands. http://www.proofpoint.com/threatinsight/posts/
malware-in-ad-networks-infects-visitors-and-jeopardizes-brands.phpl

Accessed on: 2015-01-07.

M. A. Rajab, L. Ballard, N. Jagpal, P. Mavrommatis, D. Nojiri, N. Provos, and
L. Schmidt. Trends in Circumventing Web-Malware Detection. Technical report,
2011.

C. Reis. Multi-process Architecture, 2008. http://blog.chromium.org/2008/09/
multi-process-architecture.html Accessed on: 2015-01-24.

24

http://www.codeproject.com/Articles/2082/API-hooking-revealed
http://www.codeproject.com/Articles/2082/API-hooking-revealed
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380123%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380123%28v=vs.85%29.aspx
http://newgre.net/node/5
http://newgre.net/node/5
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSPR
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://www.bnxnet.com/top-maliciously-used-apis
https://www.bnxnet.com/top-maliciously-used-apis
http://www.proofpoint.com/threatinsight/posts/malware-in-ad-networks-infects-visitors-and-jeopardizes-brands.php
http://www.proofpoint.com/threatinsight/posts/malware-in-ad-networks-infects-visitors-and-jeopardizes-brands.php
http://blog.chromium.org/2008/09/multi-process-architecture.html
http://blog.chromium.org/2008/09/multi-process-architecture.html

[27]

32]

[33]

C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. van Steen, F. C. Freiling,
and N. Pohlmann. Sandnet: Network Traffic Analysis of Malicious Software. In
Proceedings of the First Workshop on Building Analysis Datasets and Gathering
Ezxperience Returns for Security, BADGERS 11, pages 78-88, New York, NY, USA,
2011. ACM.

A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and A. Hamze. Malware
detection based on mining api calls. In Proceedings of the 2010 ACM Symposium on
Applied Computing, SAC ’10, pages 1020-1025, New York, NY, USA, 2010. ACM.

About WinINet (Windows). |https://msdn.microsoft.com/en-us/library/
windows/desktop/aa383630%28v=vs.85%29.aspx. Accessed on: 2015-01-26.

About Winsock (Windows). https://msdn.microsoft.com/en-us/library/
windows/desktop/ms737523%28v=vs.85%29.aspx. Accessed on: 2015-01-26.

T. Wiichner, M. Ochoa, and A. Pretschner. Malware Detection with Quantitative
Data Flow Graphs. In Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security, ASTA CCS '14, pages 271-282, New York,
NY, USA, 2014. ACM.

J. Wyke. ZeroAccess, 2012. http://www.sophos.com/en-us/medialibrary/PDFs/
technical’,20papers/ZeroAccess.pdf?la=en.pdf?dl=true Accessed on: 2015-
01-28.

J. Wyke. Notorious ”Gameover” malware gets itself a kernel-mode
rootkit..., 2014. https://nakedsecurity.sophos.com/2014/02/27/
notorious-gameover-malware-gets-itself-a-kernel-mode-rootkit Accessed
on: 2015-01-28.

A. Zeigler. TE8 and Loosely-Coupled IE (LCIE), 2008. http://blogs.msdn.com/
b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-1lcie.aspx Accessed
on: 2015-01-24.

A. Zeigler. IE8 and Loosely-Coupled IE (LCIE), 2008. File:
11_TE8andLooselyCoupledIELCIE 2.png (Modified) http://blogs.msdn.com/
b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-1lcie.aspx Accessed
on: 2015-01-24.

25

https://msdn.microsoft.com/en-us/library/windows/desktop/aa383630%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa383630%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms737523%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms737523%28v=vs.85%29.aspx
http://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/ZeroAccess.pdf?la=en.pdf?dl=true
http://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/ZeroAccess.pdf?la=en.pdf?dl=true
https://nakedsecurity.sophos.com/2014/02/27/notorious-gameover-malware-gets-itself-a-kernel-mode-rootkit
https://nakedsecurity.sophos.com/2014/02/27/notorious-gameover-malware-gets-itself-a-kernel-mode-rootkit
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx
http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx

Appendix A: Simple Analyser

To implement step 3 of the algorithm a very simple analyser was written which detects
a process spawn beneath tab processes. Although the real coddg] is a bit unclear, it is
the same as the pseudo code in listing

Listing 2: Pseudo code for phase 3 of the algorithm

function deep_process_spawn_analyser (graph)
foreach vertex in graph
if vertex.type == "process_spawned"
if check_depth_in_graph(vertex, 0) > 1
print "Malicious activity"
endif
endif
endforeach
endfunction

function check_depth_in_graph(vertex, current_depth)
parents = get_parents_of_vertex(vertex)
Actually we need only one parent
if length_array(parents) > O
return check_depth_in_graph(parents[0], current_depth++)
else
No more parents, we’re at the root node
return current_depth
endif
endfunction

“https://github.com/MartijnB/cuckoo/blob/multi-url/utils/mass—-analyse.py

26

https://github.com/MartijnB/cuckoo/blob/multi-url/utils/mass-analyse.py

Appendix B: Raw benchmark data

The following tables show the running time (in seconds) as gathered during the bench-
marks of Anubis, Cuckoo and Roadrunner. Every value equals to a single run of the
benchmarked system. The URLSs used for this benchmark are random selected from the
top 100 of a worldwide listFE] with the most populair websites.

1 URL 5 URLs 10 URLs

260s 1463s 2810s
311s 1296s 2702s
267s 1526s 2749s
299s 1373s 2923s
283s 1387s 2779s
271s 1318s

270s 1353s

250s 1390s

282s 1448s

265s 1417s

251s

264s

264s

279s

2558

357s

251s

279s

275s

265s

298s

256s

256s

271s

277s

Table 2: Raw values of the benchmarks of Anubis in seconds.

Bhttp://www.alexa.com/topsites

27

1 URL 5 URLs 10 URLs 25 URLs

148,55 650,6s 1616,2s 3776,9s
161,2s 764,0s 154158 3971,7s
152,2s 736,8s 1519,0s 3812,1s
152,1s 771,2s 1462,0s 3799,3s
1434s 749,0s 1504,7s 3752,4s
149,55 723,85 1600,0s 4762,5s
152,95 971,5s 1530,7s 3968,9s
146,0s 7388 1520,9s 3990,1s
159,0s 748,6s 1539,2s 4042,0s
148,3s 742,3s 1532,4s 4030,6s
153,58 754,2s 1414,6s 3899,7s
1479s 771,5s 18254s 3878,4s
160,7s 1013,1s 1702,2s 3735,5s
152,35 728,0s 1458,6s 40234s
144,0s 648,7s 1539,1s 3845,5s
146,8s 712,1s 1618,3s 3853,7s
164,3s 7382s 1504,3s 3777,3s
148,6s 7855s 1488,2s 3923,2s
152,5s 850,25 1485,1s 4021,3s
146,2s 910,1s 1504,3s 3921,2s
148,1s 728,8s 1804,9s 3792,8s
185,55 751,5s 1786,5s 3990,1s
161,1s 755,0s 1554,4s 3972,7s
144,1s 751,7s 1548,9s 4154,6s
151,9s 746,2s 1779,8s 3982,2s

Table 3: Raw values of the benchmarks of Cuckoo in seconds.

28

1 URL 5 URLs 10 URLs 25 URLs 50 URLs 100 URLs
44,8s 93,7s 109,3s 144,2s 271,0s 455,9s

45,2s 85,3s 100,4s 140,5s 240,3s 431,9s
45,2s 67,7s 84.0s 152,2s 251,8s 438,8s
47,1s 59,9s 86,9s 146,0s 272,28 456,9s
44.9s 67,6s 141,0s 156,4s 254,7s 482,3s
43,8s 83,55 100,8s 155,7s 252,3s 414,2s
46,2s 74,8s 90,0s 138,4s 247.9s 480,1s
44.7s 65,1s 135,1s 153,58 240,7s 430,7s
47.8s 92,55 87,2s 161,5s 257,5s 410,6s
60,0s 63,9s 93,5s 172,8s 297,0s 429,2s
47,0s 76,4s 103,4s 185,4s 248 .3s 452,58
47,6s 106,5s 90,0s 144,1s 265,3s 442 3s
52,58 74,4s 128,0s 156,0s 582,Ts 537,1s
51,3s 64,8s 95,7s 156,8s 265,4s 461,4s
61,7s 65,9s 84,2s 160,3s 251,68 441,2s
45,8s 104,3s 109,1s 163,9s 261,5s 436,1s
46,2s 69,7s 86,4s 166,9s 253,3s 438,3s
46,9s 68,1s 103,5s 145,9s 332,1s 465,9s
48,3s 69,6s 88,0s 185,9s 535,8s 409,4s
61,2s 65,5s 93,3s 175,4s 258,9s 463,5s
54,1s 70,6s 138,8s 202,8s 259,4s 466,5s
45,7s 67,0s 104,7s 186,5s 284.,9s 481,0s
42.7s 74.4s 110,8s 165,1s 260,2s 451,8s
54,1s 70,4s 95,8s 139,7s 267,6s 446,4s
45,9s 69,5s 99,8s 146,3s 247 6s 448.0s

Table 4: Raw values of the benchmarks of Roadrunner in seconds.

29

Appendix C: Cuckoomon maodifications

Cuckoomon is the analyser component of Cuckoo. It hooks interesting API functions
and logs their usage. As part of the development of the proof of concept, many hooks

have been removed and several missing ones added.

Added hooks

URLDownloadToFileA HttpSendRequestExW
FtpOpenFileA HttpEndRequestA
FtpOpenFileW HttpEndRequestW
FtpGetFileA HttpQueryInfoA

FtpGetFileW HttpQueryInfoW

FtpPutFileA InternetConfirmZoneCrossing A
FtpPutFileW InternetConfirmZoneCrossingW
HttpAddRequestHeadersA InternetReadFileExA
HttpAddRequestHeadersW InternetReadFileExW

HttpSendRequest ExA

Removed hooks

NtReadFile NtDeviceloControlFile
NtQueryDirectoryFile NtQueryInformationFile
NtOpenDirectoryObject FindFirstFileExA
FindFirstFileExW GetDiskFreeSpaceExA
GetDiskFreeSpaceExW GetDiskFreeSpaceA
GetDiskFreeSpaceW RegEnumKeyW
RegEnumKeyExA RegEnumKeyExW
RegEnumValueA RegEnumValueW
RegQueryValueExA RegQueryValueExW
RegQueryInfoKey A RegQuerylnfoKeyW
NtEnumerateKey NtEnumerateValueKey
NtQueryValueKey NtQueryMultipleValueKey
NtLoadKey NtLoadKey2
NtLoadKeyEx NtQueryKey
FindWindowA FindWindowW
FindWindowExA FindWindowExW
EnumWindows NtOpenMutant
NtOpenSection ZwMapViewOfSection
ExitProcess NtUnmapViewOfSection
NtFreeVirtualMemory SetWindowsHookExA
SetWindowsHookExW UnhookWindowsHookEx
LdrGetDIIHandle LdrGetProcedureAddress
ExitWindowsEx LookupPrivilegeValueW

30

WriteConsole A
GetSystemMetrics
GetComputerNameA
GetUserNameA
NtDelayExecution
GetSystemTime
NtQuerySystemTime
sendto

recvirom

connect
WSARecvFrom
WSASendTo
CryptUnprotectData
CryptUnprotectMemory
CryptEncrypt
CryptDecodeMessage
CryptEncryptMessage

WriteConsoleW
GetCursorPos
GetComputerNameW
GetUserNameW
GetLocalTime
GetTickCount

send

recv

select

WSARecv

WSASend
CryptProtectData
CryptProtectMemory
CryptDecrypt
CryptHashData
CryptDecryptMessage
CryptHashMessage

31

	Introduction
	Research Question
	Related work

	Theory
	Drive-by downloads
	Behaviour

	Libraries and APIs
	API hooking

	Web browser architecture

	Approach and Methods
	Correlating HTTP requests
	Algorithm
	Prerequisites and considerations
	Steps

	Proof of concept
	Prerequisites and changes
	The setup

	Results
	Implementing the algorithm
	Problems

	Running the proof of concept
	Comparison with other malware analysis systems

	Conclusion
	Future work
	Proof of concept

	Acknowledgements
	References
	Appendix A: Simple Analyser
	Appendix B: Raw benchmark data
	Appendix C: Cuckoomon modifications

